
 

University of Bradford eThesis 
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access 
repository. Visit the repository for full metadata or to contact the repository team 

  
© University of Bradford. This work is licenced for reuse under a Creative Commons 

Licence. 

 

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


DESIGN AND PROCESSING OF LOW ALLOY HIGH 

CARBON STEELS BY POWDER METALLURGY 

 

 

 

 

Alhadi Amar Salem ABOSBAIA 

PhD 

 

 

 

 

UNIVERSITY OF BRADFORD 

UNITED KINGDOM 

 

2010 



 

i 

 

DESIGN AND PROCESSING OF LOW ALLOY HIGH 

CARBON STEELS BY POWDER METALLURGY 

 

P/M Processing and Liquid Phase Sintering of Newly Designed Low-Alloy High 

Carbon Steels Based on Fe-0.85Mo-C-Si-Mn with High Toughness and Strength 

 

 

By: Alhadi Amar Salem ABOSBAIA 

 

 

Submitted for the degree of 

Doctor of Philosophy 

 

School of Engineering, Design and Technology 

Mechanical and Materials Engineering Department 

University of Bradford 

United Kingdom 

 

2010 



 

ii 

 

Statement of Originality  

To the best of my knowledge, I declare that this thesis is based on my original work 

except where otherwise noted within the text. I also declare, that this work has not been 

submitted in whole or in part for my degree at University of Bradford or any other 

university. 

 

Mr. Alhadi Amar S. ABOSBAIA, 

Bradford, UK 

Data: 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

 

TITLE: Design and processing of low alloy high carbon steels by powder 

metallurgy. 

NAME: Alhadi Amar Abosbaia 

Keywords:      PM processing; Ultra-high carbon PM steels, phase diagram modelling; 

liquid phase sintering; heat treatment; warm forging. 

 

ABSTRACT 

The work presented has the ultimate aim to increase dynamic mechanical properties by 

improvements in density and optimisation of microstructure of ultra high carbon PM 

steels by careful selection of processes, i.e. mixing, binding, alloying, heating profile 

and intelligent heat treatment. ThermoCalc modelling was employed to predict liquid 

phase amounts for two different powder grades, Astaloy 85Mo or Astaloy CrL with 

additive elements such as (0.4-0.6wt%)Si, (1.2-1.4wt%)C and (1-1.5wt%)Mn, in the 

sintering temperature range 1285-1300ºC and such powder mixes were pressed and 

liquid phase sintered.  In high-C steels carbide networks form at the prior particle 

boundaries, leading to brittleness, unless the steel is heat-treated. To assist the breaking 

up of these continuous carbide networks, 0.4-0.6% silicon, in the form of silicon 

carbide, was added. The water gas shift reaction (C + H2O = CO + H2, start from 

~500ºC) and Boudouard reaction (from ~500ºC complete ~930ºC) form CO gas in the 

early part of sintering and can lead to large porosity, which lowers mechanical 

properties. With the use of careful powder drying, low dew point atmospheres and 

optimisation of heating profiles, densities in excess of 7.70g/cm
3
 were attained. The 

brittle microstructure, containing carbide networks and free of cracks, is transformed by 

intelligent heat treatment to a tougher one of ferrite plus sub-micron spheroidised 

carbides. This gives the potential for production of components, which are both tough 

and suitable for sizing to improve dimensional tolerance. Yield strengths up to 410 

MPa, fracture strengths up to 950 MPa and strains of up to 16 % were attained. Forging 

experiments were subsequently carried out for spheroidised specimens of Fe-

0.85Mo+06Si+1.4C, for different strain rates of 10
-3

, 10
-2

, 10
-1

 and 1sec
-1 

and heated in 

argon to 700⁰C, density ~7.8g/cm
3
 and 769 MPa yield strength were obtained.  
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Chapter One 

1.1 Introduction 

Powder metallurgy (PM) is conventionally a commercial metal-forming technology 

with the fundamental advantage of near net shape competence [1].  Iron and steel parts 

made by PM conventional process are an integral part of many tools, and machines used 

in automotive and aerospace industries etc., on a day-to-day basis [2]. Producing steel 

parts in complex shape by powder metallurgy production method is cheaper than other 

manufacturing methods [2]. Sintered steel parts have been produced by conventional 

sintering process which transforms the green compact into a high strength structure by 

heating the compact to a temperature below the melting point of the main constituent of 

the alloy, e.g. iron in this case, during which particles weld to each other, and diffusion 

alloying occurs leading to better strength and higher densities.  

Sintered steels containing molybdenum have been used for many applications due to 

their medium strength, easy production and non-critical sintering conditions. Alloying 

elements such as Ni and Cu can also be used in these steels to promote the sintering 

process by forming liquid phase during sintering leading to higher sintered densities and 

better mechanical properties. These types of steels do not require high purity gas 

atmospheres during sintering due to their low affinity for oxygen [3]. Additions of Mn, 

Si, Cr and V have also been used instead of Ni and Cu, to increase the hardenability and 

strength of sintered steels. However, these elements can be oxidised during the sintering 

process due to their high affinity for oxygen, but these are less expensive elements 

compared with Ni and Cu. Manganese and silicon are known as strengtheners and very 
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common elements used in low alloy steels made by wrought steel processes [3]. 

Addition of these elements to the base powder has a beneficial effect on the sintered 

part properties, e.g. sintered density, hardness, tensile and transverse rupture strength 

[4]. Interaction between two diffusing powders can lead to the formation of liquid phase 

during sintering which may be of transient or persistent nature. Liquid phase can also be 

formed by heating a prealloyed powder between the solidus and liquidus temperatures 

known as super-solidus liquid phase sintering [5]. Higher hardness and strength can be 

achieved by post-sintering heat treatment for the proper alloy composition and cooling 

rate, which determines the amount of martensite produced.  

Liquid phase sintering, technically proven for high speed steels [6-8], has not been 

shown to be applicable to structural steels. For direct sintering to full density of high 

speed steels, annealed high-carbon powders tend to be used. When the starting powder 

is low-carbon (alloyed) iron, however, one of the processing problems is the 

introduction of carbon. If it is added simply as graphite, segregation during handling [9]
 

results in banding of the microstructure. Previously Mitchell et al [10, 11] attempted 

high-carbon sintering utilising thermally degraded PVC as the major carbon donor 

bonded to the iron base powder. The use of thermally degraded PVC was in response to 

problems of banding of the microstructure, which occurred due to segregation of 

graphite during handling [3]. Degradation of PVC is environmentally damaging due to 

hydrochloric acid forming as chlorine is driven from the PVC and which acts to 

catalytically convert the structure to a conjugated polymer containing double bonds. 

Therefore the subject was subsequently revisited using only graphite as the carbon 

source, but now bound to the surfaces of the base powder by judicious use of liquid 

lubricants such as liquid paraffin and polypropylene glycol during the mixing process. It 
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is the purpose of this work to show that a careful combination of Thermocalc modelling, 

powder mixing, processing and heat treatments can help minimise the potential 

problems of high carbon sintering and create a microstructure suitable for the 

production of components with good dimensional tolerance and which are subjected to 

high cyclical loadings. 

Ultrahigh-carbon steels [12-16], UHCSs, i.e. where C is in the range of 1.0-2.1% by 

weight, have tended to be neglected by industry due to their brittleness, resulting from 

the presence of a severe grain boundary carbide network. Traditional heat treatments 

used for normal steels create coarse microstructures [15] but using a spheroidisation 

treatment can produce fine spheroidised carbides in fine ferrite. Microcracking of the 

martensite structure can also occur during traditional heat treatments, this microcracking 

results from impingement of growing martensite crystals against each other during 

transformation of austenite to martensite [17]. Previous studies [17-19] to eliminate or 

reduce these martensite microcracks were published, but all of these reports did not 

show a completely crack-free microstructure and some of them were quite complex 

procedures and expensive. This work was carried out by a combination of laboratory 

based experiments and theoretical analysis using Thermo Calc Tcw3 software as well as 

HSC Chemistry software to develop a new PM alloy composition based on either 

Astaloy 85Mo or Astaloy CrL powders. This design process allows improvement of the 

sintering process for achieving higher sintered densities, better microstructures, and 

desirable mechanical properties by production of a controlled amount of liquid phase.  
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1.2 Research Objectives 

Researchers have been working on PM alloy steels to improve compaction and 

sintering processes to achieve good mechanical properties in the sintered and heat-

treated conditions for various applications in the most cost-effective ways knowing 

also that mechanical properties are strongly dependent on the sintered density and 

microstructure. The major aim of this work is to produce high density PM steels 

with a modulus approaching that of wrought steels and to ensure that the steels 

possess a combination of good strength and ductility. This aim was to be achieved 

by liquid phase sintering of ultra-high carbon steels. Specifically this aim was to be 

accomplished by the following list of objectives: 

 To optimise alloy composition using Mo, Si, Mn, Cr and C, and promote liquid 

phase sintering at a temperature 1300⁰C maximum. This optimisation to be 

achieved by phase diagram modelling using Thermo-Calc for Windows (TCW). 

  The compositions demand use of ultra-high carbon content and this necessitates 

improvements in standard mixing techniques to prevent inhomogeneity of the 

powder mixes and eventual sintered microstructures.  

 In view of the large volume of graphite employed for these ultra-high carbon 

steels, it is anticipated that moisture pickup will create problems, namely: 

1. Graphite agglomeration. 

2. Steam generation. 

3. Reactions between steam and graphite forming CO2/CO whose partial 

pressures can damage the microstructure. 

 These reactions involving carbon: 
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C+2H2O→CO2+2H2 

C+CO2→2CO 

C+H2O→CO+H2 

Modelling using HSC thermo chemistry software to determine temperatures at 

which the above reactions begin. 

 The normal sintered microstructure of hyper-eutectoid steels needs to be 

modified by a heat treatment schedule which removes the continuous cementite 

network.  

 One problem during quenching of ultra-high carbon steels is that of micro-

cracking of the martensite laths due to large volume change and internal stresses. 

This will need to be addressed by intelligent heat treatment modification.  

 The ultimate objective will be to correlate modelling results with processing, 

microstructure and mechanical properties throughout the whole processing 

cycle. 

1.3 Outline of the Thesis 

The thesis has been divided into six chapters as follows: 

Chapter One, is an introduction to this thesis, introduces the problems to be studied, 

and presents the objectives and aims of this work. Chapter Two reviews the Literature 

of powder metallurgy (PM), manufacturing, characteristics, and advantages of use PM 

rather than wrought alloys. Sintering conditions also have been presented in this chapter 

as well as the kinetics of protective and reducing furnace atmosphere. Heat treatment 

process, mechanical tests, warm forging have also been mentioned in this chapter.  

Chapter Three shows the methodology that had been used as well as any programming 
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software. Chapter Four provides the results obtained in this work. Chapter Five covers 

discussion of the results, summarises and draws together the knowledge from chapter 

four. Finally, conclusions from the work and proposal for future studies are listed in 

Chapter Six.  
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Chapter Two 

Literature Review 

2 Introduction 

Powder Technology is a process whereby a mass of dry particles of a metal or ceramic 

powder, normally less than 150 microns in maximum diameter, is converted into an 

engineering component of predetermined shape without passing through the molten 

state and possessing properties which allow it to be used in most cases without further 

processing. Powder Metallurgy, commonly abbreviated to PM, may thus be defined as 

the production of useful artefacts from metal powders. Powder metallurgy has been 

used for over 60 years to produce a wide range of structural PM components, self-

lubricating bearings, cutting tools, etc. One attraction of modern PM is the ability to 

fabricate parts with high quality, rather complex shapes with fine finishing [20-22]. PM 

studies therefore relate to the characterisation and processing of metal powders in their 

conversion into useful engineering components. The processing sequence involves the 

application of basic laws of heat, work, and deformation to powders. It is a processing 

technique which changes the shape, properties, and structure of powders into a final 

product [21]. The three main steps in powder metallurgy are shown in Figure 2.1 below. 
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Figure ‎2.1 The PM PROCESS. 

 

2.1 Powder Characteristics 

Processing and the final properties achieved in the sintered part are influenced by the 

characteristics of the powder. It is therefore important to study and provide quantitative 

data for the following parameters: 

 Particle size, and size distribution 

  Particle shape and its variation with particle size 

 Surface area 

 Inter-particle friction 
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 Flow and packing 

 Internal particle structure  

 Composition, homogeneity, and contamination 

  Apparent Density (AD) of the powder 

 Green density, i.e. density of compact  

2.1.1 Particle size 

The size of the particle determined depends on the measurement technique, and particle 

size analysis can be achieved by any of several instruments which usually do not give 

equivalent determination due to difference in the measured parameters. All the particle 

size analyzers use one geometric parameter and make the assumption of a spherical 

particle shape. It is difficult to determine the exact particle size of the powder because 

only the spherical particles can be defined by their diameter. Irregular particles (see 

Figure 2.2) are difficult to analyze by conventional methods, thus, some measurable 

physical properties of the particle such as volume, length, specific density, projection or 

surface of the particle are used to determine the particle size and form [20, 23, 24]. 

There are three main groups of methods used to determine the particle size and form:  

1. Separation methods (sieve analysis, screening).  

2. Sedimentation methods (gravitational field, pipette method, sedimentation 

balance, photo-sedimentation, centrifugal fields using centrifuges).  

3. Counting (direct) methods (microscopic, e.g. electron microscope).  
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These different measurement methods give different results [20]. Figure 2.2 illustrates 

various methods of measuring the size of powder particles with some irregular shapes. 

 

 

 

 

 

 

Figure ‎2.2 Various methods of measuring the size of powder particles [11]. 

2.1.2 Particle shape 

Particle shape influences packing, flow, and compressibility. Powder shape information 

influences the choice of the powder fabrication route. Particle shape varies with size and 

manufacturing technique. A particle size analysis which assumes a constant shape could 

potentially have a large error on apparent and green densities. Typically, most 

significant powder shapes are flake, spherical, tear drop, cubic, and polygonal which are 

used in practice. These shapes are shown in Figure 2.3 [11, 20]. 
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Figure ‎2.3 Typical metal powder particles [20]. 

2.1.3  Apparent density  

Apparent density of powder is the density of the powder in loose state without any 

applied external pressure (or agitation). It can also be defined as a ratio of the loose 

powder mass to the cup volume. Apparent density can be measured using two 

techniques, Hall or Arnold meter. Hall flowmeter is used mostly, since it is used to 

measure both the flow time and apparent density. Hall flowmeter uses a funnel and 

measuring cup and the time taken for 50 g of powder to pass through the funnel is used 

as a time of flow and the density of the powder is measured as apparent density. The 

Arnold meter is used for measuring the apparent density only which can be done by 
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using a die with cavity around 20 cm
3
, the loose powder is poured into the die and then 

the amount of powder mass is measured which can provide the apparent density by the 

following equation [2].  

v
m        

Where, ρ is the density, m is mass of the powder, and v is volume of the die. Particle 

shape and size are very important parameters which influence the apparent density. 

Small particles have a very high surface area, whereas irregular particles have many 

surface asperities leading to higher surface areas. These characteristics dictate the flow 

and packing properties of the powder [2, 11].  

2.2 Powder Production Techniques 

Almost all the metallic materials can be made into a powder form, but the method 

selected for fabricating a powder depends on the specific material properties. Four main 

categories of fabrication techniques are based on mechanical comminution, electrolytic 

deposition, chemical decomposition, and liquid metal atomization [2, 20]. These 

categories are listed in Table 2.1 with examples for each technique: 
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Table 2. 1 Fabrication Techniques of Powder. 

 

 

 

2.2.1 Mechanical Comminution 

The size reduction of metal powders by mechanical means is performed in the solid 

state as well as of metals. Grinding and milling are the oldest processes in PM for the 

production of particulate materials. The general phenomena during size reduction in the 

solid state are based on fracture mechanics, the nucleation of cracks, followed by crack 

propagation and fracture, by which new surfaces are formed. The forces acting in these 

processes cause mainly compression and shear stresses, applied as impact or slow-

acting stresses by the milling balls during vessel rotation or vibration, by the rotating 

arms in an attritor [1, 3, 20, 25]. 

2.2.2 Electrolytic Deposition 

By choosing suitable conditions, composition and strength of the electrolyte, 

temperature, current density, etc., many metals can be deposited in spongy or powder 

state. Extensive further processing- washing, drying, reducing, annealing and crushing 

may be required. Copper is the main metal to be produced in this way. Electrolytic iron 

was at one time produced on a substantial scale but it has been superseded largely by 

powders made by less costly processes. Very high purity and high density are two 

distinguishing features [1-5, 20, 25]. 

Technique Example 

Mechanical Comminution Impaction, attrition, shearing, and compression 

Electrolytic Deposition From chemical solution 

Chemical Reaction Solid, liquid, vapour phase reaction 

Liquid Metal Atomisation Water, gas, or centrifugal  



Chapter 2                                                                                              Literature Review 

14 

 

2.2.3 Chemical Decomposition (Reaction) 

This has been for long the most widely used method for the production of iron powder. 

Selected ore is crushed, mixed with carbon, and passed through a continuous furnace 

where reaction takes place leaving a cake of sponge iron which is then further treated by 

crushing, separation of non-metallic material, and sieving to produce powder. Since no 

refining operation is involved, the purity of the powder is dependent on that of the raw 

materials. The irregular sponge-like particles are soft, and readily compressible, and 

give compacts of good green strength. Refractory metals are normally made by 

hydrogen reduction of oxides, and the same process can be used for copper [1, 3, 5]. 

2.2.4 Liquid Metal Atomisation  

In this process molten metal is broken up into small droplets and rapidly frozen before 

the drops come into contact with each other or with a solid surface. The principal 

method is to disintegrate a thin stream of liquid metal by subjecting it to the impact of 

high-energy jets of air or liquid. Air, nitrogen, and argon are commonly used gases, and 

water is the liquid most widely used [2, 22]. By varying several parameters, design and 

configurations of the jets, pressure, and volume of the atomising fluid, thickness of the 

stream of metal, etc., it is possible to control the particles size distribution over a wide 

range. The particle shape is determined largely by the rate of solidification and varies 

from spherical, if a low heat capacity gas is employed, to highly irregular, if water is 

used. Atomisation is particularly useful for the production of alloys in powder form, 

since the constituent metals are fully alloyed in the molten state. Thus each powder 

particle has the same chemical composition [2, 11, 25]. 
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2.3 Reasons for Using Powder Metallurgy 

Three overlapping categories dominate and provide an introductory concept for the use 

of PM. Figure 2.4 is a Venn diagram indicating how the applications for PM can be 

categorized. The first is economic - on which many industries are relying on the 

economical production of complex parts (e.g. automotive industry). There are also other 

unique properties or microstructure justifying PM approaches, e.g. for production of 

porous metals, oxide dispersion strengthened alloys, cermets, and cemented carbides, 

which are otherwise difficult to process or manufacture by other techniques. Final circle 

shown on Venn diagram corresponds to captive applications. These are metals which 

are difficult to produce by other processes, e.g. reactive and refractory metals [2, 20]. 

