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ABSTRACT

In this paperwe presenta new, morphologicalcriterion for determiningwhethera geometricsolid is
suitablefor voxelizationat a given resolution. The criterion embodiestwo conditions,namelythat the
curvatureof the solid mustbe boundedandthe critical pointsof the distancefield mustbe at a certain
distancefrom theboundaryof thesolid. For solidsthatfulfill thiscriterion,wepresentananalyticandan
empiricalboundfor the trilinear reconstructionerror. Additionally, we give a theoreticalargumentasto
why thedistancefield approachto voxelizationis moresoundthantheprefilteringtechnique.Theessence
of the argumentis that while samplingand interpolationmust always introducesomeerror, the latter
method(but not theformer)introducesanerrorin thesurfacepositionindependentlyof thesampling.

Keywords: Voxelization,Morphology, Geometricmodeling,Curvature,Hessenormalform

1 INTRODUCTION

Volumegraphicsis the broadterm usedto describe
a set of techniquesin 3D computergraphicsthat
employ discreterepresentationsof 3D objectsrather
than continuousimplicit or parametricrepresenta-
tions. Volumegraphicshasimportantapplicationsin
certainareasof computergraphicssuchasthemod-
eling of amorphousobjects(clouds,smoke &c.) and
the interactive modelingof certain typesof solids.
The latter applicationis usually known as volume
sculpting [Galye91, Wang95, Bæren98]. Volume
sculptingis not yet a very widespreadtechnique,but
we believe that it may soonbecomemore popular,
sincethe volumetric representationallows for very
intuitivetools,andis moreamenableto modelingob-
jectswith organicandcomplex shapesthanboundary
representations.

However, oneof theimpedimentsto awidespreaduse
of volumegraphicsis that someof the fundamental
operationsstill needtheoreticalwork. Theaimof this
paperis to improvetheunderpinningsof oneof these
operations,namelythevoxelizationof solids.

Hitherto, two main paradigmsfor voxelizationhave
beenproposed:

� The prefilteringapproach[Wang93], wherea
geometricsolid is numericallyconvolvedwith
a bandlimitingfilter in thecontinuousdomain,
beforesampling.� The distance field approach [Breen98,
Gibso98, Šŕame99, Šŕame98], where the
idea is to samplethe distanceto the solid.
This approachcanalsobe modifiedso that a
functionof thedistanceis sampledratherthan
thedistanceitself [Šŕame99].

After somepreliminarydefinitionsin section2, we
discusstheprefilteringanddistancefield techniques
for voxelizationin section3 andarguewhy thelatter
is preferable.In section4 we presenta setof condi-
tionsfor whetherasolidis suitablefor voxelizationat
agivenresolution.In section5 acriterionfor whether
a geometricsolid is suitablefor voxelizationis pre-
sented.In section6 we presenttwo errorboundsfor
the reconstructionof voxelizedsolidsthat fulfill the
criterion.Thefirst errorboundis analyticthesecond
is basedonempiricaldata.

We only investigatethe reconstructionerror for the
trilinear interpolationfunction, becausetrilinear re-
constructionis fast, usually adequatefor volume
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graphics(even if it is not alwaysadequatefor visu-
alizationtasks)andusuallythe choseninterpolation
for hardwareimplementationssuchasin thecubear-
chitecturewhich hasrecentlybeenimplementedin
theVolumeProsystem[Pfist99].

Lastly, we draw conclusionsanddiscussfuturework
in thesections7 and8.

2 DEFINITIONS

Solid By a solid � we understanda closedsub-
set of 	�
 . We definethe interior of � as the set
itself ( ���� ), the exterior as the complement(����� ), andtheboundary( ���������� ) asthesub-
setwhereany neighborhoodcontainsnon members.
Danglingboundariesarenot allowed,i.e. theremust
bea pathfrom a boundarypoint to a non–boundary
point which doesnot touch other boundarypoints.
The boundaryof a solid is, of course,a surfacein	�
 andthewordssurfaceandboundarywill beused
interchangeably.

Inside–outsidefunction The inside–outsidefunc-
tion returns0 for pointsoutsidetheobjectand1 for
pointsinside����� ��� � !#" �$%�& �'�%� (1)

Distancefield By a distancefield, we understanda
scalarfield associatedwith a solid � . The valueof
the field is given by a function ( ��) 	�
+*,	 that
mapsa point in spaceto thedistancefrom thatpoint
to theclosestpointon ��� .

