
Wedgelet Enhanced Appearance Models

Sune Darkner, Rasmus Larsen, Mikkel B. Stegmann and Bjarne K. Ersbøll
Informatics and Mathematical Modelling, Technical University of Denmark
Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, Denmark

Email:{rl,mbs,be}@imm.dtu.dk, sune@darkner.dk,http://www.imm.dtu.dk/image/

Abstract— Statistical region-based segmentation methods such
as the Active Appearance Model (AAM) are used for establishing
dense correspondences in images based on learning the variation
in shape and pixel intensities in a training set. For low resolution
2D images correspondences can be recovered reliably in real-
time. However, as resolution increases this becomes infeasible
due to excessive storage and computational requirements. In
this paper we propose to reduce the textural components by
modelling the coefficients of a wedgelet based regression tree
instead of the original pixel intensities. The wedgelet regression
trees employed are based on triangular domains and estimated
using cross validation. The wedgelet regression trees are func-
tional descriptions of the intensity information and serve to 1)
reduce noise and 2) produce a compact textural description. The
wedgelet enhanced appearance model is applied to a case study
of human faces. Compression ratios of the texture information
of 1:40 is obtained without sacrificing segmentation accuracy
notably, even at compression ratios of 1:150 fair segmentation is
achieved.

I. I NTRODUCTION

The Active Appearance Model (AAM) framework [1] has
since its introduction been applied successfully to segmenta-
tion of many types of deformable objects in images (e.g. faces,
cardiac ventricles, brain structures [1]–[4]). It is based on the
estimation of linear models of shape and texture variation
by the use of principal components analysis of landmarks
coordinates and pixel intensities and subsequent inference of
model parameters from unseen images by a tangent plane
approximation of the image manifold.

Modelling every pixel intensity is manageable for low-
resolution 2D images. But moving to high-resolution 2D
images, 3D and even 3D time-series, this approach is rendered
at best very slow and at worst infeasible due to excessive
storage and computational requirements.

In order to overcome this problem various alternatives to
modelling the raw pixel intensities have been considered.
Cootes et al. [5] used a sub-sampling scheme to reduce the
texture model by a ratio of 1:4. The scheme selected a subset
of the pixel intensities based on the ability of each pixel to
predict corrections of the model parameters. When exploring
different multi-band appearance representations Stegmann and
Larsen [6] studied the segmentation accuracy of facial AAMs
at different scales in the range103 − 105 pixels obtained by
pixel averaging.

In this paper we will take the path of using linear functional
descriptions of the underlying intensity patterns and carrying
out truncated principal component decomposition of the pa-
rameter set of the functionals in order to extract a texture
model. These parameter sets will typically be of much lower

dimensionality than the number of pixels or voxels in the
images. In particular, we will use linear functionals based on
a wedgelet basis representation of the texture.

Donoho [7] suggested the wedgelet representation for the
texture as a means of edge detection and image compression.
An image is represented by a collection of dyadically organ-
ised indicator functions with a variety of locations, scales and
orientations. The classification and regression tree (CART)
algorithm [8] uses sequential binary splitting of the spatial
domain parallel to the coordinate axes, with splits allowed at
every data point. In contrast to this the wedgelet regression
tree obey special constraints. Only dyadic partitioning (i.e.
recursive midpoint splitting) is allowed, with the added feature
that at each terminal node a set of affine splits are also appli-
cable. The wedgelet tree is a quadtree [9] with terminal nodes
being either a dyadic (degenerate wedgelet) or an affinely split
dyadic (non-degenerate wedgelet). The constrained splitting
leads to fast algorithms. Within each resulting image terminal
node (wedge or square) the pixel values are regressed to their
mean value.

Another popular set of basis expansions for image texture
are wavelet bases. Wavelets as well as wedgelets are able to
represent piecewise continuous functions. This is an important
property when modeling real world images. Wolstenholme
and Taylor [10] incorporated a truncated Haar wavelet basis
into the AAM framework and evaluated it on a brain MRI
data set at a compression ratio of 1:20. Later, Stegmann,
Forchhammer, and Cootes [11] further evaluated the use of the
Haar wavelet as well as the Cohen-Daubechies-Feauveau [12]
wavelet family in the AAM framework. Compression rates
of 1:40 without compromising segmentation accuracy were
obtained on a set of face images.