 

Figure ‎2.4 Venn diagram [20]. 

 

2.4 Conventional P/M Processing  

The basic procedure in the manufacture of P/M parts is:  

 Blend and mix the metal powder or powders with a suitable lubricant. 
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 Compaction, load the mixture into a die or mould and apply pressure. This gives 

what is called a compact, which requires sufficient cohesion to be handled safely 

and transferred to the next stage. A good green density will be required for some 

high density products. 

  Heat the compact, usually in a protective atmosphere, at a temperature below 

the melting point of the main constituent, so that the powder particles weld 

together and confer sufficient strength to the object for the intended use. This 

heating process is called sintering during which alloying of some metal powders 

also will take place, usually in the case of steels. 

2.4.1 Blending and mixing of the powders 

To achieve acceptable compaction and sintering, the main powder must be mixed 

uniformly with the additive powders (including lubricant or binder).  Blending and 

mixing are necessary to prepare an unique particle size distribution, combine 

powders together to generate new alloys during sintering, add lubrication for 

compaction, and to prepare a powder-binder mixture for shaping. Blending is 

defined as the intermixing of powders of the same nominal composition to remove 

segregation; this is induced by vibration in transport [1, 20, 21].  

Mixing implies intermingling powders of different chemical composition. The 

mechanisms of powder mixing are diffusion, convection, and shear, as illustrated 

below in Figure2.5 via diffusional mixing in a rotating drum, convective mixing in a 

screw mixer, and shear mixing in a blade mixer. For most metal powders mixing 

and blending is performed using rotating containers such as double-cone, rotating 
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cylindrical and cubical, and twin shell, shown in Figure 2.6. The most efficient 

mixing is achieved via a 3-D Turbula mixer. 

 

  

 

 

 

Figure ‎2.5 Three types of powder mixing are diffusion, convection, and shear [20]. 

 

 

Figure ‎2.6 Some common equipment geometries for mixing and blending powders: 

a) rotating cylindrical: b) rotating cube; c) double cone; and d) twin 

shell mixers [20]. 

 

2.4.2 Additives to Powders (binders and lubricants) 

Binders and lubricants are usually added to the main powder during blending or mixing 

processes in small amounts. Suitable range of these additive powders is between 0.5-1.5 

percent by weight, to aid compaction uniformity and decrease die-wall friction during 
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compaction and ejection, thereby reducing die wear. Lubricants can also act as 

temporary binders to enhance the green strength of a metal part [1-5, 20, 21, 26].  

The normal method of lubrication is to coat all particles‟ surfaces, e.g., by tumbling 

powder and lubricant in a mixer. Delubrication is commonly achieved in the first zone 

of a sintering furnace by heating the part to temperatures in the range 400 – 600ºC at a 

fixed heating rate and under controlled atmospheric conditions. This strategy minimizes 

defects, carbon contamination, and compact deformation [1, 21, 26]. Table1.2 illustrates 

some popular lubricants and their melting points. 

Table 2.2 Some Popular Lubricants. 

 

No. Lubricant Name 
Melting/Boiling Point 

(ºC) 

1. Stearic acid ~ 70 

2. Metallic stearates especially zinc stearate ~ 115-125 

3. Liquid Paraffin ~ 200 BP 

4. Paraffin Wax ~  56 - 61 

5. Linear Polyethylene ~ 95-115 

6. Ethylene Bi-Stearamide ~ 135-145 

7. Acrawax ~ 99 

9. Polypropylene ~140-180 

10. Polyethylene ~140-180 

2.4.3 Mixture Homogeneity 

Mixing is necessary to homogenise different powder particles into a uniform powder 

with a certain particle size distribution, or to process different powder components into 

a powder mixture of statistical distribution. Poor mixing leads to segregation based 

upon the particle sizes diffusion [1, 21]. The intensity of segregation is measured by the 

compositional fluctuation from point to point. Figure 2.7 indicates three levels of 
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homogeneity ranging from stratified mixtures exhibiting large scale segregation, to 

agglomerated structure that exhibit partial homogenization, to the ideal case of a 

dispersed homogeneous structure [2]. Maximum homogeneity occurs when the rate of 

the segregation is equal to rate of the mixing. Homogeneity increases rapidly during 

mixing, but, when the binder has a low viscosity and the powder has a wide particle size 

distribution, the homogeneity decreases. 

 

 

 

Figure ‎2.7 Schematic increases in homogeneity [20]. 

 

2.4.4 Compaction and shaping 

Bulk powders are transformed into preforms of a desired shape and density by 

compaction or shaping. In most applications, high densities of the compacts are desired. 

Higher compact densities usually result in better green strength properties and smaller 

dimensional changes during sintering. A high green density is ~ 80-90 % TD theoretical 

density for all powder metallurgy products, except products with functional porosity, 

such as filters and bearings [1, 2, 11, 20, 21].  

From the mechanical point of view, the compaction process can be roughly divided into 

three stages. The first stage is the packing process, referred to as stage 0 compaction. 
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The next stage is referred to as stage I compaction, and is characterized by the 

surrounding of the particles by connected pores with a relative density range from 

around 0.06 up to approximately 0.80-0.90. Stage II compaction is characterized by the 

sealing off of the pores between the particles, and the material behaving more or less 

like a porous solid [1, 2, 11, 20, 21, 24]. High green density and uniformity throughout 

the compact are generally the desired characteristics because they influence the 

densification of the samples during sintering.  

Densification can be achieved through one of three methods: by sintering a low density 

preform; pressing to a high density followed by sintering, or by simultaneously pressing 

and sintering using the hot isostatic pressing (HIP) technique. Various powder 

compaction techniques are listed below: 

1. Uniaxial die compaction of simple shapes using hard tooling at room 

temperature. 

2. Uniaxial hot pressing of complex shapes in a rigid die. 

3. Hot isostatic pressing  (HIPing) in flexible moulds of soft metals. 

4. Cold isostatic pressing (CIPing). 

5. Powder injection moulding (PIM). 

6. High energy rate and triaxial compaction.  

7. Roll compaction into sheet or strip. 

8. Extrusion of metal powders. 
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 The conventional powder compaction presses used are either mechanical, hydraulic, or 

a combination of both techniques. The powder mixture is pressed to shape in rigid heat-

treated steel or hard tool steel dies under pressure of 150-900 MPa [22]. At this stage, 

the desired shape of the compacted powder will be generated by virtue of interlocking 

of the powder grains within the shape. In consequence, the compacts develop significant 

strength to allow ejection from the die without cracking and readily accept handling 

before sintering. A schematic diagram of powder compaction is shown in Figure 2.8. It 

provides a fundamental understanding for defining the stages of the compaction 

process. The first stage shows the packing and rearrangement of the undeformed 

particles. As pressure increases, stage two, which consists of two phases elastic and 

plastic deformations to further increase the density, occurs. This is followed by last 

stage, which provides bulk compression of the compact. Increasing the pressure 

provides better packing and leads to decrease of porosity with the formation of new 

particle-particle contacts.  

 

 

 

 

 

 

Figure ‎2.8 The conceptual steps in compaction. 
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The major functions of powder compaction are: 

 To consolidate powder into the desired shape. 

 To impart, as high a degree as possible, the desired final dimensions with due 

consideration to any dimensional changes resulting from sintering. 

 To impart the desired level and type of porosity 

 To impart adequate strength for subsequent handling 

2.4.5 Green Compact Density  

One of the most important properties of a PM process is the green density (GD), i.e. 

density of the as-compacted material. Green density is important since it influences the 

behaviour of the density of the alloy during sintering [4, 26]. Figure 2.9 below 

illustrates the green density increase with compaction pressure: 

 Increasing compaction pressure, promotes particle movement, deformation, and 

fracture. 

 Decreasing hardness and strength of the particles promotes deformation. 

 Increasing particle size and particle softness lead to increases in apparent 

density; they promote particle movement and a more desirable distribution of 

stresses within the powder mass, leading to greater deformation. 

 Decreasing speed of compaction promotes particle movement and reduces 

porosity.  
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Figure ‎2.9 Schematic illustrating the dependence of green density on compaction 

pressure, particle size, particle hardness, and compaction speed [23]. 

2.4.6 Green Strength  

The second major concern in powder compaction is green strength, related to green 

density, which results chiefly from the mechanical interlocking of irregularities on the 

surfaces of powder particles [1, 11, 21]. It is enhanced by plastic deformation during the 

compaction process. Green strength is promoted by: 

 Increasing particle surface roughness 

 Increasing the powder surface area, i.e. finer particles have higher surface area. 

 Decreasing the apparent powder density 

 Decreasing particle surface oxidation and contamination 

 Increasing green density (or compaction pressure) 



Chapter 2                                                                                              Literature Review 

24 

 

2.4.7 Sintering  

Sintering is thermal treatment of a powder or compact at a temperature below the 

melting point of the main constituent, for the purpose of alloying and increasing the 

strength by bonding together of the particles and reducing porosity of the green state. 

The operation is almost invariably carried out under a protective atmosphere, because of 

the large surface areas involved, and at temperatures between 60 and 90% of the 

melting point of the particular metal or alloys.  

For powder mixtures, however, the sintering temperature may be above the melting 

point of the lower-melting constituent, e.g. copper/tin alloys, iron/copper structural 

parts; tungsten carbide/cobalt cemented carbides, so that sintering in all these cases 

takes place in the presence of a liquid phase, hence the term liquid phase sintering [2, 

11, 25].  

2.4.7.1 Effects of material and process variable on sintering 

Some of the material and process variables have a major influence on sintering, as 

discussed below: 

1- Particle Size: Decreasing particle size leads to increased sintering. 

2- Particle Shape and Topography: These can lead to a greater intimate physical 

contact between particles in the sintered mass and increased internal surface 

area, which promotes sintering. 



Chapter 2                                                                                              Literature Review 

25 

 

3- Particle Structure: A fine grain structure within the original particles can 

promote sintering because of its favourable effect on several material transport 

mechanisms. 

4- Particle Composition: Sintering may be affected by alloying additions or 

impurities in the metal, and diffusion mass transport may also be affected by the 

presence of alloying or impurity atoms in the lattice. 

5- Green Density: Green density is a material variable which affects sintering 

directly. 

6- Temperature: Increasing the sintering temperature greatly increases the rate 

and magnitude of any changes occurring, but over-sintering causes defects and 

reduces sintered mechanical properties. 

7- Time: Degree of sintering increases with increasing time. 

2.4.7.2 Solid-State Sintering 

Surface energy is generally a small driving force for sintering.  Sintering without 

formation of a liquid phase is known as solid-state sintering, during which two types of 

transport mechanisms can be considered, i.e. surface and bulk transports. Surface 

transport causes neck growth between powder particles without changing the particle 

spacing and some densification takes place. Surface diffusion and formation of the 

vapour phase (i.e. evaporation-condensation) are the most important surface transport 

mechanisms contributing to solid state sintering [20, 25]. These diffusional processes 

are driven by a variation in chemical potential between the sources, e.g. surfaces and the 
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sink, neck or contact point of particles, and result in shrinkage by shape change and 

centre-centre approach of the neighbouring particles. 

 A well-known example is the accelerated sintering of tungsten and other refractory 

metals (Mo, Nb and Ta) resulting from the addition of < 0.5 wt. % transition metals, e.g. 

Ni, Pd, Co, Fe and Pt, which can initiate ~ 60% of the corresponding bulk densification 

[5, 27-32]. Table 2.3 shows the type of diffusion with their source and location, whereas 

Figure 2.12 illustrates the bulk transport mechanism - showing the movement of atoms 

by diffusion process.  

Table 2.3 Types of diffusion, their sources and location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mechanism 

Number 
Transport Path Source of Matter Sink of Matter 

1 Surface diffusion Surface Neck 

2 Lattice Diffusion Surface Neck 

3 Vapour Transport Surface Neck 

4 Boundary Diffusion Grain Boundary Neck 

5 Lattice Diffusion Grain Boundary Neck 

6 Lattice Diffusion Dislocation Neck 
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Figure ‎2.10 Mass transport mechanisms during solid state sintering [33]. 

2.4.7.3  Pore structure in sintering  

The point contact between particles grows into a neck. After the initial stage, grain 

boundary and pore configuration control the sintering rate. At the intermediate stage the 

pore geometry is highly convoluted and pores are located at the grain boundary 

intersections. With continued sintering, the pore geometry approaches a cylindrical 

shape where densification occurs by decreasing the pore radius as shown in Figure 2.11.  

 

 

 

 Figure ‎2.11 Schematic diagram of pore structure changing during sintering [20]. 

Grain boundary 
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From Figure 2.11, it can be noted that the changes in grain size, number and size of 

pores, as well as a decline in the total porosity in the latter stage of sintering, interaction 

between pores and grain boundaries can take three forms: 

 Pores can retard grain growth. 

 Pores can be dragged by the moving grain boundary during grain growth. 

 Grain boundary can break away from the pores, leaving them isolated in the 

grain interior. 

As the temperature increases, the rate of grain boundary motion increases, but at high 

temperatures the rate of grain growth increases to a point where the boundaries 

breakaway from the pores. There are two possible pore-boundary configurations and 

pores can occupy sites on the grain edges, at grain boundaries or inside the grains, i.e. 

bulk porosity [2, 20]. For the former there is some densification and the latter no 

densification, as shown in Figure 2.12.  

 

 

 

 

 

Figure ‎2.12 Possible pore-grain boundary configuration during sintering [6]. 

 



Chapter 2                                                                                              Literature Review 

29 

 

The system energy is lower for pores occupying the grain edges, because the pore 

reduces the total grain boundary area and energy. If the pore and boundary become 

separated, the system energy is increases in proportion to the amount of newly created 

interfacial area [20, 21]. As the densification profits the slower mobility of the pores, 

coupled with the poorly pinning force, breakaway of the pores from the boundaries is 

possible, which limits the final densities attainable by sintering.  

Consequently, it is important to minimize breakaway pores by careful temperature 

control. Avoiding the breakaway event is particularly important for PM systems 

requiring a high sintered density. There are then fewer pores which are small, due to 

shrinkage and the grains are relatively large. In this situation separation can be avoided 

if the pores are sufficiently mobile to migrate with the boundaries [20].   

2.4.7.4 Activated Sintering 

Activated sintering allows for high sintered densities, faster sintering rate, lower 

sintering temperature, and improved physical and mechanical properties [20, 25, 34]. 

Among the numerous methods of activated sintering techniques, addition of small 

amounts of an alloying element to the base powder is of the great practical importance. 

One of the most common examples via additive sintering is that of the tungsten treated 

with some transition metals such as nickel, palladium, or platinum and iron. The 

shrinkage is much higher for activated alloy than that of the base powder without any 

activator. In activated sintering the amount of activator is important, and usually in the 

range 0.1 to 10 wt %, but for the optimal quantity is often less than 0.3 wt % [20, 25]. 

Mixed phase sintering can also be categorized as activated sintering. 
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Some of the additives are present as solid phases only in solid solution with the base 

metals or segregate at the interfaces of the base metals. Other additives are present as 

liquids which spread or penetrate as liquid films between the interparticles and grains of 

the base metals. The activator should stay segregated to the interparticle interface during 

sintering. Many investigators have reported [31, 32, 34] that it is possible to obtain PM 

products with improved mechanical and physical properties by numerous methods of 

activated sintering. For example, addition of transition metals Pt, Pd, Co, or Ni to 

refractory metals such as W increases sinterability such that an increase in shrinkage of 

greater than 10% is obtained. Furthermore, these additives enhance densification by 

increasing diffusion of the base metal [27]. The best examples of activated sintering 

occur with the refectory materials, tungsten, molybdenum, chromium, and tantalum. For 

example, when chromium powder (1µm average size) was sintered at 1400ºC, a sintered 

density of 78% of the theoretical density was obtained, whereas a sintered density of 

96% was achieved for the same powder using the same sintering cycle with an addition 

of 1.0 wt% Pd, but with 1.0 wt% Fe the sintered density was only about 68% using the 

same sintering cycle.  Figure 2.13 shows that the shrinkage is much higher for tungsten 

with activator than tungsten without activator [6].  
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Figure ‎2.13 Activated sintering behaviour of tungsten treated with transition metal 

additives [6]. 

 

The strength, hardness, mechanical and physical properties increase as the sintered 

density increase. Figure 2.14 is a plot of the sintering temperature versus strength for 

the activated sintering of tungsten with some additive elements Ni, Pd, Co, and Fe 

which shows the effect of these elements on strength. This Figure clearly shows that Ni 

and Pd have improved the strength at lower temperature, where Co and Fe are more 

effective at higher temperatures The amount of activator is an important parameter in 

activated sintering, it is usually quite small, and in some cases it is only a fraction of 1 

wt% [6]. 
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Figure ‎2.14 Strength versus sintering temperature for tungsten treated with 

various sintering enhancers such as Ni, Pd, and various more effective 

elements such as Co and Fe [6]. 

 

An additive must meet several criteria to be considered as a successful activator. These 

criteria are [5, 6, 21, 35]: 

 Lower melting point than the base powder. 

 Large solubility for the base metal, while the base metal should have low 

solubility for the activator.  

 Activator should stay segregated to the inter-particle interfaces during sintering. 

2.4.7.5 Liquid Phase Sintering (LPS) 

Liquid phase sintering is used for PM processing of both metallic and ceramic products. 

It refers to the case in which, during some stage of sintering operation, a liquid phase is 

present. Of the two techniques to generate a liquid phase, the most common [5, 6, 35-
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40], involves mixed powders of different chemistries, as shown in Figure 2.15. 

Interaction between the two powders during the sintering cycle leads to the formation of 

a liquid, which may be transient or persistent. Liquid phase can also be formed by 

heating prealloyed powder between the solidus and liquidus temperatures. This method 

known as supersolidus liquid phase sintering is illustrated in Figure 2.16. Liquid phase 

sintering usually enhances the sintering rate, and near full density may be obtained with 

short sintering times, as long as good wetting by the liquid phase takes place. Tin with 

copper, copper with iron, and cobalt in cemented carbides, are typical examples of LPS 

[21, 23, 24, 41]. 