( ��� ���-�/.0 132%46587:9<;>=@? �A� � � 2CB � �D�$%�& �$+�E�465F7G9H;I=@? ��� � � 2JB � � ���%�
(2)

As is apparentfrom (2) we usethe conventionthat( � is positive outsideandnegative insidethe solid,
so it is really an orienteddistancefunctionwhich is
alsocalleda Hessenormalform[Hartm99]. Thenor-
malformhasseveralpropertiesthatwewill needlater.
For instance,� KA(L��� "

andtheprincipalcurvatures
can be inferred from the Hessian(i.e. the matrix
of secondorder derivatives)of the normalform. It
shouldbenotedthat thedistancefield (normalform)
is only known explicitly for planesandspheres,and
thenormalformcalculationsmust,in general,bedone
numerically.

Maximum curvature In this paper, we will not use
Gaußianor averagecurvature,so curvature means

normalcurvature[Carmo76]. By themaximumcur-
vatureatapoint � , wemeanthenumericallygreatest
principalcurvature[Carmo76] at � of the isosurface
thatcontains� . By themaximumcurvatureof a dis-
tancefield in someregion M��N	�
 weunderstandthe
maximumof themaximumcurvaturesof all ��%M
Voxel A voxel is usually definedeitheras a small
rectangularbox or a point sampleof a 3D function.
In this paperonly the latter definition is used. The
voxelsarearrangedin a rectangular, isotropic3D lat-
tice,anda neighboringvoxel is oneof thesix voxels
that areclosestalongoneof the six principal direc-
tionsof thelattice.

Voxelunit Thevoxel unit vu is thedistancebetween
two neighboringvoxels. All distancesare in voxel
units.

2.1 An example

A typical exampleof a solid is thesphere.Theinte-
rior of a spherewith centre�PO andradius Q is given
by�R�S�T� ) � � 2 � O �:U�QV� (3)

Theboundaryis givenby���R�'�W� ) � � 2 �POX�V�YQV� (4)

andthedistancefunctionis( �A� �Z�[�3� � 2 �PO�� 2 Q (5)

3 VOXELIZA TION TECHNIQ UES

The first work on non–binaryvolume samplingof
geometricprimitives(solidsor polygons)was done
by WangandKaufmanin [Wang93]. Their method,
known as prefiltering was to convolve the inside–
outside function of a geometric primitive with a
Bartlettfilter1 beforesamplingin orderto band-limit
thefunction.It is only necessaryto know thevalueof
theconvolutionat voxel positions,henceanumerical
solutionis feasible,andthemethodwassuccessfulin
producingvoxelizedobjectswith few visiblealiasing
artifacts.

Recently, anotherand simpler techniquehas been
employed for solid voxelization by e.g. Šŕamek
[Šŕame98, Šŕame99], Gibson[Gibso98], andBreen
[Breen98]. Theideais to simplysamplethedistance

1Alsoknown asthehyperconefilter. Thefilter hasits maximum
in the centreof the supportandthe valuedecreaseslinearly with
thedistanceto thecentreto 0 at theedgeof thesupport



function (2) or a function that is proportionalto the
distancefunction. It is possibleto sampleandinter-
polatethe distancefunction just like the convolved
inside–outsidefunction, but this approachhas the
advantagethat it is simpler (in fact the prefiltering
methodusesthe distancefield), andhasexperimen-
tally beenshown to yield superiorresults[Šŕame98].

Variousreconstructionfilters may be appliedto the
voxel rasterto reconstructthe valueat arbitrary lo-
cations,andeventhetrilinear filter yieldsquitegood
results. Šŕamekshows experimentallythat the sur-
facereconstructionerrorfor aspheredecreasesasthe
radiusincreasesandreportsan averageerror of less
than 0.05 vu [Šŕame99] for the reconstructionof a
sphereof a radiusof 4 vu. Both GibsonandŠŕamek
conjecturethat theerror is curvaturedependent,and
Gibsonalsonotesthat certainspecialcasesmustbe
takeninto account.Thesespecialcasesarewhencrit-
ical pointsin the distancefield comeso closeto the
surfacethatthey arewithin thesupportof reconstruc-
tion or gradientreconstructionfilters. This can ei-
therbedueto sharpedgesor, in thecaseof anobject
with asmoothsurface,dueto two surfaces(or surface
components)thatarecloseto eachother.

