
Knowledge Exchange between Agents in Real-Time
Environments

Jeppe Revall Frisvad1 Peter Falster1 Gert L. Møller2 Niels Jørgen Christensen1

1 Informatics and Mathematical Modelling 2 Array Technology A/S
Technical University of Denmark Nyhavn 16, 1051 Copenhagen, Denmark

{jrf, pfa, njc}@imm.dtu.dk glm@arraytechnology.com

Abstract
To obtain unpredictable social interaction
between autonomous agents in real-time en-
vironments, we present a simple method for
logic-based knowledge exchange. A method
which is able to form new knowledge rather than
do simple exchange of particular rules found in
predetermined rule sets. The applicability of
our concept is demonstrated through a simple
visualization of a real-time 3D environment,
where agents seek to persuade opponents to join
their team. This is done through cooperation
with friends and education of neutral agents.

Keywords: agents for games, knowledge ex-
change, logic, learning, multi-agent systems,
real-time animation, synthetic characters.

1 Introduction
Most agents in dynamic real-time environments
reason according to a number of observations.
Their actions change either directly according
to the observed states or indirectly according to
a plan of actions fitting current or past obser-
vations. The agents typically draw conclusions
based on the same behavioral, motivational, or
cognitive model throughout each simulation.

These static models often lead to predictable
behavior. To improve on this issue some systems
employ machine learning techniques to tune pa-
rameters in a model. In this way the feeling
of monotonous behavior can be broken. Learn-
ing techniques employed in dynamic environ-
ments, however, rarely go beyond tuning of pa-
rameters. The structure of the model captur-
ing the knowledge of an agent usually stays the

same. In a logic-based model this means that the
rule set controlling an agent is the same during
each simulation. In this paper we present a sim-
ple method for exchange of knowledge between
agents such that their rule sets will change sig-
nificantly at runtime and develop differently for
each simulation.

One way to have agents communicate knowl-
edge would be to let them communicate partic-
ular rules found in their rule sets. This would,
however, not lead to new rules and the result-
ing behavior would be imitation rather than so-
cial interaction. What we propose, is a way to
let the agents infer the relation between a few
queried variables. In this way new knowledge
is formed and communicated from one agent to
another at each request. It is our opinion that
this approach leads to interesting social interac-
tion between autonomous agents in real-time en-
vironments.

2 Related Work
The Soar architecture has existed as an AI sys-
tem for problem solving since the early eighties
and in [10] it was proposed that Soar could be
developed into a system capable of general in-
telligent behavior. At this point Soar was mainly
concerned with planning and learning to achieve
a goal in a closed system. Later an interface
was developed between Soar and the commer-
cial computer games Quake II and Descent 3 to
let AI characters play games at the human-level
[13]. This has developed into a promising Soar
AI engine which can simulate a director agent
directing synthetic characters as actors in a game
[11]. To make this work, the actors are semi-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13705838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


autonomous agents which base their choice of
action on director commands. In other words
the Soar engine features one-way communica-
tion from director to actors, but not interagent
communication.

Another approach to high-level control of
characters in games and animation was devel-
oped by Funge and presented eg. in [7]. With ex-
perience from both AI research and commercial
game development Funge gives, in [8], a good
overview of the kind of AI techniques which are
applicable to NPCs (Non-Player Characters) in
games.

To let the knowledge of agents develop during
a simulation, it is an option to have an annotated
environment where the agents can pick up in-
formation at different locations. This approach
is described eg. in [3]. The environments they
use for their experiments are, however, not real-
time animated 3D environments. On the other
hand many games equip their environment with
affordances [8], which is a similar concept. The
idea of an annotated environment could be com-
bined with our method. For example by giving
annotations the same representation as we use
for knowledge.

Most projects addressing interagent commu-
nication in virtual 3D environments, aim at a
system able to make agents engage in a verbal
conversation that can be followed by an observ-
ing human, see eg. [2, 1]. The interagent com-
munication presented in this paper is not meant
to give an exact imitation of human-human con-
versation. The idea is rather to have an extended
version of the exchange of internal states which
NPCs in games sometimes employ [8]. Letting
the agents exchange knowledge as well as inter-
nal states, enables them to teach each other new
reasons to perform actions. The hope is that this
leads to interesting and unpredictable behavior.

3 Theory
It is necessary for each agent to draw inference
on its rule set. Basically there are two options:
Either the employed inference engine is based
on production rules, ie. if-then constructs, where
the if -part is a firing condition such that one rule
fires at the time, or it is logic-based, that is, it
employs a proof procedure which is sound and
complete. See eg. [9, 8].