  

 

 

 

 

 

 

 

 

 

 

Figure ‎2.15 Type of Pressureless Sintering [5]. 

Liquid Phase Solid State 

Mixed phase Single phase 

Composite 

Homogenization 

Activated 

Mixed powder Prealloyed 

(supersolidus) 

Transient Persistent 

Pressureless sintering 
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Figure ‎2.16 Schematic phase diagram of prealloyed powder showing liquid phase 

forming between the solidus and liquidus temperature [5]. 

 Wetting and Spreading 

Wetting is one of the most important characteristics of a liquid phase during sintering. 

After formation of the liquid during sintering, three phases will be present in the 

microstructure: solid, liquid, and vapour. Good wetting is obtained when solid-liquid 

surface energy is low, compared to the liquid-vapour, and solid-vapour surface energies 

[5, 6]. Wetting is considered to occur effectively by a chemical reaction of the mixed 

powders at the solid-liquid interface. Wetting generally depends on the solubility of the 

solid particles in the liquid phase. It can be measured by the contact angle (θ), defined 

by equation (1) [6, 20].  

 COSLVSLSV              2.1 

where γsv, γsl and γlv are the interfacial energies between solid and vapour, solid and 

liquid, and liquid and vapour, respectively. Table 2.4 shows the estimated wettability 
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regarding the relationship between contact angle and the interfacial energies of a liquid 

to wet a solid phase. For a better understanding see Figure 2.17. 

Table 2.4 Wettability Performance In relation to Contact Angle (θ). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2.17 Solid-liquid-vapour equilibrium conditions for good and poor wetting 

situations [5, 6] . 

 

If the liquid phase is insufficient, then it exhibits very poor wetting (flow of the liquid is 

minimal), which leads to swelling of the compact during heating and possibility of its 

absorption  by the surface pores [5, 6]. Spreading is known as the mobility factor of the 

liquid, and the kinetic process associated with wetting. The solubility process of the 

solid into the liquid phase aids spreading, which depends on the free energies, giving an 

No. Contact Angle Wetting Level 

1 θ =Zero Perfect 

2 0 < θ < 180 Partial wetting 

3 θ =180 No Wetting 
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increase in the solid-liquid and liquid-vapour surface areas, and decrease in vapour-solid 

surface areas, as estimated from the following equation [2, 5, 6]: 

lvslsv              2.2 

The study of spreading of the solid particles into the liquid is particularly difficult. 

There are several parameters which effect the behaviour of the liquid, such as, 

crystallographic orientation, segregation, contamination and mechanical agitation [2, 5]. 

Dihedral Angle (Ф) 

Another important parameter which influences the microstructure during liquid phase is 

dihedral angle created due to variation in surface energies between the solid-solid grain 

boundaries which intersect the liquid and can determine the microstructure of the liquid 

phase [2, 5, 42]. Figure 2.18a indicates the general equilibrium at three phase junctions 

with associated dihedral angle and interfacial energies. Figure 2.18b shows the three 

energies and three angles form a triangle.  
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Figure ‎2.18 The general equilibrium at a three-phase intersection: (a) the 

interfacial energies and the angle superimposed; (b) equilibrium 

energy and angles [5]. 

 

In the final stage of sintering the vapour will be absent, thus only the solid-solid and 

liquid-solid phase are present and equilibrium surface energies determine the magnitude 

of the dihedral angle as shown in Figure 2.19. It can be determined by the following 

equation:  

 cos2slss                     2.4 

 

 

 

 

Figure ‎2.19 Dihedral angle and surface energy between two intersecting grains 

with a partially penetrating liquid [5]. 

 

It can be noted that when the dihedral angle is low, the system has a low solid-liquid 

interfacial energy, which favours diffusion of solid-solid. 
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Classic sequence of liquid phase sintering (LPS)  

The basic aspects of LPS are usually discussed in terms of three distinct stages that are 

particularly based on experimental observation [5, 6, 37-39, 41]. These, in the order of 

their occurrence, are: rearrangement, solution-reprecipitation, solid state bonding. 

Figure 2.20 shows the schematic sequence of these steps, whereas Figure 2.21 illustrates 

those three stages in a relationship between the time sintering and densification. 

 

 

 

 

 

 

 

 

 

 

Figure ‎2.20 Stages of Liquid Phase Sintering [6]. 
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Figure ‎2.21 Approximate time scale for liquid-phase sintering [6]. 

 

Step I- Rearrangement 

The first stage is ‘rearrangement’, during which „liquid flow‟ occurs and causes large 

scale bulk movement of particles within the liquid phase, resulting in particle 

rearrangement and some densification. Increasing the amount of the liquid phase results 

in greater densification, that is, particles may move more easily. During rearrangement, 

the compact responds to the capillary action of the liquid. The amount of densification 

attained by rearrangement is dependent on the amount of liquid, particle size, and 

solubility of the solid in the liquid.  Greater rearrangement is usually obtained from 

finer particles and full density (zero porosity) is possible by rearrangement if enough 

liquid is formed (i.e. in most LPS systems, about 20 volume % liquid) [5, 6, 23, 24, 34, 

37-39, 41]. 
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Solution-Reprecipitation 

The second stage of liquid phase sintering is termed ‘solution and reprecipitation’, 

and can only take place if there is a limited solubility of the liquid phase. The solubility 

of a grain in its surrounding liquid varies inversely with grain size. Small grains have a 

higher solubility than coarse grains. Material is transported from small grains to the 

large by diffusion. The small grains dissolve and disappear, while the large ones grow 

and take on a very rounded shape. The process is termed coarsening or Ostwald 

ripening [24]. Grain shape accommodation leads to porosity elimination. The amount of 

liquid effects solution-reprecipitation in terms of both diffusion distance and amount of 

grain shape accommodation [41].  

Solid Phase Bonding 

The third stage of liquid phase sintering is known as ‘solid phase bonding’.  The solid 

skeleton which was formed during compaction causes slow densification. If the liquid is 

not wetting the solid completely, then there is still some contact between solid particles 

rather than complete separation of the particles by the liquid.  Solid skeleton rigidity 

inhibits further rearrangement, and the microstructural coarsening continues by 

diffusion [5, 23-25]. There are some advantages and disadvantages of liquid phase 

sintering.  

Advantages are: 

 Faster sintering. 

 Faster atomic diffusion. 
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 Due to wetting by liquid, rapid compact densification occurs. 

 Reduction in interparticle friction. 

 Rapid rearrangement of solid particles. 

Disadvantages are: 

 Compact slumping (shape distortion) which occurs when too much liquid is 

formed during sintering, which leads to lower tolerances. 

 

2.4.8 Protective Sintering Atmospheres in Powder Metallurgy 

The following gases, at present, are used as the sintering atmosphere: nitrogen, 

hydrogen, hydrogen-nitrogen mixture, hydrocarbon gases, helium, argon, or only 

vacuum.  Sintering atmosphere performs numerous roles: the most important task is to 

protect the compact from the air attack at higher temperatures, and, especially for 

sintering ferrous materials, to reduce the surface oxides [43]. Therefore uncontrolled 

atmosphere furnaces are not acceptable. The atmosphere assists in removal of lubricants 

or binders as lubricants and binders used in the pressing process may create oxidation 

and some other contamination that hinders diffusion bonding. Further, a suitable 

atmosphere can reduce decarburization and adjust the impurity level, such as the 

nitrogen content. The pure gases of CO and H2 are appropriate for this purpose, but are 

often costly and dangerous to use. In practice dry hydrogen, cracked ammonia, and 

partially combusted hydrocarbons are mainly used, as well as argon and pure nitrogen 

[2]. Vacuum sintering involves heating in a closed chamber with a pumping mechanism 
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constantly pulling evolved vapours out of the furnace, keeping the chamber pressure 

between 10
-4

 and 10
-7

 atm (10 and 0.01Pa) [6]. Vacuum sintering is preferred in cases 

involving highly reactive materials (beryllium, titanium, and tantalum), high 

temperature materials (refractories (tungsten, molybdenum), and tool steels), hydriding 

elements (zirconium or uranium), and corrosion-resistant materials (stainless steels) [6]. 

Thus sintering atmospheres fulfil several functions, depending on the material to be 

sintered [2, 4, 6, 23, 25]. These functions are: 

 To avoid, undesired evaporation of any component. 

 To control chemical reaction-oxidation, reduction, carburisation, decarburisation 

and decomposition. 

 To remove volatile admixtures and their decomposition productions such as 

lubricants. 

 To provide heat transfer by convection in furnace. 

 To provide the external hydrostatic pressure required in hot isostatic pressing. 

The sintering atmosphere must be compatible with the interior material of the furnace 

and with the heating elements, in so far as they are in contact with the gas. 

2.4.8.1 Reduction Reactions  

It is well known [43] that surface oxides of the powder particles obstruct diffusion 

during sintering and inhibit both neck growth between particles and liquid phase 

penetration. Therefore, thermochemical reactions are essential in choosing the proper 
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atmosphere for sintering ferrous PM alloys. Equilibrium between oxygen and an oxide 

such as FeO2 can be written in reaction form as follow [44]:  

Fe (s) + O2 (g) ⇔ FeO2 (s)        2.5 

Solids and gases are indicated by (s) and (g), respectively. In some metals oxide 

reduction proves more difficult, e.g. chromium oxide. Then the reaction is represented 

as follows: 

x M(s) + O2(g) ⇔ Mx O2(s)         2.6 

where  M and MxO2 represent metals and oxides, respectively.   

For this reaction, the equilibrium constant K is defined as follows [27]: 

   
     

       

           2.7 

where a designates a thermodynamic quantity known as the activity of the solid phase. 

Activity is defined as the ratio of the vapour pressure of a material under the considered 

conditions, and the PO2 oxygen partial pressure is the only factor that determines which 

way the reaction proceeds. Thus, the equilibrium constant for oxidation-reduction 

reaction depends only on the inverse partial pressure of oxygen, and lower partial 

pressures favour oxide reduction. Metal oxide and the metal are pure materials and thus 

eq. 2.7 reduces to: 

K=1/pO2          2.8 

 In turn, the equilibrium situation reflects the standard free energy ΔG for the reaction,  

ΔG =-RT lnK= RTlnpO2        2.9 
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where R=8.314 J/(mol K) is the universal gas constant and T is the absolute temperature 

in degrees Kelvin: 

            
   

  
          2.10 

   is the Gibbs free enthalpy, for a chemical reaction determined from: 

ΔG
º
=ΣG

º 
(products) - ΣG

º
 (reactions)       2.11 

The free energy can be obtained from tables, charts or by using computer software, e.g. 

HSC Chemistry software [45]. 

2.4.8.2 Reducing Atmospheres 

The sintering atmosphere is very important variable which when optimized can lead to 

improvement in the sintered steel properties of iron-carbon PM components. 

Atmospheres of mixed gases N2 and H2 in different percentages between 25/75 and 

95/5, and eventual additions of CH4, have commonly been used  [36, 46-53] to ensure 

sufficient oxide reduction (i.e. complete reduction of oxides to achieve strong 

interparticle bonding), provide further protection against additional oxidation and also 

to adjust the carbon potential of the sintering atmosphere [51].  

The decomposition of relatively unstable oxides is directly connected with decrease in 

partial pressure of oxygen in the sintering atmosphere (see Figure 2.22). It is well 

known that vacuum furnace atmosphere minimizes oxidation; however vacuum in a 

sintering furnace in general is not sufficient to lower the pO2, to reduce oxides as used 

in industry and is also quite expensive. The effect of carbon on the degassing and oxides 

reduction of several compositions of Fe-based alloys mixed with graphite has been 



Chapter 2                                                                                              Literature Review 

45 

 

studied during sintering under different sintering atmospheres including vacuum [47, 

54]. Hydrogen and carbon monoxide gases are very common, economical and feasible 

gases used as reducing agents, as illustrated below:  

 

 
         

  

 
             2.12 

 

 
         

  

 
             2.13 

Where M and MxOy represent metal and metal oxide, respectively. 

From the thermodynamic fundamentals, the equilibrium condition between the metals 

and their oxides in contact with oxygen at certain temperature indicates that the 

reduction of metallic oxide will take place when      
       

       2.14 

The Gibbs free energy for reaction 2.12 can be obtained by using equation 2.11 as 

follows: 

   
  

  

 
               

 

 
                    2.15 

Then, equilibrium constant K can be obtained from the following relationship: 

  
       

      
      

   
 

  
         2.16 

This can be written as, 

     

      
    

   
 

   
         2.17 

Similar for CO as the reducing gas as in reaction 2.13: 

     

      
    

   
 

   
         2.18 
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The equilibrium between metal, metal oxide and partial pressure ratio is presented in the 

following Figures 2.22-2.25.   

 

Figure ‎2.22 Equilibrium oxygen partial pressures of a few metal oxide [55] 

 

Figure ‎2.23 Partial pressure of hydrogen and water vapour in equilibrium with 

metal oxides [55]. 
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 Figure ‎2.24 Partial pressure of carbon monoxide and carbon dioxide (pCO/ pCO2) 

in equilibrium with metal oxides [55]. 

 

 

Figure ‎2.25 Partial pressure in pure carbon monoxide in equilibrium with metal 

oxides [55]. 
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It‟s worth remembering that the dewpoint is one of the important parameters that 

controls the reducing atmosphere. Dewpoint specifies the temperature at which water 

vapour in the atmosphere becomes saturated, and thus will be generated. Therefore it 

provides a comparative assessment of the moisture content in an atmosphere[6, 55]. It is 

used to measure water to hydrogen partial pressures (pH2/pH2O ratio). Figure 2.26 

presents the oxidation-reduction equilibrium in terms of the atmosphere dewpoint for 

several metals and oxides [55]. Lower dew points enhance oxide reduction. During the 

sintering cycle of a metallic powder, the compact will initially be under oxidising 

conditions caused by trapped oxygen in the pores. At higher temperatures, the 

atmosphere and temperature can create reducing conditions. On cooling, the compact 

may again experience oxidising conditions caused by the decrease in temperature [27]. 

 

 

Figure ‎2.26 Oxidation-Reduction equilibrium in terms of the atmosphere dewpoint 

for several metals and oxides [55]. 
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2.4.8.3 Carburization-Decarburization 

Carbon plays a major role in ferrous powder metallurgy and extremely enhances the 

mechanical properties of sintered steels. Properties such as tensile strength and 

hardenability are very perceptive to changes in carbon content. Therefore the choice and 

control of the sintering atmosphere is essential to obtaining strong mechanical 

properties [56]. Austenite steels must be in equilibrium with the composition, any 

imbalances in the process can lead to carburising and decarburising reactions.  

A carburising and decarburising reaction is an increase and decrease respectively, in the 

carbon content (from the surface layer of hot-worked steel products) of steel caused by 

the interaction with the atmosphere [1, 57]. Steels with low carbon contents at the 

surface when exposed to the atmosphere concentrated of high carbon content (e.g. CO 

or CO2) at high temperatures will try to gain some carbon to establish a balance between 

the atmosphere and the powder compact, this leads to a carburising process. The 

opposite reaction of high carbon content steel sintered in a poor carbon atmosphere 

causes a decarburising reaction where the sintered steel loses carbon to the atmosphere. 

For equilibrium in the atmosphere the CO, CO2 will dramatically change with 

temperature due to the Boudouard reaction as seen in equation 2.19 [56].  

Decarburization increases with increase in the rate of carbon diffusion and activity, and 

α-γ transformation temperature, whereas for the carburization it is vice versa. Based on 

the equilibrium between, the materials, carbides and sintering atmosphere, carbides can 

be formed or decomposed during sintering.  The general reaction between metals (M) 
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and their carbides (MxC) is considered in terms of the carbon monoxide (CO) and 

methane (CH4) reactions, as shown in equations 2.20 and 2.21 [6]: 

                   2.19 

                                2.20 

                                2.21 

Control of the carbides plays a large role during sintering process for many sintered 

products such as, cemented carbides, tool steels, and silicon carbide. Decarburization 

can be controlled by use of copper plating, controlled atmosphere such as vacuum, inert 

gases (N2, N2+ 5-10H2) or H2, and salt heating. It‟s also can be corrected by carbon 

restoration [57]. 

2.5 Evolution of Steel Microstructure  

2.5.1 Introduction: The Iron-Carbon Phase Diagram. 

The amount of carbon in iron plays a significant role in microstructure evolution and 

properties and it is important to specify the type of structure, either iron, steel or cast 

iron. Pure iron or in tiny amount, i.e. <0.008wt%C, is referred to as pure iron (α-Fe or 

ferrite phase); whereas iron alloyed with carbon from 0.008wt%C to 2.1wt%C is 

classified as steel, and all compositions containing higher carbon contents are termed 

cast iron. The amount of carbon is largely responsible for the wide range of mechanical 

and physical properties that can be achieved and which make steel a very essential 
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commodity in life [58]. Figure 2.27 illustrates equilibrium phase transformations (i.e. 

ferrite to ferrite + pearlite, then pearlite and finally cementite + pearlite). 

Most steels have above 95 % by weight iron and the remaining are other elements such 

as Cr, Mo, Mn, Si, Ni, V, etc. added to improve the mechanical, chemical and physical 

properties.  

Iron at room temperature is named Ferrite or (α-iron), with Body Centered Cubic 

(B.C.C) structure, but when heated up to 912 ºC, the crystal structure changes 

spontaneously to a new crystal structure termed Face Centered Cubic (F.C.C) structure, 

and the Ferrite changes to Austenite or (γ-ion) [42, 57, 59, 60]. In addition, there is 

another Fe structure with Body Centered Tetragonal (B.C.T) structure, known as 

Martensite which forms from the austenite phase via quenching operation (rapidly 

cooling) in hyper-eutectoid steels >0.83 wt % C. These three crystals structures are the 

most common structures of iron.  As shown in Figure 2.27, there are many different 

phases within steels which are created by the heat treatment operation with changes of 

the amount of carbon content. 

 



Chapter 2                                                                                              Literature Review 

52 

 

 

Figure ‎2.27 Iron-carbon equilibrium diagram [58]. 

 

Classification of steels and their carbon content with some applications and 

characteristics are illustrated in Table 2.5 [58].  

 

Table 2. 5 Steel Classifications. 

No. Type of Steel 
C % wt. 

Range 
Application characteristics 

1 Low Carbon Steel 0.022-0.3 
Pipes, chain, machine 

parts 

Soft, tough, but low 

hardness 

2 

Medium Carbon Steel + 

other Alloying element (Mo, 

Ni, Cu,etc.) 