We will generalize the wedgelet transform to triangulated
domains (cf. triangulated quadtrees [13]). This has the major
advantage of rendering the wedgelet representation indepen-
dent of piece-wise affine warps of the triangulated domain.
Such piece-wise affine warps are customarily chosen in AAM
for their speed [4] and the triangulated wedgelet representation
thus embraces this choice. The wedgelet transform results in
a truncated change of basis for the texture and is represented
by a regression tree. The regression tree is estimated using the
minimization of the cross validation prediction error across the
training set.

The segmentation accuracy in a wedgelet based AAM is
evaluated for a case of human face segmentation using cross
validation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13705948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. A CTIVE APPEARANCEMODELS

AAMs establish a compact parameterization of object vari-
ability as learned from a training set by estimating a set of
latent variables. The modeled object properties are usually
shape and pixel intensities. The latter is hence forward denoted
texture. By exploiting prior knowledge of the nature of the
optimization space, these models of shape and texture can
be rapidly fitted to unseen images, thus providing image
interpretation through synthesis.

Training examples are defined by marking up each example
image with points of correspondence (i.e. landmarks) over
the set either by hand, or by semi- to completely automated
methods. From these landmarks a shape model [14] is built.
Further, given a suitable warp function a dense (i.e., per-
pixel) correspondence is established between the convex hull
of the landmarks in each training example. Thus allowing for
modeling of texture variability.

Joint variability in shape and texture is modeled by a set
of truncated principal components, estimated by an eigen-
analysis of the dispersions of shape and texture across the
training set. The shape examples are aligned to a common
mean using a Generalized Procrustes Analysis (GPA) [15],
[16] where all effects of translation, rotation and scaling
are removed. The obtained Procrustes shape coordinates are
subsequently projected into the tangent plane to the shape
manifold, at the pole given by the mean shape. The texture
examples are warped into correspondence using a piece-wise
affine warp and subsequently sampled from this shape-free
reference. Typically, this geometrical reference shape is the
Procrustes mean shape.

Let si = vec{(xijk)}, i = 1, . . . , I, j = 1, . . . , J , k =
1, . . . ,K be J landmarks coordinates inK dimensions sam-
pled from at training set ofI images, and letti = vec{(yilm)},
l = 1, . . . , L, m = 1, . . . ,M be pixel intensities sampled atL
sites inM color components for the sameI training images.
Furthermore, let̄s and t̄ denote the mean shape and texture.
Synthesized examples are parameterized byθ and generated
by

E{s} = s̄+ Φsθ

E{t} = t̄+ Φtθ (1)

where Φs and Φt contain the firstp eigenvectors of the
estimated joint dispersion matrix of the shape and texture
vectors,si andti. Eq. (1) constitutes the appearance model.

In order to infer the parametersθ as well as the four scalar
parameters,ψ – scale, orientation, and translation – of a 2D
Euclidean similarity group, of a previously unseen image a
Gaussian error model between model and pixel intensities is
assumed. Furthermore, a linear relation between changes in
parameters and difference between model and image pixel
intensities∆t is assumed, i.e.

∆t =X

[
∆ψ
∆θ

]
. (2)

(a) (b)

Fig. 1. (a) Human face annotated with 58 landmarks. (b) Mean shape.

X may be estimated by weighted averaging over pertuba-
tions of model parameters and training examples. For an in
depth description of AAM and the software implementation
used the reader is referred to [1], [4], respectively.

The relation in Eq. (2) is inverted using the least squares
solution [

∆̂θ
∆̂ψ

]
=

(
XTX

)−1

XT ∆t = Q∆t. (3)

The computational problem lies in the repeated application
of this relation in the innermost loop of the fitting algorithm.
Q is a non-sparse matrix of dimensions(p+4)× (LM). LM
increase exponentionally with spatial dimension. To reduce the
computational burden we propose to use a truncated basis for
the representation of the pixel intensities. This introduces the
added overhead of transforming between image pixel intensi-
ties and this new representation. However, if this transform
is based on a sparse matrix, as is the case with wavelet
and wedgelet transforms the computational burden can be
considerably reduced.

III. W EDGELET DECOMPOSITION

The wedgelet approach is a way of representing images
locally, orientation adaptively and at the appropriate scale.
It involves a very simple basis used at different scales. The
formulation in [7] is for a dyadic domain but the nature of
the AAM imposes a shift of basis from dyadic to triangulated
domains.

For each node in the wedgelet tree we may consider the
following three wedgelets types:

1) a degenerate wedgelet, this is a terminal node without
an affine split, cf. Fig. 2(b) and 2(f);

2) a non-degenerate wedgelet, this is a terminal node with
an affine split, cf. Fig. 2(c) and 2(g);

3) an interior node corresponding to a step through scale
space, cf. Fig. 2(d) and 2(h).