3.1 Prefiltering

Theenticingthing abouttheprefilteringapproachis
thattheoperationof bandlimitingby convolvingwith
a smoothingfilter is a well known operationthat is
frequentlyusedin computergraphics. However, in
volumegraphics,the methodhasa drawback. Sur-
facesof solidsarealmostalwaysdefinedas isosur-
facesin the scalarfield usedto representthe solid,
andthevalueof theconvolution at a point on ��� is
only constantfor all �S���� if thecurvatureof the
surfaceof � is constant.Therefore,thereis, in gen-
eral,no isovalue \ for which�W� )X�]� �C^�_a` � � �Z�[�b\P���c��� (6)

where
^

denotesconvolution and
_d`

is the Bartlett
filter. Thisproblemdoesnotexist in thedistancefield
approachsinceby definitionof thedistancefield�W� ) ( �6� ��� � & �a�b�E� (7)

The problemis illustratedin figure 1 wherewe ob-
serve that only a planarsurfacedivides a spherical
supportin two identical halves when the centreof
the support is exactly on the surface of the solid.
The greaterthe curvatureat the boundarypoint, the
greaterthedifferencebetweenthepartof thesupport
thatintersectsthesolidandthepartthatdoesnot,and
asthefilter is non–zerowithin thesupport,theresult
of the convolution will alsodiffer. Note that the er-
ror is not a byproductof samplingandinterpolation,

Convolution kernel support

Solid

Figure1: Intersectionof solidandfilter support

but anintrinsic problemwith themethodwhich sug-
geststhat prefilteringmay not be the bestparadigm
for voxelization.

3.2 Distancefield sampling

It hasbeenmentionedthat high curvatureis known
to reducethequality in voxelizationaccordingto the
distancefield approach,andfurthermorecertainspe-
cial casesshouldbe avoided. Thesespecialcases
havein commonthatthey occurwheneverthemedial
surfaceof the solid or the complementof the solid
comestoo closeto thesurfaceof thesolid. A medial
surface(Seealsoappendix)is thelocusof pointsthat
areequidistantfrom at leasttwo pointsonthebound-
ary of the solid. Thesepointsarethe critical points
of thedistancefield wherethegradientis notdefined,
andsincethegradientis usedin shading(to estimate
thesurfacenormal),thegradientfilter shouldnotuse
samplesthat are distributedon both sidesof a me-
dial surface.Themedialsurfacemaybecloseto the

Figure2: Medial axisof a solid andpartsof theme-
dial axisof thecomplement.

boundaryeitherdueto a sharpedge(wherethe me-
dial surfacetouchesthesurfaceof thesolid)or avery
thin structure. A 2D exampleof medialsurfacesis
shown in figure2 wherethedashedlinesindicatethe



medialaxes.(The2D counterpartof medialsurfaces
aremedialaxes).

4 CONDITIONS FOR VOXELIZA TION SUIT-
ABILITY

Theobservationsin theprevioussectioncanbepre-
sentedmoreconciselyastwo conditionsfor whether
anobjectis suitablefor voxelization

Condition 1 Thecurvatureshouldbelow relative to
theresolution.This reducesreconstructionerror.

Condition 2 The reconstructionandgradientrecon-
structionfilters shouldnot usesamplesthat aredis-
tributed on both sidesof a medial surfaceof � or�fe .
Thesecondconditioncanberestatedas:No pointon
themedialsurfaceshouldbecloserto ��� than g h .
Because,if � is a point on thesurfaceof � thenthe
gradientvalueis calculatedattheeightnearestvoxels
andtrilinearly interpolatedat � . Thevaluesat a total
28voxelsareused.(Thevoxelconfigurationis shown
in figure 3). � must by constructionbe within the

Surface point

farthest voxel

Figure3: Voxelsusedin gradientcomputation

cubewhosecornersaretheeightnearestvoxels,and
it is possibleto ascertainby visualinspectionthatthe
greatestdistancefrom apointwithin thatcubeto any
voxel in theconfigurationis g hi� g jlk[m " k[m " k .
Theaimof thenext sectionis to defineasinglecrite-
rion thatcomprisesbothof theaboveconditions.