0.3-0.8 
lead screws, gears, 

crankshafts, hammers 

Toughness, ductility, 

hardness 

3 

High Carbon Steel + other 

alloying element (W,Mo, V, 

Co, etc.) 

0.8-2.1 
drills, cutting tools, 

milling cutters  

Good wear 

resistance, high 

tensile strength 
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2.5.1.1 Metallographic Structures  

The main constituents of steel, depends on carbon content, heating and cooling 

temperatures, holding time and gas atmosphere, austenite, ferrite, pearlite, cementite, 

and non-equilibrium constituents, upper and lower bainite and Martensite. These 

constituents directly affect mechanical properties, which are dictated by microstructure 

of the alloy. These microstructures can be modified by employing proper heat 

treatments to achieve the unique properties suitable for its intended application. 

Austenite 

This phase has a Face Centered Cubic (FCC) structure, which can hold a maximum of 

around 2% by weight of carbon in solution at a temperature about 1147 ºC. Austenite 

has also been referred as (γ), or γ-Fe. Austenite is a soft and ductile phase, and can exist 

only at elevated temperature in plane carbon steel, but it can be stable at room 

temperature for some alloy steels such as Hadfield steel [58]. 

Ferrite 

Ferrite is the α-Fe known as α-phase solid solution where the solvent is alpha iron, and 

the solute is carbon. This phase can hold very little amount of carbon, typically, 0.008% 

at room temperature and when heated up to 723ºC the maximum amount of carbon will 

be around 0.02wt%. The ferrite phase has a Body Centered Cubic (BCC) structure, and 

is designated as either alpha (α) or delta (δ) phase. Ferrite is a very soft form of iron and 

also shows high level of ductility [58]. 
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Cementite 

Cementite is very hard and brittle iron carbide with 6.67 wt % carbon corresponding to 

the composition Fe3C, having ~650 Brinell hardness [58]. When Cementite is mixed 

with soft ferrite layers this leads to reduced hardness [58, 59]. 

Pearlite 

Pearlite is a mixture of alternate thin layers or lamella of iron carbide (Cementite) and 

ferrite in a single grain called pearlitic structure as seen in Figure 2.28. Spacing between 

layers is dependent on the cooling rate of the material, and when the cooling rate is fast 

thin layers will be created, whereas slow cooling rate creates a much coarser structure 

less strong, 0.8wt% carbon creates as fully pearlitic structure. Further increases in 

carbon will produce cementite between grain boundaries causing the steel to be weak 

and brittle [42, 57, 58]. Pearlite has combination of properties which are intermediate 

between ferrite and cementite. Thus, it is harder and stronger than ferrite but softer and 

more ductile than Cementite. Because pearlite is consists a mechanical mixture of the 

two phases. It‟s well known, that the formation of pearlite is started at the austenite 

grain boundaries or at some other disarray in the austenite grains itself [58].  



Chapter 2                                                                                              Literature Review 

55 

 

 

Figure ‎2.28 Diagram of pearlite growth [42]. 

 

Martensite 

Martensite is a metastable transitional constituent indicating the first stage in 

decomposition of austenite. Martensite holds a Body Centered Tetragonal (BCT) form 

of iron in which carbon is dissolved and trapped during quenching and the (FCC) 

structure of austenite is distorted into body centered tetragonal (B.C.T) structure without 

loss of its carbon atoms [42, 57-59].  

Martensite is undoubtedly the most important and widely discussed metallographic 

constituent in steel. The martensite transformation is a diffusionless transformation, 

which results in effect in a supersaturated solution of carbon in iron, into which hot 

austenite turns when rapidly freezing. Martensite is the hardest and strongest 

transformation product of austenite, but unfortunately is also very brittle.  
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Martensite start temperature (Ms) is the temperature at which martensite begins to form 

during quenching from the austenite region and continues to form as the temperature is 

lowered. Ms has a big affect on the martensite structure. The chemical composition of 

steel plays the main factor affected its Ms, although the austenitisation status (grain size 

and temperature of austenitisation) and external stresses and stored deformation energy 

also have an affect [58]. Recently studies have shown that the austenite grain size also 

may sometimes plays an important role in determining  Ms,  as the austenite grain size 

increases, so does the Ms [61]. Martensite start temperate (Ms) is relatively easy to 

calculate for steels having low alloy content, whereas, for those having high alloy 

content empirical equations were used [62]. Carbon level plays the big role on the 

amount of Martensite forming as well as the temperature of respectively the start of 

austenite-to-martensite transformation (Ms) and the end of this transformation (Mf), as 

seen in Figure 2.29. It is also known the higher the carbon content, the lower the 

temperature needs to be to form martensite [63].  
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Figure ‎2.29 Effect of carbon on Ms and Mf [63]. 

 

Bainite 

When  cooling steel, at moderate cooling rates between water quenching and air 

cooling, a constituent known as the bainite microstructure forms [64]. Bainite 

microstructure is very fine and consists of ferrite and cementite, in some ways similar to 

pearlite, but bainite has a different morphology. Generally, bainite appears over a large 

range of temperatures with different morphologies at different transformation 

temperatures (temperature range between the high temperature transformation of ferrite 

and Pearlite and the low temperature transformation of martensite start Ms). The bainite 

forming at higher temperatures is called upper bainite and consists of laths of ferrite 

divided by cementite in parallel orientation with the major axis of the laths. Bainite 



Chapter 2                                                                                              Literature Review 

58 

 

forming at low transformation temperatures comprises plate-like ferrite and cementite 

within the ferrite at an angle of 55-65º to the main axis of plates, and this structure is 

called lower bainite. The lower bainite structure is finer and has a more uniform carbide 

distribution than the upper, consequently lower bainite has higher mechanical properties 

than the upper [65]. 

2.5.1.2 Equilibrium Cooling Transformations 

Equilibrium, (slow) cooling always produces structures indicated on the Fe-C diagram, 

Figure 2.27, which are free from internal stresses. The configuration of phases forming 

is dependent on the carbon content. Equilibrium cooling will be described for three 

different steels. 

First, alloy steels which consist of 0.02 to 0.76 wt percent carbon are named hypo-

eutectoid. On slow cooling from the austenite region to room temperature, when the 

temperature reaches A3, austenite starts to transform to ferrite and as cooling continues, 

more ferrite forms and a mixture of ferrite (α) and austenite (γ) coexists until the 

eutectoid temperature is reached. The relative amounts of ferrite and austenite are given 

by the lever rule. Subsequently, below 723 ºC, all the remaining γ-Fe transforms to 

pearlite [58, 63]. Second example is for the eutectoid steel (0.76 wt % C), which 

remains austenitic until the eutectoid temperature is reached. Immediately, below the 

eutectoid temperature, the austenite is completely transformed into pearlite, i.e. alternate 

layers of ferrite and iron carbide (Fe3C), [2, 3, 26].   

Thirdly hypereutectoid alloys, steels with carbon content between 0.76 and 2.14 wt %, 

will be considered. On cooling a fully austenitic structure, when the temperature crosses 
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the Acm line, the austenite begins to precipitate cementite along the austenite grain 

boundaries, becoming itself less rich in carbon, and the process continues until the 

eutectoid temperature is reached. The relative amounts of austenite and cementite are 

given by the lever rule. As the temperature is decreased below the eutectoid 

temperature, all the remaining austenite is transformed to pearlite, which consists of 

lamellae of ferrite and cementite [6, 33, 34]. Grain boundary cementite, if continuous, 

embrittles the steel. Low carbon steels produced by equilibrium cooling have mainly 

soft ferrite and some hard cementite, thus, the steel is relatively soft and weak. For 

higher carbon steels, the situation reverses, and steel is hard, strong and less ductile. 

Figure 2.30 shows the phases for the three types of steel (hypo-eutectoid, eutectoid and 

hypereutectoid) following slow cooling. 

 

Figure ‎2.30 Phase changes during slow cooling of three steel compositions [58].  
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2.5.2 Heat Treatment  

Heat treatment is the thermal operation or combination of operations which involves the 

controlled heating and cooling of a metal alloy in order to enhance and improve its 

mechanical properties without any change in the part shape. Furthermore, it is also done 

to remove residual stresses from machined or deformed components and to provide a 

good microstructure. Heat treatment is generally performed to markedly increase the 

strength and hardness, as well as retaining toughness or ductility of the metals [58, 59]. 

However, it can be used for soften the metal in order to improve the machinability and 

for easier forming [42, 57, 58]. 

Heat treatment operations are necessary for those sintered parts for these reasons: 

 To soften, i.e. to reduce hardness, reduce strength, remove residual stresses, 

improve toughness, and restore ductility.  

 To increase hardness, strength and wear resistance,.  

 To modify the properties in order to improve machinability and enable easier 

forming. 

The processes of heat treatments which are very important include austenitisation 

quenching, tempering and spheroidisation (for high carbon steel only). 

2.5.2.1 Austenitisation 

Austenitisation produces the austenite phase and dissolves uniformly carbon and any 

alloying element present in γ-Fe. This process is done by heating the steel above the A3 
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or Acm temperature, for sufficient time to ensure that the alloy is fully transformed into 

the austenite phase. Austenitisation temperature has a big affect on the properties of the 

component [42, 66].  

2.5.2.2 Quenching   

Quenching is a simple definition of rapid cooling of the hot steel from austenite phase 

field to room temperature to get higher hardness by formation of Martensite. Quenching 

can be done by immersing the hot steel in a quenching media such as water, oil or air 

[42, 66].  

2.5.2.3 Tempering 

Quenching of austenite to room temperature results in the formation of martensite, 

which is a very hard but also very brittle phase. Tempering is a heat treatment used for 

removing the quenching stresses and reducing the brittleness, so as to modify the 

mechanical properties, by heating the steel in the range 150 – 700 ºC. Tempering is a 

diffusion operation which depends on time and temperature [42, 66]. 

2.5.2.4 Spheroidisation  

Spheroidisation involves heating the material to a temperature just below the eutectoid 

point for a sufficient time to ensure that all the cementite (or alloy carbide, when some 

alloying elements were added such as Cr, V, Mo, etc.) laths or plates transform to 

produce fine spheroidised cementite (or carbide) particles within the ferrite [58]. This 

treatment is usually selected in order to improve the cold formability due to the lower 

flow stress of the spheroidised structure. Therefore, spheroidisation is a suitable heat 
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treatment to produce a ductile microstructure which enables plastic or even superplastic 

deforming. Influence of spheroidised macrostructure which consists of fine spheroidised 

carbide particles size (0.2-1.5-µm) within fine-grained ferrite matrix (0.3 to 5-µm)  on 

tensile properties of ultrahigh carbon steel (1.8%C), has been studied by [67], the found 

that the yield strength of the UHCS (1.8%C) material, was shown to follow a Hall-Petch 

relationship. Recently, high mechanical properties have obtained using a new 

optimization spheroidising  process of UHCS containing 1.5%Al [12].   

2.5.2.5 Non- Equilibrium Cooling Transformations 

Phase Transformations 

The iron-carbon diagram is of fundamental significance to heat treatment, but it can 

only predict the equilibrium transformation phase at any temperature and carbon 

content. Non-equilibrium cooling, for the same carbon content, can produce a sequence 

of transformations, which can be manipulated to attain different microstructures and 

resultant physical and mechanical properties of the steel [66].  

In heat treatment, the time parameter, absent from phase diagrams, plays the additional 

important role in phase transformations. Davenport and Bain were the first to establish 

the isothermal transformation approach by studying reactions isothermally at a sequence 

of temperatures under the A1 line, and presented their data in terms of an isothermal 

transformation or time-temperature-transformation (TTT) diagram. Such a diagram can 

be obtained for each particular steel [68, 69].  
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Time-Temperature transformation TTT Diagram   

Steel is first heated to ensure the phase is fully austenitic, then rapidly cooled to a 

specific lower Temperature and held for a specific Time, undergoing Transformation to 

the determined products, depending upon the period of the time held at the temperature. 

Various types of structure produced from this transformation are indicated on the 

diagram with the holding times needed for start and complete a transformation. The 

result is a collection of curves representing the various stages of transformation at time 

versus temperature [69].  

Isothermal transformation or time-temperature-transformation (TTT) diagrams as 

shown in Figure 2.31 for the transformation of austenite-to-pearlite for a Fe-

0.79%C+0.76%Mn austenitized at 900°C. The upper portion of Figure 2.31 shows the 

S-shaped curve of percentage transformation versus time at a constant temperature (675 

ºC). [42, 66].  

Repeating this process of measurements i.e. transformation process for various 

temperatures and then collecting these curves together, the compound diagram can be 

created and plotted on temperature versus the time axes, as shown in the lower section 

of the Figure 2.31,  the TTT diagram [42].   
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Figure ‎2.31 Comparison of an Isothermal Volume Fraction Transformation curve 

to TTT  Diagram at the Corresponding Temperature [42]. 

 

An example of isothermal transformation of eutectoid alloy is illustrated in Figure 2.32: 

very fast cooling of austenite from A to a temperature below the eutectoid temperature, 

B, ~ 620 ºC, and then isothermally holding, BCD line. It can be seen that transformation 

of austenite-pearlite, begins at the intersection point C (after about 3.5 s), and is 

completed at point D, after ~ 15s [42]. Various schematic microstructures at different 

times during the transformation process are also represented in Figure 2.33. 
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Figure ‎2.32 Isothermal Transformations or TTT Diagram of Eutectoid Alloy [42]. 

 

If the above procedure is repeated at different temperatures, a complete TTT diagram 

achieved, as illustrated in Figure 2.33. It is seen that at 727ºC and above, the phase is 

completely stable austenite, whereas below this temperature the austenite is unstable 

and, given enough time, undergoes a transformation. From below 723ºC to ~ 566ºC, 

particularly at the critical temperature transformation point (at nose), the lower 

temperature the shorter time taken for austenite to begin forming pearlite. As 

temperature decreases, diffusion rate decreases, and, at temperatures of 566ºC to 

215ºC.after a sufficient time, unstable austenite transforms to bainite.  Martensite 

transformation of unstable austenite occurs at temperatures 215ºC to -20ºC [66].  
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Figure ‎2.33 TTT Diagrams for a 0.8 % Carbon Steel [66]. 

 

Carbon and any alloying elements such as chromium, nickel, and molybdenum highly 

affect the TTT diagram. Figure 2.34 shows the TTT diagram for alloy steel with 0.4 % 

C and 0.8 % Cr. It can be seen the „nose‟ of the TTT diagram shifts to the right (time 

required at any particular temperature for any transformation) due to the effect of the 

chromium addition [66, 70]. 

 

 

Figure ‎2.34 TTT diagram for a 0.4 % Carbon, 0.8% Chromium Steel [66]. 
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Continuous Cooling Transformation 

Most heat treatment processes of steel involve the continuous cooling to room 

temperature, and therefore Continuous Cooling Transformation, (CCT) diagrams are 

also used. The microstructure indicated on these diagrams result from the continuous 

cooling of the specimen from a temperature above the eutectoid temperature to room 

temperature, at different, specified cooling rates. Thus CCT diagrams are completely 

different from TTT diagrams.  

To generate CCT diagrams, the steel is heated until completely austenitic, and then put 

immediately into a suitable cooling medium to obtain the required cooling rate and to 

measure the start and finish transformations. Cooling can be air-cooling, oil quenching, 

or water quenching. CCT diagram for an alloy steel with different cooling rates with 

Data Points of Transformation Temperature, i.e. start (Ps) and finish (Pf) transformation 

points are shown in Figure 2.35 [66, 68]. 
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Figure ‎2.35 CCT diagram, superimposed eight cooling rates with data points of 

transformation temperature [68]. 

2.5.2.5.1 Effect of Cooling Rate 

Cooling rate is an important parameter in heat treatment as it can control the 

microstructure produced, consequently improving the hardenability, and mechanical 

properties. Cooling rate is dependent on the cooling medium applied, i.e. water 

quenching, oil quenching, or air-cooling. Water cools faster than oil, and oil quicker 

than air, consequently the hardness is higher, respectively.  Rapid cooling rates produce 

martensite below 200⁰C in Figure 2.35 and more martensite is formed as the 

temperature decreases. This influences hardenability i.e. hard Martensite greatly 

influences hardness of the alloy. Ferrite plus pearlite can be obtained by slow cooling, 

whereas bainite is the structure produced by moderate cooling rates. Figure 2.36 

indicates the effect of cooling rate on forming different structures [58, 71]. 
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Figure ‎2.36 Flowchart of Cooling Rate [42]. 

2.5.2.6 Hardenability 

Hardenability is to be differentiated from hardness, which is defined by the degree of 

resistance to indentation in a hardness test, e.g. Brinell, Vickers, Knoop test, or 

Rockwell. The ability of steel to be hardened (to produce martensite) by quenching is 

referred to as hardenability [70]. The measuring parameter is the depth of the martensite 

layer. During quenching of rod steel, the surface exhibits different cooling rate to that of 

the inner core. The surface has rapid cooling rate and the result of the microstructure is 

fully Martensite, whereas the inner core of the rod with moderate cooling rate had 

pearlite plus Martensite as shown in Figure 2.37 [72].  
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Figure ‎2.37 Quenching a bar and production of different phases [66]. 

 

Continuous cooling diagram can be constructed and plotted for temperature versus bar 

diameter. Figure 2.38 illustrates the continuous cooling transformation that occurs as a 

function of the bar diameter for different cooling media. From the Figure, it can be 

noted that the microstructure produced for10 mm bar diameter cooled in comprises 

ferrite, pearlite, and a small amount of bainite.  For oil quenching, the microstructure is 

bainite plus Martensite at the same diameter.  For water quenching, the microstructure 

generated is fully martensitic, so only water quenching is suitable if  a fully martensitic 

structure is required [66, 69]. 
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Figure ‎2.38 Shows the CCT with different cooling rates as a Function of Bar 

Diameter of 0.38 % Carbon Steel [66]. 

 

The most common method of assessing hardenability is the Jominy end-quench test. 

The procedure is austenitizing a standard-size steel bar, 100 mm long and 25 mm in 

diameter, and then placing it vertically in a fixture and quenching the lower end directly 

by a stream of water at 25 ºC.  The cooling rate is completely different throughout the 

length of the bar, at the lower end, the cooling rate is the highest, due to direct contact 

with the water, and vice versa [42, 66].  Once cooled the bar is cleaned and ground flat 

along its length for hardness testing. Jominy test results present hardness as a function 

of distance from the quenched end, i.e at various cooling rates. Figure 2.39 shows the 

results of a Jominy test of a steel bar with 0.4 % carbon [42, 66].  
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Figure ‎2.39 Effect of cooling rate on the hardness of a 0.4%C-steel bar [66]. 