The wedgelet decomposition is seen to be embedded into a
quadtree structure. In this structure the templates are the nodes
and the step through scale space the branches. Furthermore,
the terminal nodes are all either degenerate or non-degenerate
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(e) (f) (g) (h)

Fig. 2. Templates on the dyadic domain (top row) and the triangulated domain
(bottom row). Plots (a) and (e) show the applicable affine split beginning at
a particular perimeter point.

wedgelets. The resulting structure is a regression tree [8]. The
corresponding regression model predicts the pixel intensity -
greyscale, RGB or other - at thelth image coordinatexl in
the ith image,yil, with a constantµir in each regionr for
each image

fi(xl) =
∑

r

µirI{xl ∈ r}. (4)

I{xl ∈ r} is an indicator function returning1 if xl belongs
to r. Note that for notational simplicity we have dropped the
indexm for color component on the intensity values,yil. For
M > 1, yil is a vector of intensities at theM color components
modelled.

For the sum of squared error loss criterion
∑

l ‖(yil −
fi(xl)‖2 it is easy to see that that optimalµir is just the
average ofyil in regionr, µ̂ir = ave(yil|xl ∈ r).

The optimal partitioning is found by a bottom-up approach.
For each triangle at each level we seek the model that min-
imizes theC-fold cross-validation estimate of the prediction
error across all affine splits/no split.

Let κ : {1, . . . , I} 7→ {1, . . . , C} be an indexing function
that indicates the partition to which training object (image)
i = 1, . . . , I is allocated by randomization, and denote by
ŝ−κ(i) the split estimated with theκ(i)’th part removed.̂a =
a(ŝ−κ(i)) and b̂ = b(ŝ−κ(i)) are the regions resulting from
splitting a dyadic or a triangle by this affine splitŝ−κ(i), andĉ
is the entire dyadic or triangle. Furthermore, let the regression
parameters from theith image resulting from applying the split
ŝ−κ(i) be

µ̂ir = ave(yil|xl ∈ r), r ∈ {â, b̂, ĉ}. (5)

Then the cross validation errors become

CVEsplit =
I∑

i=1

[ ∑
xl∈â

‖yil − µ̂iâ‖2

+
∑
xl∈b̂

‖yil − µ̂ib̂‖2



(a)

(b)

Fig. 3. A representation of (a) a binary image and (b) the resulting tree
structure; the tree nodes are of typesa degenerate,b non-degenerate,c interior.

CVEno split =
I∑

i=1

∑
xl∈ĉ

‖yil − µ̂ic‖2 (6)

The optimal split/no split cross validation errors for a
triangle and its three siblings are then compared to those for
their parent in order to determine if a non-degenerate or a
degenerate wedgelet should be declared or if the four siblings
should be merged into a triangle or a dyadic a the next higher
(parent) level.

In order to be able to control the compression ratio obtained,
we add a complexity penalty to the error term over which
we carry out cross validation. This complexity penalty is
proportional to the image variance,σ2, the area of the root
triangle, Aroot and inverse proportional to the area of the
triangle under consideration, Atriangle, i.e.

CP(λ) = λ2 · σ2 Aroot
Atriangle

. (7)

In comparison Donoho [7] proposed a similar complexity
penalized residual sum of squares criterion for the case of
wedgelet compression over a single image, i.e.

CPRSS(P , λ) =
∑

l

‖yl − f(xl;P)‖2 + λ2card(P) (8)

wheref is the regression model in Eq. (4),P is the partition,
and card(P) is the cardinality ofP . Our complexity penalty
in Eq. (7) uses a relative area weighting to compensate for
local size differences across the training set.

The optimization over all affine splits is conducted as an
exhaustive search over a discretization (cf. Figs. 2(a) and 2(e))
corresponding to the pixel size. The indexing of pixels within a
triangle and computation of areas are conveniently done by the
use of barycentric coordinates [17] (cf. the appendix). Fig. 3
shows how a result on a binary image might look.
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IV. U SING WEDGELETS WITHAAM

When working on an AAM, an initial triangulation is avail-
able from the annotation and Delaunay triangulation on the
mean shape (cf. Fig. 1(b)). This initial collection of triangles
will be the root of the tree. From here each branch will be
equivalent to the type of tree shown in Fig. 3.

After having grown a common wedgelet tree as described
in the previous section for the training set, we can proceed
to train the wedgelet enhanced appearance model. As before
the shape is described by the landmark coordinates, i.e.
si = vec{(xijk)}. However, for the texture we substitute the
wedgelet coefficients for the original intensity samples, i.e. we
useti = vec{(µ̂irm)}, r = 1, . . . , R, m = 1, . . . ,M . R is the
number of regions used by the wedgelet tree.