The method we present for knowledge ex-
change has been derived from array-based logic
[5, 12, 6] and is, therefore, logic-based. It has
the prerequisite that each rule set must be re-
producible as a Boolean function (defined be-
low) and, consequently, it has the restriction that
each variable of each rule set must have a dis-
crete form. The particular choice of inference
engine is, however, not crucial to the applica-
bility of the method. Therefore we will, in this
section, first give pointers to one inference en-
gine of each kind, then describe the method us-
ing Boolean functions, and lastly describe how
our approach translates to an inference engine
based on production rules.

The Rete algorithm [4] is the core of many in-
ference engines based on production rules. Re-
cently the RC++ language [14] has been devel-
oped with emphasis on application in computer
games. If translation to production rules is done,
our method could be used with RC++.

Array Studio1 and the associated Compiler
and Runtime libraries embody an inference en-
gine which is easily used with our method, since
it also has its foundations in array-based logic.
In a railroad interlocking system of 12,780 vari-
ables and 4,743 relations the Array Runtime has
a worst case response time of 22 ms when an
arbitrary query regarding the rule set is posted.
Queries on a simpler rule set of 23 variable and
75 relations have worst case response times of
0.6 ms. These numbers refer to simulations run
on a 1 GHz Pentium CPU. This shows that the
Array tools also make a suitable inference en-
gine for agents in real-time environments.

A simplistic example of a rule set is:

P ⇒ Q

Q ⇒ R ,

where P , Q, and R are Boolean variables. We
define that Bn is the set of Boolean functions
φ : D1 × . . . × Dn → {0, 1} mapping n val-
ues in the finite domains D1, . . . , Dn into a sin-
gle Boolean value. Clearly the simplistic rule
set mentioned before could be represented by a
Boolean function f ∈ B3 given as

f(P,Q,R) = (P ⇒ Q) ∧ (Q ⇒ R) ,

where D1 = D2 = D3 = {0, 1}.
1See http://www.arraytechnology.com/



Suppose an agent A has the knowledge de-
scribed by the Boolean function

g(P,Q,R) = P ⇒ Q

and an agent B has the knowledge described by
the function

h(P,Q,R) = Q ⇒ R .

Agent A may realize that the variable R rep-
resenting an action, which A can perform, has
no meaning with respect to its knowledge. Then
it can send a request for knowledge about the re-
lation between Q and R to agent B. If agent B
chooses to cooperate, it replies with the knowl-
edge

h′(Q,R) = Q ⇒ R.

By a union of old and new knowledge in agent
A, that is, by adding the received function toA’s
rule set, it will obtain the knowledge

g(P,Q,R) = (P ⇒ Q) ∧ (Q ⇒ R) .

Now agent A will perform the action repre-
sented by R for example when P is true.

Consider the function h′ which is excerpted
from the knowledge of agent B and communi-
cated to agent A upon request. If h had been a
large knowledge base composed of many rules,
but no rule exactly concerning the relation be-
tween Q and R, it would not immediately be
clear how h′ should be found. This is the prob-
lem we propose a solution for.

It is reasonable to assume that the request for
knowledge from one agent to another always
concerns the relation between a few variables
only, ie. in the following we assume that k is
small. In any case it would be unrealistic to
have agents exchanging large knowledge bases
at runtime in a dynamic environment. Therefore
we propose the following method for excerption
of a Boolean function which explains the rela-
tion between a few of the variables in a rule set.

Suppose the rule set representing the knowl-
edge of an agent concerns n different variables
P1, . . . , Pn. Let f ∈ Bn be the Boolean func-
tion corresponding to the rule set. If I =
{1, . . . , n} is an index set, we can let i ∈
Ik , k < n, with i1 6= . . . 6= ik, contain the
indices of the variables between which a rela-
tion was requested. Let j ∈ In−k be given as

the indices which exist in the index set I , but
are not accounted for in i. The method is then
to find f ′ ∈ Bk explaining the relation between
Pi1 , . . . , Pik according to f as

f ′(Pi1 , . . . , Pik)

=
∨

Pj1
∈Dj1

,...,Pjn−k
∈Djn−k

f(P1, . . . , Pn) (1)

It will always be the case that f |= f ′, since if
f(P1, . . . , Pn) = 1, then f ′(Pi1 , . . . , Pik) = 1
why f ⇒ f ′ is a tautology. Hence, (1) presents
a valid form of inference. Technically (1) corre-
sponds to an orthogonal disjunctive projection in
the image of the Boolean function f . The same
method can be used to prove modes of inference
such as the hypothetical syllogism and modus
ponens [5].

Performing all disjunctions in (1) leads to a
combinatorial explosion. But in practice the op-
eration is quite efficient, since, to find the func-
tion value f ′(Pi1 , . . . , Pik), we need only know
if f can attain a true value when Pi1 , . . . , Pik

are bound arguments. Moreover k was assumed
to be small, so we can simply store the indices
where f ′ returns true as the representation of f ′.
When this is done f ′ is send as the reply to the
agent making the request for knowledge.