2.5.3 Influence of Alloying Elements  

By adding other alloying elements, e.g. Mo, Ni, Cr, Si, Mn, remarkable changes are 

made to the mechanical and physical properties, as well as the Fe-C phase diagram. The 

changes in positions of phase boundaries and shapes of phase regions depend on the 

amount of the alloying element, response to coexisting other elements and their 

concentrations as well as the ability to dissolve into the matrix. The most important 

change is the transfer in location of the eutectoid with reference to temperature and 

carbon concentration. Alloying elements change the temperature of the eutectoid and 

the relative fraction of Pearlite and proeutectoid phases [42]. Heat treatments 

subsequent to the addition of other alloying elements are well documented [42, 58]. 

Most metal additions stabilize either ferrite or austenite, but some form carbides. The 
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alloying additions change the transformation temperature, which can increase or impede 

the formation of desirable phases by heat treatment. Some alloying additions allow 

slower cooling of austenite to martensite thereby leading to slower transformation, 

making it easier to form high-strength sintered components.  It is very important to 

understand the function of each elements and how it reacts with iron and carbon, the 

two key constituents of steel [73]. Figures 2.40 and 2.41 show the effect of different 

alloying elements on solid solution strengthening of the ferrite phase. In solid solution 

hardening the elements P, Si and Mn have the highest effect; for example to reach a 

ferrite hardness of ~ 160 HB only 2 wt % Si or ~ 4 wt % Mn are needed as compared 

with > 14 wt % V or ~ 13 wt % Mo. For ultimate tensile strength (UTS)  of ~ 310  MPa 

only 0.5 wt % Si is needed as compared with ~ 2.25 wt % Mo. This implies that to 

attain comparable strength and hardness much higher quantities of V or Mo are required 

than those of Si or Mn. For sintering at >1200 ºC with iron alloying elements such as P, 

Si, Mn, and Cr, protective atmospheres with  a low dewpoint (~ -60 ºC)are needed [73]. 

The above is only associated with solid solution hardening. 

 

 

 

 

 

 

 

Figure ‎2.40 Solid Solution Hardening Effect of Various Alloying Elements [73]. 
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Figure ‎2.41 Solid solution strengthening of various alloying elements[73]. 

 

Youseffi et al [74] have examined additions of Si to 316L stainless steel. They found a 

correlation between sintering temperature and Si content. Sinterablility, rate of 

densification, and shrinkage increased, whereas porosity decreased by increasing the 

content of Si and sintering temperature. They also found that both hardness and tensile 

strength had improved by Si addition.  

There are three categories of alloying element for P/M steels: ferrite strengtheners, 

austenite stabilisers, and carbide forming elements. 

2.5.3.1 Ferrite-forming elements 

Alloying elements such as Cr, Si, Mo, W, and Al are the most important elements in 

this category. Fe-Cr alloys containing more than 13 % Cr are ferritic at all temperatures 
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until the initial melting. Figure 2.42 shows the range of stability of ferrite in iron-

chromium [58].  

 

 

 

 

 

 

 

Figure ‎2.42 Cr-Fe Equilibrium Diagram [66]. 

2.5.3.2 Austenite forming elements 

The most important austenite forming elements are C, Ni, and Mn. Sufficiently large 

quantities of Mn or Ni render steel austenitic even at room temperature. The equilibrium 

iron-nickel diagram Figure 2.43 shows that the stability of austenite increases with 

increasing Ni content. For example, with 10 % Ni, the steel becomes completely 

austenitic at 700 ºC [58]. Another example is Hadfield steel containing 13 % Mn, 1.2 % 

Cr, and 1 % C; these elements surely take part in stabilizing the austenite. 
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Figure ‎2.43 Fe-Ni Equilibrium Diagram [58]. 

2.5.3.3 Carbide Forming Elements 

Alloying elements such as Cr, W, Mo, V, Ti, Nb, Ta, Zr have a great affinity for carbon. 

High-speed and hot work tool steels typically include three categories of carbides, 

which are usually designated M6C, M23C, and MC. The letter M represents collectively 

all the metal atoms. Thus M6C represents Fe4W2C or Fe4Mo2C, M23C represents 

Cr23C6 and MC represents VC or V4C3 [58]. 

2.5.3.4 Effect of Alloying Elements on Fe-C Phase Diagram 

Carbon changes iron to steel and consequently increases hardness and strength. When 

further alloying elements are added to Fe-C, changes take place in the three important 

lines on the phase diagram, i.e. A1, A3, and Acm will move somewhat up or down. 
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When there is only one further addition, Fe-C-X (X is any element e.g. Cr, Mo, Mn, Ni, 

etc.) a ternary phase diagram is generated [42, 58, 70].  

Molybdenum, chromium and silicon have the bcc crystal structure, thus favour the bcc 

structure of ferrite; therefore these elements are known as ferrite stabilizers.  Chromium 

steel of eutectoid composition, 12% Cr and 0.4 % C, will require a higher austenitizing 

temperature ~ 880 ºC than carbon steel, 727 ºC, In contrast for a 3 % nickel steel, the 

austenitization will be at a lower temperature, ~ 700 ºC. Elements such as nickel and 

manganese have the FCC structure and are known as austenite formers. With these 

elements the austenitizing temperature will decrease to below 727 ºC, as illustrated on 

Figure 2.44 [75].  

 

 

 

 

 

 

 

 

 

Figure ‎2.44 Shows the Effect of Alloying Elements on Fe-C Phase Diagram [58]. 
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2.5.3.5 Effect of Some Element on Alloy Steel 

Effect of Carbon  

Carbon, a cheap alloying element present in all structural steels, classifies the type of 

steel: i.e. low, medium, or high carbon steel, even a small amount of carbon plays an 

important role in determining the mechanical properties of steel. However as the carbon 

content increases to between 0.8 and 0.9 % C, although hardness and tensile strength 

increase, ductility and weldability decrease. Effect of the carbon content on prealloyed 

Fe-1.5 Mo powder was studied by Youseffi et al [54]. They found the increasing carbon 

content had a marked effect on the both physical and mechanical properties: UTS, TRS, 

and hardness increased with increasing carbon content up to 0.8wt. %. During sintering, 

carbon is very rapidly dissolved in iron; the increasing carbon content reduced the 

sintering temperature, by lowering the solidus temperature. Insufficient carbon content 

results in incomplete sintering, whereas excessive carbon content gives oversintering. 

Carbon additions up to 0.2 - 0.3 % are useful in terms of eliminating porosity and 

extending the range of sintering temperatures [41].  

Figure 2.45a depicts the Fe-0.47%C binary alloy and Figure 2.45b the same material 

with slightly increasing the carbon to 0.68 wt%. Penetration of the carbon atoms in the 

austenite phase lattice increases its dimensions during sintering, being greater, the 

bigger the carbon content [41, 76]. Figure 2.46 shows the effect of carbon content on 

the mechanical properties (upper graph) and also indicates the transformation phase 

forming i.e. from ferrite to pearlite and then where the cementite start forming (lower 

graph). 

 



Chapter 2                                                                                              Literature Review 

79 

 

 

 

 

 

 

 

 

 

Figure ‎2.45 Effect of Carbon Content on the Phase Diagram [58]. 

 

 

 

 

 

 

 

 

Figure ‎2.46 Effect of Carbon Content on the Mechanical Properties [66]. 
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Effect of Manganese (Mn) 

An important alloying element is manganese; one of the cheapest alloying elements as 

well as more effective for many iron-based alloys. Manganese is added to steels as a 

deoxidizer. A number of investigations [77-80] reported the effect of manganese on the 

mechanical properties, hardenability and magnetic properties of steel. Manganese 

contributes to promoting hardness and strength of all steels, but is not as potent as 

carbon. Increasing the manganese content leads to decrease in the ductility and 

weldability of steel. Of particular economic interest for PM steels is replacement of 

nickel by manganese because of its low cost. Manganese is usually presents in small 

quantities in steels, from 0.5 to 2 % wt, but sometimes in the range of 10 % to 15 % for 

special steels, e.g. Hadfield steel with 13 % Mn, with its unique combination of 

properties of high toughness, strength, and wears resistance [76].  

Effect of Molybdenum (Mo) 

Additions of alloying elements such as molybdenum, nickel, chromium to sintered steel 

have been practiced for many years to improve the mechanical properties and 

hardenability. Molybdenum increases hardness and toughness significantly [81], and it 

has a very good resistance to oxidation, hence sintering atmosphere and conditions are 

non critical. Molybdenum is a refractory metal, which is characterised by a high melting 

point and inter atomic bond strength [82], therefore, it was selected in the base powder, 

to improve hardenability by enhancing the martensite formation as well as enhancing 

both toughness and grain refinement during melting. Molybdenum is usually added in 

relatively small quantities ranging from 0.1 to 0.4 % wt [81].  Alloying combination of 

molybdenum and nickel has been investigated by Bepari et al [83] regarding the effect 
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on the structure and properties of carburized and hardened low carbon steel. They found 

that molybdenum produces fine Martensite, but, when combined with nickel, refines the 

size of Martensite more than the molybdenum without nickel. Both enhance austenite 

retention in the cases of carburized and hardened steel, but nickel is more effective.  Mn 

and Ni increase the core hardness of low carbon steel, molybdenum is more effective 

and molybdenum and nickel together even more so. They reduce the toughness, nickel 

more, with the combined effect being greater than of either alone.  

Effect of Silicon (Si)   

Silicon is one of the most familiar deoxidizers used in steel manufacturing, since it has a 

high affinity for oxygen. In the case of liquid phase sintering, using silicon, selection of 

the sintering temperature and atmosphere are very important parameters [73]. Silicon is 

present in varying quantities up to 1wt.% in the finished steel and has useful effect on 

certain mechanical properties such as tensile strength. It is present in quantities in the 

range of 0.4 to 1.2wt.% to enhance hardenability [84, 85]. In alloys with certain 

electrical characteristics, silicon is present in higher quantities. The effect of silicon 

addition on prealloyed Fe-1.5Mo under various process conditions have been studied by 

Youseffi, et al [54, 74]. They found that the sintering process is enhanced by addition of 

Si, consequently increasing the tensile strength from 174 to 445 MPa. Silicon particles 

are harder to compress compared with the pre-alloyed Fe-Mo particles, and this has a 

negative effect on the compact density [74, 85]. Silicon is a well known element for 

liquid phase sintering and strengthening of ferrite [74, 85]. 
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Effect of Chromium (Cr) 

Chromium, in combination with carbon, has the ability to increase strength, depth of 

hardness penetration and achieve higher hardenability [86, 87]. Chromium is widely 

used in bearing alloys containing 0.5 to 1.5 wt%. Usually chromium combines with 

toughening alloying elements such as nickel and molybdenum to produce unique 

mechanical properties. Cr-Mo low carbon steels are extensively used in the 

petrochemical manufacturing [42]. In high speed steels chromium is found in 

approximately 4 wt%, whereas in stainless steels at 12 to 25 wt% [11, 21]. Chen et al 

[88], investigating the influence of Cr on microstructure and sintering properties of 

FeNiMoCu, found homogenous diffusion of chromium, which improved the 

microstructure and hardness. 

2.6 Ultrahigh Carbon Steels 

The carbon content of ultrahigh-carbon steels (UHCSs) is in the range of 1.0-2.1% [13-

16, 78, 89, 90]. Traditionally, steels of such high-carbon contents have been neglected 

by industry due to their brittleness, resulting from the presence of a severe carbide 

network [12], consequently ductility of steel dramatically decreases. Figure 2.47 shows 

the relationship between the carbon contents versus elongation (ductility) of steel. In 

contrast, reducing the carbon content leads to reducing the tensile strength of steel as 

presented in Figure 2.46. Traditional heat treatments used for normal steels create 

coarse microstructures and do not produce optimal properties for the UHCSs [15, 90]. 

However, following the proper and controlled heat treatment, a unique microstructure 

and good mechanical properties can be obtained. Processing, not only to obtain fine 

spheroidised carbides, but concurrently fine ferrite, can result in superplastic properties 
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[14-16, 67, 89, 91-93]. Studied were: heat treatment, microstructure and mechanical 

properties, including of extruded ultrahigh carbon steels [16, 91], the influence of 

processing and microstructure on the mechanical behaviour of UHCS (1-1.8%wt.C), 

pearlite in ultrahigh carbon steels (1.5 and 1.8C). Decreasing the pearlite interlamellar 

spacing increases the yield strength and ultimate strength and decreases the tensile 

ductility [16].  Yield strengths reaching 1.5 GPa [12, 90] and superplastic properties of 

UHCs have been reported [12, 16, 67]. 

 

 

Figure ‎2.47 Relationship between the carbon content versus elongation of carbon 

steel. Diagram refers to steel pearlatical microstructure [67]. 
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2.7 Warm-Forging 

Warm Forging of PM materials is a technique which involves hot re-pressing of a metal 

blank in a closed die, where the shape geometry of the blank transforms significantly, 

thus improving density and dimensional accuracy. Warm forging process can achieve 

full density and produce complex geometries to a very high level of precision [75]. In 

ultra high carbon steel microstructures can be created consisting of very fine 

spheroidised carbide particles within a fine grain ferrite matrix [94]. Such 

microstructure has been shown subsequently to exhibit superplasticity [95], which is the 

capability of the material to deform to very large tensile elongations in a specific 

temperature and strain rate regime. Other studies of the deformation behaviour and 

superplasticity of UHCSs have been reported in Sherby, et al [92] whom published an 

overview of the subject in 1994. 

2.8 Summary  

Powder characteristic and processing plays a major role in improving the mechanical 

properties of PM products. It is well established that better sintering results in improved 

physical and mechanical properties. Modification of the sintering cycle leads to 

achievement of rapid sintering, higher sintered densities and mechanical properties and 

also to lower sintering temperature, which is more acceptable in industry. High density 

and uniform microstructure both are linked with high mechanical properties of PM 

sintered steel. High density can be obtained in different ways; such as double press 

double sintering operations, hot powder forging, infiltration, or by liquid phase 

sintering. In the liquid phase sintering process, considerable quantities of additives are 
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required such as C, Si, Cu, B, etc. For the ultrahigh-carbon steels, C content is in the 

range of 1.0-2.1wt%, and UHCSs have tended to be neglected by industry due to their 

brittleness, resulting from the presence of a severe grain boundary carbide network. 

Traditional heat treatments used for normal steels create coarse microstructures and thus 

a spheroidisation treatment can produce fine spheroidised carbides in fine ferrite. 

Microcracking of the martensitic structure can occur during traditional heat treatments, 

and this microcracking is the result of impingement of growing martensite crystals 

against each other during transformation of austenite to martensite. 

This work attempts to offer solutions to some of the problems of processing high 

carbon, high-density steels. Thermocalc modelling was used to predict the amount of 

densifying liquid phase for a range of alloys versus sintering temperature, in the range 

1285 to 1300⁰C and 1.2 to 1.4 wt. %C. The water gas reaction forms CO gas in the 

early part of sintering and can lead to large porosity, which lowers mechanical 

properties. With the use of careful powder drying, low dew point atmospheres and 

optimisation of heating profiles, densities in excess of 7.5 g/cm
3
 can readily be 

achieved. The brittle microstructure, containing carbide networks, is transformed by 

intelligent heat treatment to a tougher one of ferrite plus sub-micron spheroidised 

carbides. This gives the potential for production of components, which are both tough 

and suitable for sizing to improve dimensional tolerance. 
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Chapter Three 

3 Experimental Procedure 

3.1 Materials and Methods 

3.1.1 Base-Powder 

The base-powders used in this work were prealloyed Fe-0.85Mo (Hogänas Astaloy 

85Mo-) and Fe-1.5Cr-0.2Mo (Hogänas Astaloy CrL). Table 3.1 below gives the 

specifications of these powders used in this work. 

Table ‎3.1: Specifications of the base-powders (Astaloy 85Mo and Astaloy CrL) 

used in this work. 

 

 

 

 

 

 

Different particle shapes of the above powders are shown in Figure 3.1. 

 

 

Name of  Powder Astaloy 85Mo Astaloy CrL 

Source Höganäs Höganäs 

Apparent Density (g/cc) 2.9 - 3.10 ~2.85 

Green Density (g/cc), 600 

MPa 
7.05 - 7.18 7.15 

Chemical Analysis (%by wt) 
0.85% Mo, 0.03% O-

total, and Fe balance 
Fe-1.5%Cr+0.2Mo 

Flow (Hall) s/50 g 24-30 ~26 

Particle shape Irregular Irregular 

Sieve Analysis (microns µm) 

150-250→12.3% 

106-150→22.0% 

75-106→25.1% 

45-75→24.5% 

-45→16.1% 

>145 
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Figure ‎3.1: SEM micrographs of the starting powders used in the present work: (a) 

Astaloy 85Mo; (b) Astaloy CrL; (c), Silicon Carbide; (d) Graphite and 

(e) Master Alloy of G284 (Fe-35Mn-4.4C) powders. 

3.1.2 Additive Powders 

Three different types of powder additions were employed in this work. 1) Pure UF4 

graphite of 99.8% purity, 2) Silicon carbide: Silicon has a high affinity for oxygen, 

therefore to minimise oxidation, it was introduced in the form of <9μm silicon carbide 

powder having a lower oxygen activity [96]. The selection of sintering atmosphere and 

temperature is very important for a silicon-containing alloy. To prevent oxidation, a low 

dewpoint atmosphere is essential and sintering should be carried out at temperature 

greater than 1200⁰C to relax redox conditions [73]. This alternative technique improves 
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the strength and ductility, prevents formation of oxide networks compared with use of 

pure, elemental silicon and also helps to limit the thickness of cementite networks [20, 

42]. 3) The third addition used was manganese in the form of a gas atomised master 

alloy, G284, of composition Fe-35%Mn+4.4%C and <20μm particle size. Table 3.2 

gives the specification of these powders. 

Table ‎3.2: Specifications of the Additive Powders used in this work. 

Powder Graphite Silicon Carbide Ferro-Manganese 

Manufacturer 
Grafitwerk 

Kropfmuhl 

Carborundum 

Company Ltd. 

Atomising Systems Ltd. 

Sheffield, UK. 