5 MORPHOLOGICAL CRITERION

What is neededis somesort of measurethat takes
both curvatureandoverall featuresizeinto account.
Fortunately, such measuresexist in mathematical
morphology(seeappendixfor definitions).

Let Mon denotea sphereof radius Q and � a solid
whichis Mpn –openand Mpn –closed,then � hasthefol-
lowing two additionalproperties

Property 1 Given a point � for which ( � � ���q�r\
where 2 Q�s#\tsuQ the following holds for v , the
maximumcurvatureat �
v+U "Q 2 � \ � (8)

Property 2 Themedialsurfaceis nowherecloserto
theboundary�E� than Q .
Property2 follows directly from thedefinitionof the
medialaxis(seeappendix).

Proof of property 1

Withoutlossof generality, weassumethat � is apoint
in theinteriorof � . Let �Pw bethepointon ��� closest
to � . It is requiredthat � is Mpn –openand Mpn –closed.
Thismeansthat Mpn canbetranslatedsothatit touches� w from eitherside.Theexterior instance,Mpnyx , of Mpn
doesnot touchinterior pointsof � andtheopposite
holdsfor theinterior instanceMon{z . Theconfiguration
of � and the translatedinstancesof Mpn is shown in
figure 4. It is clear that the translatedinstancesof

X
pS

S Sr2

Sr1

p0

r- σ

r+ σ

Figure 4: Translatedinstancesof Mpn touch � from
eitherside.

M n mustsharetangentplanewith eachotherandwith��� .

Now, let M ny|o} bea sphereof radiusQ m \ whichhas
the samecentreas M n x , andlet M n�~�} be a sphereof



radius Q 2 \ with the samecentreas Mpn�z . Any new
point � � near � on thesameisosurface ( �6� \o� must
lie on or betweenthe two spheresMpn�|o} and Mpn�~�} ,
becauseassumingotherwiseleadsto acontradiction:

Assumethat � � is inside M n�~�} . Sincethe distance
from � � to thesurfaceis \ thesurfaceintersectsM n z
whichviolatesthe M n –openness.

Assumethat � � is inside Mpn m \ . By the Mpn –
closednessproperty there must be a point on M n x
whichhasshorterdistanceto � � than \ violatingthat( � � � � � �b\ .

If all pointsonthe \ isosurfacelie betweenM ny|o} andM n�~�} thenthe smallestosculatingsphereof a curve
on the \ –isosurfaceat the point � is Mpn�~�} . Hence,
thegreatestnormalcurvatureat � is indeed �n�~�� }G� .
5.1 Putting the criterion together

Thereis anobviouscorrespondencebetweenthetwo
propertiesof thissectionandthetwo conditionsfrom
the previous section. In fact, if Q is chosenlarge
enough,property1 ensuresthat condition 1 is ful-
filled. Likewise, if Q%� g h it follows from property
2 thatcondition2 mustbefulfilled. Moreconcisely:

Voxelizationsuitability criterion

A geometricsolid � is suitablefor voxelizationat
a given resolution,if � is Mpn –openand Mpn –closed
where Q��Rg h is chosenso that the reconstruction
erroris sufficiently low for theapplication.

Notethatby choosinga radius Q we alsochooseres-
olution,sinceQ is in voxel units.

6 ERROR BOUNDS

Theabovecriterionis, of course,only really interest-
ing if we cansaysomethingabouttheerrorsothatit
is possibleto determinewhethertheerrorfor a givenQ is “sufficiently low”. In this section,we will de-
velopa(somewhatloose)analyticerrorboundfor the
reconstructionerrorandafterwardsa tighterempiri-
callybasederrorbound.Theseerror–boundscanthen
beusedto determinewhat Q to plug into thecriterion
wefoundin theprecedingsection.