If inference is performed using an algorithm
such as Rete, the rules should be on the form
R⇒ A, which corresponds to

if R then A ,

where R is a logical relation between some ob-
servable variables and perhaps some variables
representing internal states of the agent. A is an
action proposition, ie. when A is true the agent
performs a corresponding action. In this case
the relation between a single action and a few
observable variables should be requested rather
than relations between several action proposi-
tions. The f ′ function given as reply to such
a request needs to be translated back into a pro-
duction rule of the form given above. To do this
we need the argument index a ∈ {1, . . . , k} of
the action proposition, then

if f ′(Pi1 , . . . , Pia−1
, 0, Pia+1

, . . . , Pik
) = 0

∧ f ′(Pi1 , . . . , Pia−1
, 1, Pia+1

, . . . , Pik
) = 1

then A

gives the correct translation. This makes the
method applicable to systems using inference
engines for production rules.



If contradictory rules are unacceptable, a
check of consistency between the newly ob-
tained rule and the old rule set should be done
before the new knowledge is adopted. If a con-
tradiction is found, the new rule should be disre-
garded rather than adopted and the agent should
find a different subject for questioning.

4 Case Study
To present a simple example illustrating the ef-
fect of our method we have cloned a human-
looking agent. The case we study is a simula-
tion of an election campaign where a few cam-
paigners from two different teams should per-
suade as many neutral agents as possible. To be
successful, a campaigner should not only per-
suade the neutrals, but also teach them how to
persuade other neutrals. Through cooperation
the campaigners will even be able to persuade
campaigners from the opposing team.

All the clones are given the following six ac-
tions to choose from: walk, persuade, teach,
query, reject, and accept. Each action has a cor-
responding animation cycle. A sample frame
from each action is shown in figure 1.

Beside actions each character does four
observations about the surrounding environ-
ment: friend close, opponent close, knowl-
edge received, and query received. An obser-
vation does not have a corresponding animation
cycle. They are just environment states sensed
in the proximity of the character three or four
times every second.

For this case study we have two rule sets
based on the actions and observations. The rule
set for a neutral agent is:

¬friend close ⇒ walk

friend close ⇒ query

knowledge received ∧ friend close ⇒ accept

knowledge received ∧¬friend close ⇒ reject

The rule set for a campaigner is:
¬opponent close ⇒ walk

friend close ∧ opponent close ⇒ persuade

query received ∧ friend close ⇒ teach

knowledge received ∧¬opponent close ⇒ accept

knowledge received ∧ opponent close ⇒ reject

At times the agents will want to do several ac-
tions simultaneously. A neutral agent receiving
knowledge without any friends in its proximity,
will want to reject the knowledge and walk away

Figure 1: A sample frame from each of the six ac-
tions. From top left to bottom right: walk, persuade,
query, teach, reject, accept.

at the same time. This is not necessarily a bad
result, but since we only have an animation cycle
for each action and not for combinations, one of
the wanted actions should be chosen eg. stochas-
tically.

The scenario consists of fifteen clones packed
in a room. Eleven of those are neutral, four
are campaigners. The campaigners are split in
two different teams. A red team and a blue
team. The neutrals are green. If an agent is
persuaded by an argument of a different team,
it changes color. Neutrals are both friends and
opponents until they are persuaded. Therefore
one campaigner can persuade a neutral, but it
takes at least two campaigners to persuade a
campaigner from a different team. This follows
from the campaigner rule set.

A request for knowledge points to a particu-
lar action. The Boolean function communicated



Figure 2: A simulation where no knowledge is ex-
changed. From top left to bottom: (a) The initial
positions and directions of the agents. (b) A blue
campaigner in the lower right corner is performing
the teach action, but without knowledge exchange
this has little effect. A red campaigner is persuad-
ing a neutral in the background. (c) The simula-
tion quickly arrives at a deadlock were the few cam-
paigners are constantly queried for knowledge. In
this simulation the queries are not met.

as an answer to a request, specifies the relation
between the requested action and all four obser-
vations.

5 Results
Figures 2, 3 and 4 present three annotated sim-
ulations. One where the agents are unable to
communicate knowledge and two where they
are able to. The campaigner rule set can be used
for all the agents in the case where knowledge
is not exchanged. This leads to more interesting
behavior, but we still find the resulting behavior
of the agents less predictable in the case where
knowledge exchange is possible.

The presented case study has no problems
running in real-time on a 1.7 GHz Pentium4
CPU. The case is quite simple and therefore its
purpose is to document the interesting, unpre-
dictable social interaction which the presented
method can result in rather than the scalability
of our approach. However, we believe that the
method is scalable and for that reason it may be
available in future versions of Array Runtime.