Particle size (µm) 3 µm (±1.5 µm) ~9 µm Classified to <20µm 

Apparent density (g/cc) 2.25 NA NA 

Chemical Composition (wt%) 99.8% pure 70%Si+30%C Fe-35Mn-4.4C 

Particle shape Flake, Acicular Angular Spherical 

 

3.1.3 Lubricants  

Different types of lubricant were used in this work. Liquid Paraffin with density of 0.88 

g/cc at concentration of 0.5cc/100g of powder was admixed into the base-powder using 

20 min mixing time and a 3D Turbula mixer. Liquid paraffin is easily available and 

very common lubricant used at UOB. However, liquid paraffin is quite viscous and 

often more has to be added, to ensure coverage of the iron powder, than is optimum. 

Too much coverage can lead to distribution of the graphite into high concentration pools 

during pressing, which can lead to localized melting, porosity and severe distortion of 

sintered compacts.  Polypropylene Glycol diluted with 0-75% of methanol was also 

used as a lubricant in order to decrease segregation, i.e. to guarantee that all the additive 

powders were „glued‟ to the iron base powder. This mixture was then heated to 80ºC in 

a vacuum oven to boil off the methanol, leaving the powder with optimum coverage 

thus eliminating the segregation of graphite and ensuring that best densification would 
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be attained. Dry PTFE spray was used in this work to lubricate the die wall cavity and 

the faces of upper and lower punches in order to reduce the friction between powder 

particles and die walls and punch surfaces. It also lowers the ejection force, which eases 

removal of the green compact after pressing, prevents cracking, reduces die wear and 

prolongs die life. Acrawax was also used in different amounts as a dry powder lubricant 

but gave disappointing results (very poor densification), as reported by others [97]. 

3.2 Mixing Procedure  

Homogenisation of the mixture was achieved by using the laboratory turbula powder 

mixer shown in Figure 3.2. Mixing time for each step was about 20 minutes and the 

mixing procedure, illustrated in Figure 3.3, was as follows:  

 Mix the base-powder with silicon carbide for 20 min. 

 Add Mn master alloy powder to the mixture and mix for 20 min. 

 Add liquid paraffin to the mixture and mix for 20 min.  

 Graphite is then added last to the mixture and mixed for 20 min.  

Different powder mixtures were prepared for compaction, sintering and microstructural 

studies. These mixture compositions are given in Table 3.3. 

Figure 3.3 shows the processing route of the mixing procedure of the base powder with 

the additives and different lubricants used in this work. 
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Figure ‎3.2: Laboratory 3-D Turbula Powder Mixer used in this work. 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.3 The mixing and processing procedure of the base powder with the 

additive elements and different lubricants used in this work. 
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Table ‎3.3 Chemical compositions (% by wt.) of powder mixtures used in this work. 

 

 

 

 

 

 

 

 

Where, LP ≡ liquid paraffin, and PPGM≡ Polypropylene Glycol diluted with methanol, in amount about 

0.5 cc
 
per 100g of powder mix. 

3.3 Theoretical Alloy Design using ThermoCalc. 

ThermoCalc TCW3 software was used to design and predict the proper alloy 

composition(s) and temperature(s) to create liquid phase during sintering, and thus 

improve sintered density as well as microstructure. Sintering temperature and carbon 

content are both critical parameters that affect the phase diagram applicable to furnace 

sintering. ThermoCalc software can be used in this manner to predict the solidus and 

liquidus windows, which can set the proper temperature for the chosen alloy and to have 

the correct amount of liquid phase during sintering, and hence obtain full sintered 

densities (i.e. Liquid phase > 20%) [6,22]. As an example, Figure 3.4 shows the typical 

equilibrium diagram calculated using ThermoCalc to predict the amount of liquid versus 

composition and temperature. The elliptical red area shows the region where the 

temperatures match the highest temperature used in normal industrial processing versus 

No. Composition 

1 Fe-0.85Mo+1.2% C+0.4 -0.6% Si 

2 Fe-0.85Mo+1.2% C+0.4 -0.6% Si+ LP or PPGM 

3 Fe-0.85Mo+1.3% C+0.4 -0.6% Si 

4 Fe-0.85Mo+1.3% C+0.4-0.6 % Si+ LP or PPGM 

5 Fe-0.85Mo+1.4% C+0.4 -0.6% Si 

6 Fe-0.85Mo+1.4% C+0.4 -0.6% Si+ LP or PPGM 

7 Fe-0.85Mo+1.27% C+0.6 % Si +1.5% Mn+LP or PPGM 

8 Fe-0.85Mo+1.3% C+0.65 % Si+1% Mn+LP or PPGM 

9 Fe-0.85Mo+1.4% C+0.6 % Si+1.5%Mn+LP or PPGM 

10 Fe-CrL+1.5%C+(0.5-0.65wt%)Si+PPGM 

11 Fe-CrL+1.4%C+(0.65wt%)Si+PPGM 
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carbon concentration with a fixed Si level. Many of these diagrams and calculations 

were made to produce data similar to those given in Table 3.4. 

Table ‎3.4: Percentage liquid phase calculated using Thermo Calc TCW3 for 

various alloy compositions, with prealloyed Fe-0.85Mo, or Fe-CrL, as the base 

powders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.4: Predicted Phase Diagram via ThermoCalc obtained in this work for 

Fe-0.85Mo+1.2-1.4C+0.4Si. 

Base-Powder 
Carbon 

wt. % 

Silicon 

wt. % 

Manganese 

wt. % 

Temperature 

(ºC) 

Liquid 

Phase % 

Fe-0.85Mo 

1.2 0.4 0.0 1285 3.16 

1.2 0.6 0.0 1285 5.78 

1.3 0.6 0.0 1285 10.80 

1.3 0.6 0.0 1295 15.27 

1.4 0.6 0.0 1285 18.10 

1.4 0.6 0.0 1295 20.80 

1.27 0.6 1.5 1300 18.80 

1.3 0.65 1.00 1300 20.00 

1.4 0.6 00 1300 22.00 

1.4 0.6 1.00 1300 25.20 

Fe-1.5Cr+0.2Mo 

1.4 0.65 00 1290 13.26 

1.4 0.65 00 1295 15.30 

1.4 0.65 00 1300 17.35 

1.5 0.65 00 1290 19.50 

1.5 0.65 00 1295 21.60 

1.5 0.5 00 1300 21.51 

1.5 0.55 00 1300 22.30 

1.5 0.6 00 1300 23.00 

1.5 0.65 00 1300 23.76 
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The percentage liquid phases that can be obtained for each composition at various 

temperatures are given in Table 3.4 and therefore enabled the selection of the optimum 

sintering temperature for each alloy composition.  

3.4 Compaction  

A Churchill hydraulic press with 20 Ton capacity was used for compaction processes. 

Mixed powders were weighed precisely (7.00 g) for each compact and pressed in a die 

of dimension ~15.3mm square to produce ~4mm thick specimen. Die wall lubricant 

(Dry PTFE aerosol spray) was applied via a thin layer over the die wall cavity and the 

top of upper and lower punches in order to reduce the friction effects. Compaction 

pressure was applied by a manual hydraulic press in the range 500 to 700 MPa, 

followed by measurement of green density. Rectangular 3-point bend test specimens of 

dimension 33.5 mm × 4.5 mm × 5.5 mm, pressed at 600 MPa were also pressed. Dog-

bone tensile test specimens of dimensions specified in ISO 2740, using spring floating 

die were produced by Denison pressing machine with capacity 100 Tons at 600MPa.  

3.5 Sintering Furnace 

Two different types of furnace were used to accomplish this work, gas and vacuum 

furnace. A standard Carbolite laboratory mullite-tube furnace, as seen in Figure 3.5 was 

modified to allow precise mixing of gases, using mass flow controllers, to maintain 

specific sintering atmospheres. The mixed gases are then passed through a drying 

column to maintain dewpoint <-60⁰C in order to minimise oxidation and reduce 

decarburisation. Temperature can exceed 1300⁰C in this furnace. Additionally, a 

ceramic-tube vacuum furnace (Figure 3.6), evacuated by an Edwards oil diffusion in 
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combination with a 2-stage rotary pump was used in this work. Heating, cooling and 

pressure curves can be obtained throughout the sintering cycle via a chart recorder 

attached to a Penning vacuum gauge and Pt-Rh thermocouple during the sintering 

process. 

 

Figure ‎3.5: Laboratory gas sintering furnace. 
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Figure.‎3.6: Laboratory vacuum sintering furnace. 

3.6 Sintering Operation 

Green specimens (compacts pressed at 500 to 700MPa) of size ~15.3×15.3×4 mm
3 

were 

sintered under both vacuum (~10
-6

 mbar) and dried Nitrogen/Hydrogen gas (< -60ºC 

dewpoint to meet the required specification without any oxidation). Sintering 

temperatures employed in this work were 1285, 1295 and 1300ºC, with sintering time of 

30 or 60 minutes. Initially, heating rates (Figure 3.7) were 10ºC min
-1

 to 600ºC with a 

hold of 30 minutes for removal of liquid paraffin and adsorbed water and hydroxides, 

then 10ºC min
-1

 to 900ºC with a hold of 2 hours, to allow distribution of the carbon and 

silicon, followed by heating to the sintering temperature at 5ºC/min with sintering hold 

time of 30-60 minutes at temperatures varying from 1285 to 1300°C. After sintering, the 

specimens were allowed to cool slowly to room temperature.  
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Microstructural observations of initially sintered specimens showed excessive porosity.  

Figure 3.8 shows an alternative heating cycle which was performed in this work, 

replacing the previous one. Gas escape was hindered for the former process by very low 

carbon diffusion rates below 700ºC, so initial heating stage was changed to 900ºC, when 

the graphite would diffuse into the austenitic Fe-Mo, thus leading to creation of linked 

porosity to facilitate gas escape. This heating profile also reduced the time spent in the 

alpha phase where Fe-Fe self-diffusion is very high, then followed heating to 1100ºC 

with a hold of 2 hours to homogenise the added elements with the iron base powder. 

Heating profile sintering cycles are listed in Table 3.5. Furthermore, all samples sintered 

in the gas atmosphere furnace were sintered in a container steel box for all sintering 

temperatures in order to reduce decarburisation and improve deoxidation of the difficult 

elements, Mn and Si. This new procedure was originally introduced by Mitchell et al 

[50].  

 

 

 

 

 

 

 

 

 

Figure ‎3.7: First heating cycle profile. 
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Figure ‎3.8: Second heating cycle Profile.  

 

Table ‎3.5: Shows the types of heating sintering profile used in this work. 

Sintering 

Cycles 

 

Rm1 

Lubricant 

Burn-off  R m2 

Carbon 

Diffusion Rm3 
Homogenization 

R m4 
Sintering 

T t T t T t T t 

Cycle 1 -- -- -- 10 600 30 10 900 120 5 1285-1300 30-60 

Cycle 2 -- -- -- 10 730 30 10 900 120 5 1285-1300 30-60 

Cycle 3 -- -- -- 10 730 30 10 900 120 5 1285-1300 30-60 

Cycle 4 5 450 15 20 900 15 10 1100 120 5 1285-1300 30-60 

Gas-Atmospher Pure  N2 (90N2/H2) 

Rm-Ramp (°C/min) 

T-Temperature (ºC) 

t-Time (min) 

 

10°C/min 

20 ºC/min 

 

5 ºC/min 

 

Sintering 

Lubricant 

burn –off  

 

Homogenisation  

5 ºC/min 

Time (min) 

Temperature (ºC) 

Furnace cooling Carbon diffusion  
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3.7 Calculation of Reduction of Metal Oxide 

3.7.1 Gaseous Reduction  

Alloying elements such as those used in this presented work e.g. Mn, Cr and Si are 

elements which have high oxygen affinity and tend to produce thermodynamically 

stable oxides. Oxides, present on powder particles as a very thin layer, obstruct 

diffusion during sintering and may inhibit the metallic bonding (neck growth) between 

particles and reduce liquid phase penetration. Consequently, the physical and 

mechanical properties of the final sintered products can be affected. Therefore, a 

protective atmosphere with low oxygen partial pressure is required to reduce these 

oxides [98]. Accordingly, consideration of the appropriate thermochemical reactions 

(combined action of admixed carbon and oxygen potential of sintering atmosphere) is 

essential to determine the correct choice of atmosphere for sintering of these ferrous PM 

alloys [50, 51].  

3.7.2 Reactions occurring during sintering  

During the sintering process, there were some processes that strongly affect the final 

properties of the final component, such as lubricant burn off, changing of particles‟ 

surface chemistry (oxides formation) and metallic bonding. All these processes may be 

enhanced or completed by reactions that take place during the sintering process; these 

reactions can be listed as follows: 

 Reduction of oxides: involving H2 and CO sintering atmosphere. 

 Oxidation of metals: involving O2, H2O and CO2 during sintering. 

 Decarburising of steels: involving O2, H2O and CO2. 
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 Carburising of steel: involving CO, CH4, C3H8, C4H10. 

Ellingham-Richardson diagrams illustrate graphically the relative stability of different 

oxides (e.g. FeO2, Cr2O3, MnO and SiO2) in contact with metals and the sintering 

atmosphere. From these graphs, the equilibrium dissociation temperature for metal and 

metal oxide can be easily determined, as shown in Figures 3.9-3.10, reducing by 

hydrogen atmosphere and solid carbon, respectively. Metals found towards the top of 

the Ellingham diagram have oxides which are unstable and easily reduced, whereas, 

moving down the diagram the oxides are more stable and harder to reduce. Also, it 

should be realised that metals can directly reduce the oxides of those metal oxides 

whose lines lie above it. Therefore, in this present work, SiO2 is the hardest oxide to 

reduce but Si can act as a reducing agent for the other metal oxides lying above it in the 

Ellingham diagram. The reduction of metallic oxide will take place just when the partial 

pressure of oxygen in atmosphere is less than the partial pressure of oxygen of the 

oxide, i.e. oxygen dissociation: 

p (O2)
 atmosphere

 < p (O2)
 oxide

      (1) 

 

Iron Oxide can be easily reduced by hydrogen atmosphere at temperature above ~500⁰C 

according to reaction (6) [99], when the pH2O/pH2 ~ 10
-1

 and dewpoint +45⁰C, as seen 

in Figure 3.9, whereas, for Mn oxide it is very difficult to reduce by hydrogen 

atmosphere, as it requires temperature >1100⁰C, where the pH2O/pH2 ~10
-5

 and 

dewpoint ~ -63⁰C which is very hard to achieve. 
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Figure ‎3.9: Ellingham diagrams of metal-metal oxides showing their equilibrium 

temperatures of 500 and 1140⁰C for reduction by H2 atmosphere: refer 

to FeO and MnO respectively. 

 

 

 

 

 

 

 

Figure ‎3.10: Ellingham diagrams of metal-metal oxides showing their equilibrium 

temperatures of 700, 1100, 1140 and 1300⁰C in CO atmosphere of 

differing partial pressures; refer to FeO, Cr2O3, MnO and SiO2 

respectively. 
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3.7.3 Reduction of oxides by solid carbon 

There are some assumptions that should be taken into account such as: 

Total pressure is ~1 atmosphere 

Nitrogen is considered inert at the sintering temperature 

If metal oxides such as FeO2, MnO, Cr2O3, and SiO2 are to be reduced by solid carbon, 

then the maximum pressure of active gases, that may be tolerated in the system can be 

calculated by  consideration of free enthalpy changes, ΔG⁰ , at absolute temperature 

700⁰C (973.15K), 1250⁰C (1523.15K), 1400⁰C (1673.15K) and 1300C (1573.15K) for 

those metal oxides respectively, as shown in Figure 3.10,  

Since: 

ΔGT⁰= ΔH- TΔS         (2) 

and 

ΔGT⁰=-RTlnKP,         (3) 

Where, ΔH, ΔS, R and KP are the enthalpy, entropy, gas constant and equilibrium 

constant, respectively. 

For the reduction of those oxides by solid carbon (graphite) at chosen equilibrium 

temperature, the following reactions have to be considered: 

FeO = Fe+ 0.5O2 (g)         (4)              

FeO+C = Fe+CO(g)         (5) 

FeO+H2(g) = Fe+H2O (g)        (6) 

MnO = Mn+0.5O2(g)         (7) 

MnO+C = Mn+CO(g)         (8) 

MnO+H2(g) = Mn+H2O (g)        (9) 

1/3Cr2O3 = 2/3Cr +0.5O2        (10) 

1/3Cr2O3+C = 2/3Cr+CO (g)        (11) 

1/3Cr2O3 + H2(g) = 2/3Cr+H2O(g)       (12) 

SiC + 4MnO = MnSiO3 + 3Mn+CO (g)      (13) 
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SiO2 + C = Si+CO2 (g)         (14) 

and 

C + O2(g) = CO2 (g)         (15) 

2C+O2 (g)  = 2CO (g)         (16) 

2CO (g + O2 (g =2CO2 (g)        (17) 

C + CO2 (g) =2CO (g)  from ~700C⁰  Boudouard reaction   (18) 

C + H2O (g) =CO (g) + H2 (g)  at ~500⁰C  water gas shift reaction  (19) 

         

 

Iron Oxide is very ease to reduce, and by considering reduction temperature of ~740⁰C. 

The HSC Chemistry 5.11, computer software, was used to calculate the partial pressure 

of O2, CO, CO2, CO/CO2, H2O, H2 and H2/H2O, as follows: 

If the reaction is considered to be as in equation 4, combined with equation 3, where 

ΔGT⁰=-R.TlnKP = 47376 calories, thus: 

Kp= p(O2)
1/2

   pO2= (KP)
2
= 3.63E

-21
atm 

Then the partial pressure of CO can be calculated from equation 5, since ΔGT⁰ = -772.0 

calories, then: 

KP(eq.5) = pCO         pCO= (KP)= 1.47atm 

CO is in equilibrium with C and CO2, the partial pressure of CO2 can be obtained from 

equation 18, (Boudouard reaction), ΔGT⁰ = -1680.0 calories, then: 

          
      

      
               

      

  
=1.275atm, 

These results show that Fe-C-O system, at 740⁰C to be in equilibrium with gases 

atmosphere, then the composition of atmosphere must be:  

pCO =1.47atm 

pCO2 =1.275atm, thus p(CO2) /p(CO)=0.867 

pO2 =3.63E
-21

atm, or even less.   
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The reduction would proceed providing the total pressure of the reactive gases is less 

than 1.47+1.275=2.745atm, 

Water-gas reaction needs to be taken in consideration as well: 

From equations 6 and 19, since where ΔGT⁰=-2257calories: p(H2)=1atm, 

 since:      
           

      
              

           

    
   = 0.478atm,  

and,                 
      

     
  0.478, (Dewpoint~+62⁰C) 

since: gas atmosphere is 90N2/10H2, then,  
      

     
  4.97  (Dewpoint~+90⁰C) 

Both, water-gas and Boudouard reactions, are improving the dewpoint, thus metal oxide 

dissociation would occur at the chosen temperature.  