First, we needa theoremaboutlinear interpolation:
Let � �]� � bea functionwhich is continuouson � �����>�

and twice differentiableon
� ������� , and let therebe

givena linearinterpolationfunction� ��� �[� � � �G� � � 2 � � m � � ��� �]� 2 �G�� 2 � (9)

which interpolatesbetweenthevalueof � at � and � .� �]� � 2 � ��� �-� ��� 2 �G� �]� 2 ���j ��� � �]� � (10)

where
�  � �E�>��� . Using (10), it is easyto show

that given a bound on the secondorder derivative� � � � �]� �T��Uc� wealsohavea boundon theinterpola-
tion error� � ��� � 2 � �]� ����U � � 2 �G� k� � (11)

Theproofsof theabovemaybefoundin [Young88].

6.1 Analytic error bound

Using (11) we will now derive an error boundfor
trilinear interpolationin a voxelizeddistancefield2.
Givena distancefield ( ) 	�
�*�	 anda line seg-

a

bF

F
∆

p

ṕ

Figure5: Line segmentfrom � to � in distancefield(
mentbetweentwo neighboringvoxels � and � , we
know thatthevalueof thefield alongtheline from �
to � is� ��� � ��( � � ��� �y� (12)

where� is a parameterizedline� ��� � � �V� � 2 �X� m � (13)

and � � � ��� ���l� "
since� and� areneighboringvoxels.

To find thederivativeof thefunction � , we applythe
chainrule to theright handsideof (12)yielding� � ��� � � KA('�E����I  �¡¢ (P£ � � ��� ���(¥¤ � � ��� ���(¥¦ � � ��� �y�

§¨©¡¢ �I£ 2 �:£�I¤ 2 �:¤�I¦ 2 �:¦
§¨

(14)

2recall from section2 thata distancefield is just a scalarfield,
wherethescalarvalueis thedistanceto thesurfaceof thesolidthat
is representedby thefield



Thedotproductyieldsathreetermexpressionfor � � ,
andto get � � � all we needto do is to applythechain
rule to eachof thesethreeterms.Theresultis a nine
term sum,whereeachterm is the productof oneof
thesecondorderpartialderivativesof ( andthecor-
respondingtwo componentsof � � . This nine term
sumcanbewritten in matrix notationin the follow-
ing way��� � ��� � ����� ��� �{ª � � ��� ���«��� ��� � (15)

where ª is the Hessianof ( , i.e. the matrix of the
secondorderpartialderivatives

ª#� ¡¢ (P£T£¬(P£W¤(P£ ¦(P¤�£ (¥¤�¤¬(P¤ ¦( ¦ £ ( ¦ ¤ ( ¦>¦
§¨

(16)

To find a boundfor � � � � � all we needto do is find the
numericalmaximumof theright handsideof (15).

This turnsout to besimple,because( fulfills there-
quirementsof a Hessenormalform[Hartm99], andit
is knownfrom thetheoryaboutsuch,thattheHessian
of the normalform(i.e. the Hessianof ( ) hasthree
eigenvalues ®XwJ� &

, ® � �¯vE°²±8³ , ® k �´vE°²µ�£ cor-
responding,respectively, to the directionof the gra-
dient ( ¶ ) and the directionsof minimum and max-
imum curvature( · °²±F³ and · °¸µI£ . Sinceany vector¹ J	�
l�W� º���� "

canbeexpressedasa linearcombi-
nationof thesethreeeigenvectors,¹ �b�-¶ m ��·T°²±F³ m � ·W°²µ�£ (17)

where � ¹ �@� g �:k m �Ik m � kd� "
, weknow that� ¹¼» ª ¹ ���3� �:® w½m ��®�� m � ® k �U'� ® k �l�¾� vE°¸µI£X� (18)

Consequently,� � � � ��� �T�:US� vP� (19)

where v is the maximumcurvatureat all pointson
theline segmentbetween� and � (Seesection2 for
a definitionof maximumcurvature).Using(19) and
(11)weobtain

lin err � "� � vP� (20)

Of course,our real interestis in the trilinear inter-
polation function. A trilinear interpolationmay be
perceivedasa linear interpolationof two valuesthat
arepairwiselinearly interpolatedbetweenfour val-
ueswhichareinterpolatedbetweentheeightoriginal
voxels. Theseseven linear interpolationsareshown
in figure6. To do a worstcaseanalysisof thecumu-
lative error, let us begin with the valueIA0. IA0 is
linearly interpolatedbetweenthe voxels V0 andV1
andthemaximuminterpolationerror is known to be