Figure 3: A simulation where knowledge is ex-
changed. From top left to bottom right: (a) The
blue team gets a head start with persuasion and
education of a neutral. (b) The red team follows
up with some teaching. (c) A red agent is head-
ing for the blue camp where an interesting event
has occurred. The agent having the strongest blue
color, the one who is about to walk away, has just
persuaded and taught a neutral agent who is now
persuading and teaching the passive neutral agent
standing behind him. (d) The blue team seems to
get the upper hand. (e) Here two blue agents are
close to a red one and can, therefore, persuade the
red agent to join the blue team. (f) Here the last
red agent has just been persuaded in the lower right
corner.

6 Conclusion
In this paper a method for knowledge exchange
between autonomous agents has been proposed.
The method is based on the assumption that a
logic-based rule set, composed of variables de-
fined on a finite domain, can be used to describe
the knowledge of an agent. We have described a
simple equation which finds a Boolean function
representing an arbitrary subset of an agent’s
knowledge. Preferably a small subset. This is



Figure 4: To show that no two simulations are the
same, this figure presents another simulation where
exchange of knowledge is performed. From top left
to bottom right: (a) In this simulation the red team
starts out with two quick persuasions. A blue cam-
paigner has also caught a neutral. Note the group
of three neutrals in the lower right corner. (b) Af-
ter a short while, a red agent finds and persuades
the group mentioned before. (c) Even though a
blue campaigner has just persuaded a neutral and
taught it how to teach, it is only a matter of time
before the many red agents will get the upper hand,
and (d) indeed red prevails in this simulation.

used for exchange of knowledge.
The impact of having knowledge exchange

available for real-time applications has been il-
lustrated through a simple visualization of a
3D environment where agents show cooperative
and, to a certain extend, unpredictable behavior
through knowledge exchange.

It is our opinion that the presented method for
knowledge exchange, gives a range of possibil-
ities for new, interesting and unpredictable be-
havior in games and animation using high level
control of synthetic characters.

Acknowledgement
Thanks to Rasmus Revall Frisvad for creation of
the animation cycles used in our case study.

References
[1] A. Caicedo, J.-S. Monzani, and D. Thal-

mann. Communicative autonomous agents.
In N. Magnenat-Thalmann and D. Thalmann,

editors, Deformable Avatars, pages 217–227.
Kluwer Academic Publishers, 2001.

[2] J. Cassell, C. Pelachaud, N. Badler, M. Steed-
man, B. Achorn, T. Becket, B. Douville, S. Pre-
vost, and M. Stone. Animated conversation:
Rule-based generation of facial expressions,
gestures & spoken intonation for multiple con-
versational agents. In Proceedings of SIG-
GRAPH 1994, pages 413–420, 1994.

[3] P. Doyle. Believability through context: Using
“knowledge in the world” to create intelligent
characters. In Proc. of the First International
Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2002), pages
342–349, July 2002.

[4] C. L. Forgy. Rete: A fast algorithm for the
many pattern/many object pattern match prob-
lem. Artificial Intelligence, 19:17–37, 1982.

[5] O. I. Franksen. Group representation of finite
polyvalent logic: A case study using APL no-
tation. In A. Niemi, editor, A Link between
Science and Applications of Automatic Control,
IFAC VII, World Congress 1978, pages 875–
887, Oxford, 1979. Pergamon Press.

[6] O. I. Franksen and P. Falster. Colligation or,
the logical inference of interconnection. Math-
ematics and Computers in Simulation, 52(1):1–
9, March 2000.

[7] J. D. Funge. AI for Games and Animation:
A Cognitive Modeling Approach. A K Peters,
1999.

[8] J. D. Funge. Artificial Intelligence for Com-
puter Games. A K Peters, 2004.

[9] J. Giarratano and G. Riley. Expert Systems:
Principles and Programming. PWS Publishing
Company, third edition, 1998.

[10] J. E. Laird and A. Newell. SOAR: An architec-
ture for general intelligence. Artificial Intelli-
gence, 33(1):1–64, September 1987.

[11] B. Magerko, J. E. Laird, M. Assanie, A. Ker-
foot, and D. Stones. AI characters and directors
for interactive computer games. In Proc. of the
2004 Innovative Applications of Artificial Intel-
ligence Conference. AAAI Press, July 2004.

[12] G. L. Møller. On the Technology of Array-
Based Logic. PhD thesis, Electrical Power En-
gineering Department, Technical University of
Denmark, 1995.

[13] M. van Lent, J. E. Laird, J. Buckman,
J. Hartford, S. Houchard, K. Steinkraus, and
R. Tedrake. Intelligent agents in computer
games. In Proc. of the National Conference
on Artificial Intelligence, pages 929–930, July
1999.

[14] I. Wright and J. Marshall. The execution kernel
of RC++: RETE∗, a faster RETE with TREAT
as a special case. International Journal of In-
telligent Games and Simulation, 2(1):36–48,
February 2003.