Reduction of Cr2O3, MnO and SiO2, data are calculated in a similar manner to FeO 

method performed previously. Table 3.6 presents atmosphere composition partial 

pressures of metal-metal oxide at different chosen temperature, in 90N2/10H2 gas 

atmosphere.  

 

Table ‎3.6: Required composition of sintering atmosphere to reduce the metal oxide  

of Cr2O3, MnO and SiO2, at 1100, 1140 and 1300C, respectively, in 90N2/10H2 

sintering atmosphere. 

 

 

M-Oxide T(⁰C) pO2 pCO pCO2 pCO2/pCO pH2O pH2O/pH2 
Dewpoint 

⁰C 

Cr2O3 1100 1.84E
-20 

0.0979 2.17E
-5 

2.22E
-4 

4.68E
-4

 4.68E
-3 

-32 

MnO 1140 1.85E
-21 

0.0234 8.213E
-7 

3.51E
-5 

8.0E
-5 

8.00E
-4 

-65 

SiO2 1300 1.021E
-21 

0.00639 2.93E
-8 

4.59 E
-6 

6.79E
-6 

6.79E
-5 

-77 
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From the Ellingham diagram Figure 3.10, it can be seen that the SiO2 line lies at the 

bottom showing that SiO2 is very difficult to reduce. Another thing to note is that Mn 

vapour will start to evolve at 740ºC [50], and react with O2 and any water vapour to 

form MnO. This will then be followed by reaction of any undiffused SiC to reduce 

MnO formed during the heating part of the sintering cycle beginning at ~1175ºC, i.e. the 

point at which ∆G becomes negative for the reaction SiC+3MnO=SiO2+3Mn+CO(g). 

This explains why SiO2 or perhaps more complex MnSiO3 [according to 

SiC+4MnO=MnSiO3+3Mn+CO(g)] particles have been seen in some sintered 

specimens. These oxides are stable as they cannot be reduced during sintering under 

normal atmosphere conditions even at high sintering temperature ~1300⁰C. However, 

there is no doubt that some of Si has gone into solution in the Fe matrix as seen during 

sinter quench experiments where SiC is beginning to dissociate at ~900-1000ºC.  

3.8 Density and Volume Change Measurements  

Green densities were calculated physically from weight and dimensional measurements 

of the specimen. The dimensions, i.e. height, width and length were measured using a 

micrometer with ±0.005mm accuracy, whereas, a Sartorius balance with ±0.0005g 

accuracy was used to measure the weight.   

Archimedes‟ method (water displacement technique) was used to determine the sintered 

densities of the specimens, which were coated with a cellulose lacquer to prevent water 

penetration to the pores, and then calculated as follows: 

                  
  

           – 
         

   
 
 ………………………….……   3.1 
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Where Wa is the weight of the specimen in air, Wla is the weight of the specimen coated 

with lacquer and weighed in air, Wlw is the weight of the lacquered specimen 

whilst suspended in water, and ρl is the density of the lacquer.  

Furthermore, theoretical density, ρth, for the elements of the alloy composition without 

any sintering aids, was calculated as follows: 

    
    

 
   
    

 
   

  …………………………………………….…………………...........3.2 

      wthi, are theoretical density and weight in gram of element, respectively, n is the 

number of the elements in the alloy. 

In addition, volume changes for the sintered specimens were also calculated from the 

volumetric changes between the green and sintered specimens as follows: 

               
                                 

            
   ....…………………………….3.3 

Positive value indicates shrinkage, and vice-versa indicates expansion. Volume change 

also leads to determine the densification (ψ), which refers to the degree of shrinkage or 

expansion using the following formula: 

  
     

      
  ………………………………………………………………………..…. 3.4 

where, ρs, ρg and ρth are the sintered, green, and theoretical densities, respectively. 

Positive results of ψ refer to shrinkage. 
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3.9 Heat Treatment 

A muffle furnace was used for heat treatment of all the sintered samples. Samples were 

austenitised at temperature 970 ºC for 2 hrs (under flowing argon atmosphere) to ensure 

all carbides were in solution and oxidation was minimised. This was followed by oil 

quenching or air cooling which resulted in some microcracking. To avoid this micro-

cracking an isothermal quench to MS-10% temperature, ~125-130ºC, into a preheated 

fan assisted oven proved necessary, for ~20-40 minutes, note that compositions 

containing Mn, the MS-10% temperature, ~180-185ºC. The crack-free hardened 

specimens were then given a standard spheroidising treatment by heating to 750 ºC and 

holding for 3 hrs under argon atmosphere, and then cooled slowly to room temperature 

to produce a ferrite plus sub-micron carbide structure, soft enough to allow a modest 

amount of resizing for dimensional control purposes.  

3.10 Characterisation of Microstructures 

3.10.1 Metallography 

Sintering and heat treated samples were mounted in electrically conducting Bakelite 

(polymeric thermo-plastic resin) using a Struers Cito Press-1 mounting machine, 

followed by grinding on silicon carbide papers under flowing water, moving gradually 

from coarse paper of 120 grit to the finest of 1200 grit, followed by polishing on 

rotating selvyt-cloths using 6µm and 1µm diamond paste. All the samples were etched 

in 2 or 5% of Nital (nitric acid in alcohol) or Nital/Picral (nitric plus picric acid in 

alcohol) solutions, in order to reveal grain boundaries and microstructure, followed by 
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microstructural examinations of the alloys carried out by both Optical and Scanning 

Electron Microscopy (SEM).  

 

Optical Microscopical analysis of the alloys was done on a MeF3 optical light 

microscope and images were taken on a Leica DC300 digital camera connected to Leica 

IM 1000 database and image analysis software. Recorded were general observations of 

the microstructure and common defects such as porosity content, pore shape, size and 

distribution, as well as the phases. Scanning electron microscopy (SEM) was 

performed, using a JEOL-JSM 6400 instrument equipped with a Kevex Sigma-3 Energy 

Dispersive X-ray (EDX) microanalyser, on selected areas of particular microstructural 

and microanalytical interest. This enabled the acquisition of more detailed information 

such as chemical micro-analysis of phases within the specimen and important 

dimensional measurements such as grain size, carbide particle diameter or length, etc.   

3.10.2 Quantitative Image Analysis 

Quantitative image analysis was performed using University of Texas Image Tool based 

Software to determine the metallurgical quality and repeatability by evaluation of grain 

size, pore shape and measurement of the area fraction of any phase. Evaluation of 

fracture surfaces was performed to determine the fracture type, i.e. brittle fracture or 

ductile fracture, and the starting of the fracture point, as well as the cause of fracture. 

This analysis can be performed by thresholding, based on grey level, of an image to 

produce binary (2-bit) images where the features of interest are black and the rest of the 

image becomes white. The images were taken from either optical microscope (OM) or 

scanning electron microscope (SEM).   
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3.10.3 Hardness and Microhardness  

One of the microstructural properties which can be categorised is microhardness. It is 

well known that the hardness in general is defined as material resistance to plastic 

deformation such as scratching, cutting, bending, abrasion and penetration. 

Macrohardness (apparent hardness) and microhardness both were measured in this work 

by Vickers hardness in different loads ranging from 5 to 30kg (macrohardness) and 1 to 

100g (microhardness). Vickers hardness value can be obtained when dividing the 

applied load (kgf) by surface area of the indentation (mm
2
). If the indentation is large 

enough to contain all microstructural features to give general apparent hardness, the 

hardness number should be the same when the applied load is higher than 10kgf. This 

means that the apparent hardness is independent of the applied load and constant of the 

bulk material. Diagonal of the indentation (d) is proportional to the applied load P as 

follows:  

             
 

  
 ...........................................................................................................3.5                                                                      

 where „a‟ is the materials constant value under test (Kick‟s law) [113].  

In contrast, microhardness is dependent on the applied load because the indentation is 

very tiny in comparison with individual microstructural phases and porosity; in this case 

Kick‟s law is replaced by Meyer‟s law, as follows [114]: 

               
 

  
..........................................................................................................3.6 

„n‟ represents Meyer‟s exponent, and is a constant for the material under test. 
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The surface area of the indentation can be obtained as follows: 

         
 

 
  

           
..........................................................................................................3.7 

Then Vickers Hardness Number (HV) is obtained as follows: 

     HV=1854.4P/d
2
, kgf/mm

2
 ........................................................................................3.8 

HV for microhardness can be calculated using equation 3.8 by knowing the load (P) in 

grams and diagonal of the indentation (d) in µm. 

Apparent hardness and microhardness were determined on samples which were 

mounted, polished and etched.  Used were, with three measurements taken for each 

specimen: for macrohardness - a standard Vickers machine with a 10kgf load, and for 

microhardness - a Reichert microhardness tester (attached to a Reichert optical 

microscope type MeF) using various loads up to 100 gf.  

3.11 Mechanical Testing 

Mechanical properties were evaluated by measuring the yield and (ultimate) tensile 

strengths, bend strength, and % elongation to failure. ISO 2740 tensile specimens were 

uniaxially tested on an Instron 1195 SM219 machine at a crosshead speed of 

0.5mm/min. Three-point bend test was performed to evaluate the transverse rupture 

strength (TRS) using specimens of rectangular beam cross section according to ASTM 

standard B528-76 [100, 101]. The jig for this test was designed and made at the 

University of Bradford and fitted to a J.J. Lloyd tensile testing machine, which has a 

maximum load 50kN. If  force is applied uniformly transversely at halfway between the 

supports of the test piece (Figure 3.11) and elastic (brittle) [42] behaviour is assumed,  

TRS  evaluates to: 
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    …………………………………………………………………… 3.5 

where P = [failure] load, L = span (25.4mm), b= specimen width,  and h= specimen 

depth. The crosshead speed was 0.5mm/min. For ductile specimens the same formula 

can be used to evaluate the yield stress in bending with the load now relating to the end 

of elastic behaviour. 

 

 

 

 

 

 

Figure ‎3.11: Schematic View of Three-Point Bending Test. 

 

3.12 Warm Forging 

Rings with outside and inside diameter 30 and 10 mm, respectively, and height 26.5 mm 

were pressed at 550 MPa to give green densities of ~ 6.8 g/cc. Sintering of Fe-1.4C-

0.6Si-0.85Mo at 1300⁰C was carried out for 1 hr in nearly full semi-closed steel 

containers
 
pushed into a mullite tube furnace in nitrogen plus 10% hydrogen, with a gas 

flow of ~500 cm
3 

min
-1 

and an inlet dew point no worse than -60°C. The rings were 

cooled slowly from the sintering temperature, austenitised at 950°C for 1 hour, then 

P 

25.4 mm 
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quenched into a warm fan assisted oven at ~130°C, followed by air cooling and 

refrigeration. They were then spheroidised at 750°C for 3 hours, slow cooled to room 

temperature, to give densities of ~7.2 g/cc and grain sizes of ~ 30 μm. 

Two types of forging experiments were subsequently carried out for spheroidised 

specimens of dried Höganäs Astaloy Mo85 which was used as the base iron-

molybdenum powder, 0.6% silicon was introduced as fine <9µm silicon carbide, and 

1.4% carbon as fine graphite (of 99.5% purity), sintered densities were in range the 7.1-

7.15g/cm
3
 . In the first set of experiments, a specimen was heated up to 700⁰C then hit 

with one forging strike while a second specimen was heated to 700⁰C then struck once 

followed by re-heating to 750⁰C and struck once again. These warm forging 

experiments were conducted in Poland at The University of Mining & Metallurgy, 

Krakow, (courtesy of Prof. Stefan Sczepanik).  

The second set of experiments was carried out on cylinders of 8 mm diameter and 12 

mm in height (cut from the original rings) using a Gleeble HDV-40 machine at TUBA, 

Freiburg. The specimens were heated in argon to 700⁰C and then forged at strain rates 

of 10
-3

, 10
-2

, 10
-1

 and 1 sec
-1

 to (recorded) ~ 1.15 natural (logarithmic) strains. The 

deformation possible at quite modest pressure (150MPa) and temperature (700ºC) is 

enormous without any cracking. The original 12mm height samples were squeezed to 

~3mm with the lowest strain rate 0.001 samples compressing the most. A laboratory test 

jig has been fabricated at UOB in order for diametral compression tests to be carried out 

to determine the yield strength of the forged material, as seen In Figure 3.12. 
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Figure ‎3.12: Jig for diametral compression tests. 
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Chapter Four 

4 Results and brief discussion 

4.1 Green Densities  

Green densities for different compositions of Fe-0.85Mo + (1.2, 1.3 and 1.4 wt %) C + 

(0.4 and 0.6 wt %) Si+ (1 or 1.5 wt %) Mn and pre-alloy composition of CrL plus (1.4-

1.5 wt%)C and (0.5-0.65wt%)Si, mixed either with or without lubricant (liquid paraffin, 

polypropylene glycol diluted with 0-75% methanol, dry PTFE spray, and Acrawax) 

depended on parameters such as alloy composition (Table 3.3) and  compaction 

pressure (from 500 to 700 MPa). Table 4.1 gives the green densities for different 

compositions based on powder Fe-0.85Mo (Hogänas Astaloy 85Mo) pressed at 600 

MPa. Green densities decreased with an increase in silicon and carbon contents, but 

increased with increase in compaction pressure, as seen in Figures 4.1 and 4.2, 

respectively, in agreement with [74, 102]. Manganese appears to have an opposite effect 

on green densities to that of Si and C. This is perhaps because the Mn particles are from 

master alloy which is spherical powder and does not perfectly fill the small pores 

between base powder particles, thus green density decreases. Figure 4.1 clearly reveals 

that dry lubricant produces higher green density than liquid lubricant, but powder 

lubricant Acrawax always gave low green densities.  

Table 4.2 shows the green densities for different compositions based on powder CrL, 

pressed at 600 MPa. It clearly reveals that the green densities decrease with increasing 

carbon and silicon contents. These results are comparable to Fe-0.85Mo compositions.  
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Table 4. 1 Green densities of different alloy compositions based on Hogänas 

Astaloy 85Mo, pressed at 600 MPa. 

 LP = liquid paraffin, PPG = polypropylene glycol, M = methanol. 

 

Table 4. 2 Green densities of different alloy compositions based on Hogänas 

Astaloy CrL, mixed with polypropylene glycol diluted with 50% methanol, and 

pressed at 600 MPa. 

 

 

 

 

 

No Composition 

 Green Density (g/cm
3
) ±0.05 

 Type of Lubricant 

Dry LP 
PPG 

0%M 

PPG 

25%M 

PPG 

50%M 

PPG 

75%M 
Acrawax 

1 Fe-0.85Mo+1.2 C+0.4 Si 6.99 6.96 -- -- -- -- -- 

2 Fe-0.85Mo+1.2C+0.6Si 6.95 6.93 -- -- -- -- -- 

3 Fe-0.85Mo+1.3C+0.4 Si 6.96 6.91 -- -- -- -- -- 

4 Fe-0.85Mo+1.3C+0.6Si 6.92 6.89 -- -- -- -- -- 

5 Fe-0.85Mo+1.35C+0.4Si 6.93 6.88    --  

6 Fe-0.85Mo+1.35C+0.6Si 6.89 6.86 6.91 6.93 6.94 6.92 6.87 

7 Fe-0.85Mo+1.4 C+0.4Si 6.88 6.83 6.89 6.91 6.93 6.90 6.84 

8 Fe-0.85Mo+1.4C+0.6Si 6.86 6.82 6.88 6.90 6.92 6.89 6.82 

9 
Fe-0.85Mo+1.27C+0.6Si 

+1.5Mn 
6.83 6.80 -- -- -- 

-- 
-- 

10 
Fe-0.85Mo+1.3C+0.65 Si 

+1 Mn 
6.78 6.76 -- -- 6.81 

-- 
-- 

11 
Fe-0.85Mo+1.35 C+0.6 

Si+1Mn 
6.74 6.71 -- -- -- 

-- 
-- 

No Composition 

Green 

Density 

(g/cm
3
) ±0.02 

1 Fe-1.5Cr+1.4 C+0.65 Si 6.89 

2 Fe-1.5Cr+1.5C+0.50 Si 6.86 

3 Fe-1.5Cr+1.5 C+0.55 Si 6.84 

4 Fe-1.5Cr+1.5 C+0.60 Si 6.82 

5 Fe-1.5Cr+1.5 C+0.65 Si 6.80 
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Figure ‎4.1:Effect of silicon content, carbon content and lubricant type on Fe-

0.85Mo+ (1.2-1.4 )C+0.6Si. 

 

 

 

Figure ‎4.2: Effect of compaction pressure on green density of Fe-0.85Mo+0.6Si+ 

(1.2-1.3-1.4)C. 
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4.2 Sintered Densities 

Densities for specimens based on powder Fe-0.85Mo and sintered at different 

temperatures and times using vacuum and gas atmosphere are listed in Table 4.3. For 

the initial heating cycle, specimens sintered under vacuum produced higher densities, 

with smaller pores and finer microstructures, than those sintered in gas atmosphere.  

Table 4.3 shows the sintered densities for different heating sintering cycles for alloy 

compositions based on powder Fe-0.85Mo (Hogänas Astaloy 85Mo). Sintering 

temperature played an important role, e.g. for Fe-0.85Mo+1.4C+0.6Si (0.5cc liquid 

paraffin) sintered in vacuo for 30 min at 1285 and 1295°C  the sintered densities 

were7.26 and 7.43g/cm
3
 respectively. Table 4.3 also shows the effect of sintering time 

improving the sintered density, e.g. for Fe-0.85Mo+0.65Si+1.3C+1.0Mn+(0.5cc liquid 

paraffin) pressed at 600 MPa, sintered in vacuo at 1300ºC it was ~ 7.32 g/cm
3
 for a 

sintering time of 30 min, and ~ 7.44 g/ cm
3
 for 60 min.  Carbon and silicon contents are 

positive parameters for increasing the sintered densities, as seen in Figures 4.3-4.5. In 

contrast, sintered densities decrease with adding manganese, e.g. sintered density of Fe-

0.85Mo+1.35C+0.6 Si (+0.5cc polypropylene glycol/methanol) alloy gas sintered at 

1300°C for 1 hour is ~ 7.64 g/cc, and 7.56 g/cc when adding just 1wt%Mn. Acrawax 

lubricant resulted in very poor densification, nonuniform microstructure and 

interconnected pores, in agreement with [97]. 