V0 V1

V2
V3

V4

V6
V7

V5

IA0

IA1

IA2

IA3

IB0

IB1

IC

Figure6: Thesevenlinear interpolationsthatconsti-
tutetrilinear interpolation

lin err. IA1 hasthesamemaximumerror. IB0 is in-
terpolatedbetweenIA0 andIA1. If we knew theex-
act valuesat IA0 and IA1, it would follow that the
maximumerror at IB0 would be just lin err. How-
ever, we musttake into accountthat we areinterpo-
lating betweeninterpolatedvalues. Fortunately, we
know that(for linearinterpolation)thedifferencebe-
tweeninterpolationbetweenexact valuesand inter-
polationbetweenimprecisevaluescannotbegreater
thanthegreatestof thetwo errorsassociatedwith the
imprecisevalues. In the presentcase,the interpo-
lation is betweenIA0 andIA1 both of which differ
from theexactvaluesby atmostlin err. Therefore,to
obtainaboundfor thetotalerrorat IB0, wemustadd
lin err to the linear interpolationerror boundat IB0
yieldinga total errorboundof 2 lin err. By a similar
argument,wemayconcludethatthetotalerrorbound
at IC which is interpolatedbetweenIB0 andIB1 is 3
lin err, hence

trilin err �À¿� � vP� (21)

where � v¥� is themaximumcurvaturewithin thecell.

Thefinal importantquestionis to find themaximum
curvaturewithin thecell. Accordingtoproperty1,we
canfind themaximumcurvatureby findingthegreat-
estdistancefromany pointin thecell to thesurfaceof
thesolid andpluggingthatdistanceinto (8). We are
only interestedin cellswhich intersectthesurface,so
thegreatestpossibledistancefrom thesurfaceof any
point in the cell is g ¿ , andthe final expressionfor
thereconstructionerrorasa functionof the radius Q
of ourstructuringelementMon becomes

err
� Q<�[� ¿� � Q 2 g ¿ � (22)

where,accordingto thesuitabilitycriterion, Q��cg h .
It is obvious,unfortunately, that the boundis some-
what loose, sincewe have to make worst caseas-
sumptionsat every step,but it is difficult to make a
tighterboundwithout makingassumptionsaboutthe



shapeof thesolidor theconfigurationof thesolidand
thetrilinearcell. A plot of err

� Q<� canbeseenin figure
7

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7 8 9

Error bound for the distance field

Sphere radius [VU]

Error
[VU]

Figure7: Theerrorfunction.

6.2 Empirical error bound

The analytic error-boundshows us that the recon-
structionerror decreasesasthe curvaturedecreases.
For a generalsolid � which fulfills the suitability
criterion for somesphereM n , we know that the cur-
vatureof isosurfacesin � is lessthan or the same
asthatof isosurfacescorrespondingto thesameiso-
valuesin Mpn . Therefore,we would assumethat the
worstcasereconstructionerrorof � is notworsethan
the worst casereconstructionerror of Mpn . In light

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7 8 9

Distance field: mean  deviation

Distance  field: maximum error

Sphere radius [VU]

Error
[VU]

Figure8: Maximum and meanreconstructionerror
for a sphereasa functionof radius.Standarddevia-
tion for meanerroris alsoshown.

of this hypothesis,we proposea muchtighterbound
whichis basedonourempiricalresults.Wevoxelized
spheresof radii rangingfrom 2 vu to 9 vu andsent
raysfrom thecentreof thespherestowardstheir pe-
riphery. Wheretherayshit thelevel 0 isosurface,we

measuredtheerrorasthedistanceto the truesphere
surface.Figure8 shows themaximumandmeaner-
ror. Note that this errormeasureis slightly different
from that of the previous section. The analytic er-
ror boundboundsthegreatestdifferencebetweenthe
valueof thetrueandinterpolateddistancefunctions,
while theempiricalerrorshown in figure8 is thege-
ometricshortestdistancefrom thepoint on theinter-
polatedisosurfaceto thetruesphere.

We noticethatat a sphereradiusof Qq� ¿ �'g h the
error hasfallen below 0.1 voxel unit, andfor many
applicationsthiserrorshouldbeacceptable.