The active part of the wedgelet enhanced appearance model
is trained using Eqs. (2) and (3). The resultingQ matrix has
dimensions(p + 4) × (RM). In each iteration of model to
image fitting this is also the number of multiplications and
additions to be carried out. However, we must also take into
consideration the added overhead of calculating the wedgelet
representation of the image patch that is covered by the
model in each iteration. Letting every pixel fall into just
one region of the wedgelet tree the computational load in
computing the regional means is essentiallyLM additions
(and R multiplications). Let the compression ratio of the
wedgelet representation beλ = L/R, then the reduction in
computational load is better than a factor

LM + (p+ 4)RM
(p+ 4)LM

=
1

p+ 4
+

1
λ

(9)

As we shall see compression ratios of 1:100 are achievable
and therefore the expression is usually dominated by the
first term yielding a reduction factor equal to the number of
parameters in the model.

We have here ignored the computational load related to
warping the image patch to the model. This is conveniently
and fast accomplished using modern graphics hardware [4].

V. RESULTS AND DISCUSSION

Data for the experiments are an image database of 37
annotated faces. Each image is a640 × 480 RGB image of
a face of an adult human. The data set consists of images of
7 female and 30 male faces. Each face has been manually
annotated with 58 corresponding landmarks (see [4] for a
detailed analysis).

Fig. 4 shows the result of compressing a single image
using the approach described above. The original Delauney
triangulation of the face data set (cf. Fig. 1(b)) is subdivided
using the penalized complexity criterion in Eqs. (6) and 7)
above. In Fig. 4 wedgelet compression at ratios 1:3 and 1:40
for a single face are shown.

In Fig. 5 the combined principal components of the texture
descriptorsµirm and the tangent space aligned landmark
coordinates are shown. Comparing Figs. 5(a) and 5(c) with
a compression ratio of 1:3 and Figs. 5(b) and 5(d) with a ratio

(a)

(b)

(c)

Fig. 4. Images compressed using triangulated wedgelets. (a) 1:3 ratio and
(b) 1:40 using the triangulation from Fig. 1(b). (c) Result (b) superimposed
with the subdivided original mesh.

4



of 1:40, we see that the the first principal components contain
the same variations independent of the compression ratios.
This leads us to conjecture that the wedgelet representation
indeed dismisses irrelevant noise components and retains orig-
inal signal information.

In Fig. 6 examples of the segmented facial features using
a wedgelet enhanced AAM with compression ratios 1:3 and
1:40 are shown. Again the results are indistinguishable.

In order to compare the segmentation quality of the
wedgelet enhanced AAM and its ability to perform with
increasing compression ratio we have conducted a cross-
validation study across the construction of both the wedgelet
decomposition of the training set and the construction of the
AAM. The average landmark distance from model to ground
truth has been used to measure the performance.

The models were initialized using a displacement of 10%
of the width and the height of the mean AAM model from the
optimal position in thex andy direction.

For face segmentation we show compression rates of 1:150
with a decrease in segmentation accuracy of 8%. For brain
segmentation the wavelet compressed AAMs reports compres-
sion rates of 1:20 with a decrease in segmentation accuracy
of 7% [10]; and a compression rate of 1:40 with a decrease
in segmentation accuracy of 8% [11]. These experiments were
carried out on grayscale images.

As expected a slight decrease in performance is seen as
the compression ratio increases (cf. Fig. 7(a)). Furthermore,
using wedgelets yields good results all the way up to 1:150,
(cf. Fig. 7(b)). Since the method proposed can easily be
extended to 3-D, this makes it possible to apply the AAM
onto high resolution medical images such MR or CT images
both in 2 and 3 dimensions. The major differences between
wedgelets and wavelets are in the synthesized image and in
the computational time. The truncated wavelet representation
yields nice and smooth synthetic images very pleasing to
the eye. However, it should be noted that the purpose of
the wedgelet enhanced appearance model is segmentation
with minimum storage and computational cost and not image
reconstruction. Therefore the model should not be evaluated
on the ”blockyness” of Fig. 4 and Fig. 5. Fig. 4 serves
to demonstrate where in the images important information
regarding segmentation is present. Fig. 5 demonstrates that
the low order principal components of the uncompressed
and the compressed data set are similar. On the other the
hand the truncated wavelet transform is computationally more
demanding than the truncated wedgelet transform for the same
number of basis functions. Wedgelets produce visually more
coarse results than wavelets. However, they reduce the texture
descriptor size and hereby reduce the computational cost and
storage cost significantly due to the reduction ofQ in Eq. (3).
Since the number of latent variables is almost unchanged, the
size reduction ofQ is approximately the same as the texture
compression ratio. This increases the speed and the storage
cost of the AAM.