7 CONCLUSIONS

The prefiltering approachto voxelization has been
shown, experimentally, to yield lessprecisevolumet-
ric modelsthantheapproachbasedon distancefield
sampling[Šŕame98]. In this paper, we have given
a theoreticalargumentasto why the prefilteringap-
proachis problematic,namelythat the methoddoes
not, in general,producean isosurfacewhich corre-
sponds,precisely, to theoriginalsolid.

It is known thatthereconstructionerrorwhen(trilin-
early)reconstructingdistancefield sampledvolumet-
ric datais dueto curvature[Šŕame98, Gibso98]. In
addition,certainspecialcasesdueto critical pointsin
thevicinity of thesolid boundarymustbetakeninto
account[Gibso98]. Wehaveshown thatby formulat-
ing a suitabilitycriterionin termsof themorphologi-
cal propertiesopennessandclosedness, it is possible
to take into accountthequality lossdueto curvature
aswell astheproblemsthataredueto thesespecial
cases.Furthermore,we have providederror bounds
for the reconstructionerror of solids that fulfill the
suitability criterion. While the analyticerror bound
is loose,we believe that the empirical error bound
shouldbe a practicaltool for choosingvoxelization
resolution.

8 FUTURE WORK

For simplegeometricsolidswhoseshapeandcurva-
ture are known, it is not difficult to verify whether
they fulfill thecriterion. For morecomplex, perhaps
composite,solids,it is frequentlyobviousthatthey do
notfulfill thecriterion(e.g.if weknow theobjecthas
a sharpedge),but we wantto voxelizethemanyway.
Therefore,ageneralmethodfor findingoutwhethera
given(implicit) solidfulfills thecriterionwouldprob-
ably be lessuseful thana methodfor filtering com-
plex solidsso that they fulfill the criterion. This fil-
teringcan,obviously, be performedby applyingthe
digital versionsof themorphologicalopenandclose



filters to the solid. Thesefilters shouldbe applied
before,or maybeasa part of the samplingprocess.
However, somedifficultiesarestrewn alongtheway
sincea näıve implementationwould eitherintroduce
grossimprecisionsor be very computationallyde-
manding,andfurthermorethesequenceof operations
is significantsince,in general,Á6� Â6� �+�8�[Ã�bÂ6� Á6� �Ä�8� .
Lastly, a purely analyticerror boundis the theoreti-
cally mostpleasing,anda tighteningof the analytic
errorboundis, indeed,a partof our plansfor future
work.
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APPENDIX A: MORPHOLOGY

Openand close

Theopenoperationof aset � with respectto astruc-
turingelement� isÁ6� �Ä�>�����bÅÆ�Ç�>È ) �>ÈÉ���Ê� (23)

The closeoperationof � with respectto � may be
expressedin termsof theopenoperationÂ6� �Ä�>�����bÁ6� � e ���>� e (24)

whereË is avectorand � È is thestructuringelement�
translatedaccordingto Ë . Intuitively, theopenoper-
ationcorrespondsto moving thestructuringelement� aroundinsidetheset � . Theresultof theoperation
is thesubsetof � where � fits. Thelittle protrusions
where � doesnot fit arecut off. Similarly, the close
operationfills out thecavitieswhere � doesnotfit.

Oneof the importantpropertiessharedby bothopen
andcloseis idempotence:

Á6� Á6� �Ä�����Ì���>���bÁ6� �Ä�>��� (25)Â6� Â6� �Ä���>���>�����bÂ6� �Ä�>��� (26)

If wehavealreadyappliedopenor closeto anobject,
furtherapplicationsof theoperatordonotchangethe
result.A set � which is not changedby anopenop-
erationwith a structuringelement� is called � –open.
A setwhich is not changedby a closeoperationwith
astructuringelement� is called � –closed.

The medial surface

Let �t�� . ( � � ��� is the distanceto �E� . If there
is morethanonepoint � ± ���� so that � � ± 2 �¸���( �A� �Z� we saythat � is in themedialsurface.More
intuitively: Let � be a solid. If � is the centreof
a sphereM¼� , andthereis no sphereof greaterradiusM k which properlyincludesM¼� whilst itself beingin-
cludedin � , then � belongsto themedialsurface.