We have used the wedgelet based functional representation
of the image intensity patterns in order to obtain a more

(a) PC1 (b) PC1

(c) PC2 (d) PC2

Fig. 5. 1st and 2nd principal components shown at +3 standard deviation,
mean and -3 standard devciation for (a–b) wedgelet compression ratio 1:3,
(c–d) wedgelet compression ratio 1:40.
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(a) (b)

Fig. 6. (a) Wedgelet AAM using a wedgelet compression rate of 1:3, (b)
1:40.

parsimoneous description of the texture. However, we can
also think of such a functional representation as a way if
regularising the principal components solution.

VI. CONCLUSION AND FUTURE WORK

Different criteria have been reported in the AAM literature
for choosing model complexity. In the original formulation
a threshold at 95–98% was used on the cumulated variance
described by the principal components. Alternatives include
1) ”elbow” identification in scree-plots of covariance matrix
eigenvalues [18]; 2) statistical comparison of covariance ma-
trix scree-plot with scrambled data covariance scree-plots [19];
3) probabilistic PCA modelling using AIC, BIC or cross vali-
dation [20]. For the compression AAM models the following
methods have been applied. For the subsampled AAM [5]
the subsampling is given by the union of theu% elements
(pixels) with largest absolute value in each column ofQ
(since large regression coefficients does not necessarily mean
high significance for multiple regression this may not be a
good idea). For the wavelet compression AAMs [10], [11] the
criterion used is based on retaining as much variance across
the training set as possible for a given compression ratio.
The original wedgelet representation [7] uses a complexity
penalized (CP) RSS criterion. For the multi object (image) sit-
uation we introduce the complexity penalized cross-validation
error in Eqs. (4) and (5). The complexity penality in Eq.
(5) favours relative larger wedges/triangles (compensating for
scaling differences/warps between images). The multiplication
of the CP with the image variance compensates for (gain)
differences between training images.

We have defined a 2D wedgelet transform on triangulated
domains. We have demonstrated how cross-validation can be
used to arrive at a truncated wedgelet representation of the
texture in an active appearance model setting. The triangu-
lated wedgelet transform embraces the triangulated domains
used in AAMs in contrast to previous attempts based on
wavelet transforms. The wavelet transforms require pixelated
handling of boundaries because they are inherently based on
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Fig. 7. Segmentation accuracy determined by cross validation across
wedgelet compression and AAM segmentation. The abscissae are the ratio
between the number of pixels and the number of wedges in the model. This
may be interpreted as a compression ratio. The ordinate is the mean point to
point prediction error evaluated at the original 58 landmarks for all faces in
the cross validation study.

rectangular domains. The wedgelet scheme can readily be
extended to higher dimensions and we aim to pursue this
in near future. Also, additional constraints such as enforcing
connecting edges between neighboring wedgelets as well as
allowing pertubations of semi-landmarks introduced on the
edges between their parent landmarks are considered.

In applying the wedgelet transform to ensembles of face
images we arrive at compression rates up to 1:150 with only
subtle degradation of the segmentation accuracy. Even higher
compression rates will apply for 3D and 3D+time.
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Fig. 8. Barycentric coordinates.

APPENDIX

BARYCENTRIC COORDINATES

Homogeneous barycentric coordinates known from com-
puter graphics are introduced [17]. A barycentric coordinate
system is a local coordinate system for triangles in two
dimensions, but can easily be extended to higher dimensions.
Barycentric coordinates are triples of numbers(t1, t2, t3)
corresponding to masses placed at the vertices of a reference
triangle4A1A2A3. These masses determine a pointP , which
is the geometric centroid of the three masses. The vertices
of the triangle are given byA1 = (1, 0, 0), A2 = (0, 1, 0)
andA3 = (0, 0, 1). The areas of4A2PA3, 4A1PA3 and
4A1PA2 are proportional tot1, t2 andt3. For homogeneous
barycentric coordinates the following is truet1 + t2 + t3 = 1
and every pointP with coordinatec = (t1, t2, t3) where
0 ≤ t1, t2, t3 ≤ 1 lie within 4A1A2A3. Moving from image
coordinates to barycentric coordinates constitutes a shift of
basis.
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