 

 

 

 



Chapter 4                                                                             Results and Brief Discussion 

118 

 

Table 4.3:  Sintered densities of alloys based on Fe-0.85Mo pressed at 600MPa. 

No. 

 
Composition 

ST 

⁰C 

St 

min 

Sintered Density (g/ cm
3
) 

 

1
st
 heating cycle 2

nd
  heating cycle 

Dry Wall 

Lub. 

0.5 cc 

Liquid 

Paraffin 

Dry 

Lub 
LP 

PPGM 

50% 

Vac Gas Vac Gas 

1 Fe-0.85Mo+1.2C+0.4Si 

1285 30 7.07
 

6.97
 

7.04
 

6.95
 

-- -- -- 

1295 30 7.08
 

7.07
 

7.05
 

7.03
 

-- -- -- 

1300 30 -- -- -- -- -- 7.2 7.25 

2 Fe-0.85Mo+1.2C+0.6Si 

1285 30 6.99
 

6.96
 

7.04
 

7.04
 

-- --- -- 

1295 30 7.03
 

7.05
 

7.02
 

7.03
 

-- -- -- 

1300 30 -- -- -- -- -- 7.25 7.31 

3 Fe-0.85Mo+1.3C+0.4Si 

1285 30 7.17
 

7.13
 

7.2
 

7.04
 

-- -- -- 

1295 30 7.12
 

7.11
 

7.2
 

7.11
 

-- -- -- 

1300 30 -- -- -- -- -- 7.35 7.4 

4 Fe-0.85Mo+1.3C+0.6 Si 

1285 30 7.03
 

7.08
 

7.14
 

7.07
 

-- -- -- 

1295 30 7.22
 

7.10
 

7.16
 

7.15
 

-- -- -- 

1300 60 -- -- -- -- 7.30 7.5 7.54 

5 Fe-0.85Mo+1.4C+0.4Si 

1285 30 7.1
 

7.1
 

7.2
 

7.14
 

-- -- -- 

1295 30 7.35
 

7.1
 

7.42
 

7.16
 

-- -- -- 

1300 30 -- -- -- -- -- 7.55 7.58 

6 Fe-0.85Mo+1.4C+0.6Si 

1285 30 7.27
 

7.3
 

7.26
 

7.18
 

-- -- -- 

1295 30 7.44
 

7.3
 

7.43
 

7.4
 

-- -- -- 

1300 30 7.46 7.36 7.50 7.42    

1300 60 7.45 7.4 7.55 7.5 7.65 7.71 7.75 

7 Fe-0.85Mo+1.35C+0.6Si 1300 60 7.4 7.3 7.43 7.4 7.52 7.62 7.64 

8 Fe-0.85Mo+1.375C+0.6Si 1300 60 -- -- 7.43 7.46 -- 7.66 7.69 

9 Fe-0.85Mo+1.27C+0.6Si+1.5Mn 
1300 30 -- -- 7.28

 
7.25 --   

1300 60 -- -- 7.35 7.3  7.4 7.42 

10 Fe-0.85Mo+1.3C+0.65Si+ 1Mn 
1300 30 -- -- 7.32 7.33 -- -- -- 

1300 60 -- -- 7.44
 

7.4 -- 7.42 7.47 

11 Fe-0.85Mo+1.35C+0.6Si+ 1Mn 1300 60 7.42
 

7.4 7.47
 

7.44
 

-- 7.5 7.56 

ST ≡ Sintering Temperature,  St  ≡ Sintering time,  LP ≡ Liquid Paraffin 

PPGM ≡  Polypropylene glycol diluted with  methanol, 1
st
 Cycle ≡ Sintering in vacuum and 90N2/10H2  gas 

atmosphere,  2
nd

 Cycle ≡ Sintering in 90N2/10H2 gas atmosphere 
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Figure ‎4.3: Variation in sintered density with carbon and silicon content for 

various carbon content of Fe-0.85Mo+(0.4-0.6 wt%) Si alloy 

composition with and without liquid paraffin sintered at 1300ºC for 60 

min. 

 

 

Figure ‎4.4: Variation in sintered density with heating cycle for Fe-0.85Mo+0.6Si+ 

(1.2-1.4)C, sintered in 90N2/10H2 at 1300°C for 60 min. 
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Figure ‎4.5: Variation in sintered density with lubricant for Fe-0.85Mo+0.6Si+ (1.2-

1.4)C mixed either with LP or PPGM , sintered in 90N2/10H2 at 

1300°C for 60 min. LP = liquid paraffin, PPG = polypropylene glycol, 

M = methanol. 

 

Table 4.4 shows the sintered densities for compositions based on powder CrL (Hogänas 

Astaloy CrL) sintered at 1295 and 1300⁰C for one hour using the second cycle under 

90N2/10H2 gas atmosphere. 

Table 4. 4 Sintered densities of different alloy compositions of CrL, mixed with 

polypropylene glycol mixed with 50% methanol, SD= sintered density. 
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Sintd. Temp.  

SD (g/cm
3
),  

25N2/75H2,  

1300°C 1295°C 1300°C 1300°C 

1 Fe-1.5Cr+1.4 C+0.65 Si 60 6.84 7.3 7.45 6.98 

2 Fe-1.5Cr+1.5C+0.5 Si 60 6.85 7.41 7.51 7.10 

3 Fe-1.5Cr+1.5 C+0.55 Si 60 6.89 7.43 7.54 7.15 

4 Fe-1.5Cr+1.5 C+0.6 Si 60 6.89 7.47 7.56 7.20 

5 Fe-1.5Cr+1.5 C+0.65 Si 60 7.10 7.5 7.57 7.22 



Chapter 4                                                                             Results and Brief Discussion 

121 

 

4.3 Metallographic Preparation 

Sintered samples were sectioned, ground and polished conventionally with a 1 µm final 

surface finish. The polished specimens were then etched in 2 % Nital. Both optical and 

scanning electron microscopes were used to study the sintered and heat-treated 

microstructures. The sintered microstructures consisted of ferrite, fine and coarse 

pearlite plus cementite networks at the grain boundaries and bainite as seen in Figure 

4.6.  

 

 

 

 

 

 

 

 

 

 

Figure ‎4.6: Microstructure of as-sintered composition specimen of Fe-

0.85Mo+1.4C+0.6Si, processed with polypropylene glycol diluted 

with 50%methanol. 
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4.3.1 Heating Cycle Profile Modification 

Initially heating rates were 10⁰C-min
-1

 to 600ºC with a hold of 30 minutes for the 

removal of lubricant and adsorbed water and hydroxides, then 10ºC min
-1

 to 900ºC, with 

a hold of 2 hours, to allow distribution of carbon and silicon, followed by heating to the 

sintering temperature at 5ºC/min, with sintering time of 30-60 minutes at temperatures 

varying from 1285 to 1300°C. After sintering, the specimens were allowed to cool 

slowly to room temperature. This heating cycle produced a non-uniform microstructure 

with large connected pores. It was obvious that the large porosity observed was the 

result of evolved gas pressure, therefore different heating profiles were studied to try to 

minimise CO/CO2 evolution and concurrently take graphite into solution as quickly as 

possible to create sufficient interconnected porosity to relieve any build up of gas 

pressure. 

Figure 4.7 shows different microstructures produced by processing in different heating 

cycle profiles for the same composition. The first heating cycle was heating to 600⁰C 

for 15 min with heating rate 10⁰C-min
-1

, followed by heating to 1100⁰C for 20 min, 

then furnace cooling. Second heating cycle was to heat the samples to 730⁰C for 15min, 

with heating rate 10⁰C-min
-1

 followed by heating to 1100⁰C for 20 min, then furnace 

cooling. Third heating cycle was by heating straightaway to 750⁰C for 15 min with 

heating rate 10⁰C-min
-1

, followed by heating to 1100⁰C for 20 min, then furnace 

cooling. Fourth heating cycle was by heating straightaway to 900⁰C for 15 min with 

heating rate 10⁰C-min
-1

, followed by heating to 1100⁰C for 20 min, then furnace 

cooling. Figure 4.7 reveals that the fourth heating cycle profile shows least gas porosity 

and better uniform microstructure with very tiny pores. Different lubricants were also 
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tried in conjunction with these heating profiles in order to establish the best heating 

profile coupled with the best lubricant. Liquid paraffin and polypropylene glycol diluted 

with 0-75% methanol were employed as lubricant/binder with best results obtained 

using the fourth heating cycle profile when the composition was processed with 

polypropylene glycol diluted with 50%methanol. 

 

  

Figure ‎4.7: Different microstructures for the same alloy composition Fe-

0.85Mo+0.6Si+1.4C processed by different heating cycle profiles, a) 

First heating cycle, b) second heating cycle, c) third heating cycle and 

d) fourth heating cycle. 
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4.3.2 Microstructural Studies  

Sintering temperature increase promoted liquid phase sintering [5, 6, 35]; to prevent 

distortion of the samples over-sintering at high temperatures was avoided. Sintering 

furnace also has the ability to influence the obtained microstructure. Microstructural 

observations of initially sintered specimens showed excessive porosity. Examination of 

microstructures such as those of Figures 4.8a and 4.8b led to the belief that the 

additional porosity and its size must be linked to gas evolution during the heating cycle. 

As the evolving gas was formed either from reduction of oxides or from adsorbed water 

vapour, via the water-gas reaction: C + H2O  CO + H2 from ~500ºC, it was decided to 

dry the graphite by heating to 120ºC overnight in a vacuum oven and then reproduce the 

same composition mixes, but with reduced water content. Figures 4.9a and 4.9b show 

gas sintered microstructure after graphite drying, sintered at 1300⁰C for 60min, in 

vacuum and 90N2/10H2 gas atmosphere, respectively. It was further noted that, on 

comparing samples from gas and vacuum sintering, that porosity was less for vacuum, 

because more gas could escape from the internal part of the compact during the early 

stage of heating in vacuo while porosity was still interconnected. Even after drying the 

best density obtained for Fe-0.85Mo+0.6Si+1.4C(+0.5cc liquid paraffin) alloy sintered 

at 1300ºC for 60 min, in gas atmosphere was ~7.50 g/cm
3
 compared with 7.55 g/cm

3
 in 

vacuum.    
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Figure ‎4.8: Microstructures of Fe-0.85Mo+0.6Si+1.4C(+0.5cc liquid paraffin), 

sintered at 1295°C for one hour in: a) vacuum, and b): 90N2/10H2 gas 

using initial cycle. 

 

 

Figure ‎4.9: Microstructures Fe-0.85Mo+0.6Si+1.4C (+0.5cc liquid paraffin), 

sintered at 1300⁰C for one hour sintered in a) vacuum and b) 

90N2/10H2, after drying the graphite overnight using initial cycle. 

 

Again, on comparing vacuum and gas sintered microstructures, it was obvious that 

some gas „bubbles‟ were still preventing maximum densification during sintering. It 

was therefore decided to adjust the conventional sintering heating profile to minimise 

the amount of alpha sintering due to the Fe in Fe self diffusion by speeding up the 

heating rate and also increasing the temperature for the first hold to above the alpha-
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gamma transition temperature. The results showed significant improvements in sintered 

densities, which can be seen in Figure 4.10. 

 

 

 

 

Figure ‎4.10: Microstructures of Fe-0.85Mo+0.6Si+1.4C(+0.5cc liquid paraffin), 

sintered at 1300°C for one hour in a) vacuum, and b) 90N2/10H2, 

using fourth heating cycle. 

 

An alternative mixing procedure was then employed in which polypropylene glycol, 

diluted to 50% by methanol, was substituted for the liquid paraffin. This procedure gave 

high densification and better uniform microstructure, as seen by comparing Figure 

4.10b with Figure 4.11, when density increased to 7.75g/cm
3
. 

 

 

 

 

 

Figure ‎4.11: Microstructure of Fe-0.85Mo+0.6Si+1.4C alloy, processed with 0.5cc 

of polypropylene glycol mixed with 50% methanol, sintered at 1300°C 

for 60 min in 90N2/10H2, using fourth heating cycle. 

a 
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Manganese was added in the form of a master alloy powder (G284) in an attempt to 

reduce either the amount of graphite or the sintering temperature necessary to produce 

sufficient liquid phase to promote densification. Unfortunately, this investigation gives 

low densification, non-uniform microstructure, and significant connected porosity. 

Figure 4.12 shows the microstructure of Fe-0.85Mo+0.65Si+1.3C+1Mn (+0.5cc liquid 

paraffin), sintered at 1300°C for one hour using both first and fourth heating cycles.   

 

Figure ‎4.12: Microstructures of Fe-0.85Mo+0.65Si+1.3C+1Mn (+0.5cc liquid 

paraffin) , sintered at 1300°C for one hour in 90N2/10H2, using first 

heating cycle (left) and fourth heating cycle (right). 

 

Slightly better densification was obtained when using polypropylene glycol instead of 

liquid paraffin, when the density increased to 7.47g/cm
3
. For Fe-

0.85Mo+0.65Si+1.3C+1Mn (+0.5 cc polypropylene glycol/methanol), densities  of 

7.47, 7.30 and 7.10 g/cm
3
 were obtained when using atmospheres of 90N2/10H2,  pure 

N2 and 25N2/75H2 respectively. 

Microstructures for alloy compositions of CrL were particularly dependent on the gas 

atmosphere, as seen in Figure 4.13. Specimens sintered under 90N2/10H2 show better 

densification and more uniform microstructure than those sintered under 25N2/75H2 and 
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pure N2. In general, these microstructures exhibited low densification, large 

interconnected porosity and non-uniform microstructures. Burst pores were seen in 

specimens sintered under pure N2 atmosphere, due to the reaction between nitrogen and 

the forming liquid, as seen clearly in Figure 4.13c. 

 

 

 

 

 

Figure ‎4.13: Three microstructures of CrL+1.5C+0.65Si processed with 0.5cc of 

polypropylene glycol mixed with 50% methanol, sintered at 1300°C 

for 1 hour under three different gas atmosphere, a 90N2/10H2, b- 

25N2/75H2 and c-Pure N2. 

 

4.4 Heat Treatments  

Initially a simple quenching heat treatment to produce Martensite plus retained austenite 

structure was performed. This involved loading the specimens into a small container, 

through which argon was flowing, placing it into a muffle furnace pre-heated to 950ºC 

and holding for 60 minutes after reaching this temperature - to ensure that all carbides 

were taken into solution. The samples were then quenched into oil, which resulted in 

some microcracking, as seen in Figure 4.14, where large volume change and hence 

build up of internal stress had occurred. Air cooling to room temperature did not solve 

the problem due to the high hardenability of the material and an isothermal quench into 

a preheated fan assisted oven proved necessary.  
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Calculations were attempted using e.g. Andrew‟s formula [69] to predict Martensite 

start temperature. These calculations were obviously in error, as they suggested that Ms 

would be less than room temperature and from experience this was incorrect. Predictive 

software using Bayesian networks [103] was employed to predict Martensite start and 

Martensite 10% of completion temperatures. The Martensite start temperatures for 

various compositions are summarized in Table 4.5 and Figure 4.15 shows the data 

graphically. For composition Fe-0.85Mo-0.6Si-1.4C calculations suggested that the 

M10% temperature was ~130°C, since the Ms-temperature was calculated to be 144°C. 

Therefore samples were now quenched into a fan-assisted oven running at 130°C and 

held for 20min to promote auto-tempering of the Martensite as it formed and hence to 

reduce the amount of internal stress. The samples were then allowed to cool to room 

temperature so that more Martensite could form, followed by refrigeration to transform 

as much retained austenite as possible to martensite. No cracking was then seen in the 

hardened microstructure, as seen in Figure 4.16. For safety a stress relief was also 

performed by heating to 200°C for 1 hour, this removed any tendency to crack during 

metallographic sectioning, but should not be necessary for industrial processing. 

The crack-free hardened specimens, with microstructure presented in Figure 4.16, were 

then given a standard spheroidising treatment to produce a ferrite plus sub-micron 

carbide structure, soft enough to allow a modest amount of resizing for dimensional 

control purposes. This process was carried out by reheating these brittle hardened 

specimens to 750ºC in argon with a holding time of 3 hours. Figure 4.17 shows the 

typical spheroidised microstructure. It should be noted that the austenitisation, 

isothermal quenching and spheroidisation temperatures for Crl+0.65Si+1.5C alloy were 

1080, 125 and 755 ºC, respectively.  
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Figure ‎4.14: Microcracking in Fe-0.85%Mo.0.6%Si.1.4%C, resulting from severe 

quench-induced large volume change due to Martensite formation. 

 

Table 4. 5 Predicted martensite start temperatures for different compositions. 

 

 

 

 

 

 

C% 
Ms-Temperature (°C) 

Fe-Mo+0.6Si CrL+0.65Si 

1.2 160 158 

1.25 155 153 

1.3 151 149 

1.35 147 146 

1.4 144 143 

1.45 141 141 

1.5 140 140 
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Figure ‎4.15: The effect of carbon content on the martensite start temperature. 

 

 

Figure ‎4.16: Crack-free microstructure of Fe-0.85%Mo.0.6%Si.1.4%C, resulting 

from PPGM processing and optimised heat treatment, PPGM = 

polypropylene glycol mixed with 50% methanol. 
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Figure ‎4.17: Scanning electron microcopy showing spheroidised specimens of 

Fe0.85%Mo.0.6%Si.1.45%C resulting from the spheroidising 

treatment at 750⁰C for 3 hours: ferrite matrix plus fine spheroidal 

carbides. 

 

4.5 Hardness Test 

Hardness tests, on as-sintered and heat-treated specimens, were carried out on a Vickers 

machine with a 10 kg load (HV10). Table 4.6 lists the apparent hardness values of Fe-

Mo-C-Si-Mn alloys processed with, different lubricants, e.g. dry lubricant (dry), and 

liquid paraffin: (A+0.05C). Table 4.6 clearly reveals that hardness increases with an 

increase in silicon and carbon contents. Alloy compositions containing manganese 

provided higher steel hardness, as expected. Manganese is well known for improving 

the hardenability of steels as evidenced by TTT diagrams which show delayed 

transformations, i.e. phase transformations are pushed to the right, thus allowing 

martensite to form at lower cooling rates. 



Chapter 4                                                                             Results and Brief Discussion 

133 

 

 

Table 4. 6 Vickers hardness, HV10, for as-sintered, quenched/air cooled and 

spheroidised   Fe-Mo-C-Si alloys, dry processed, and using A: liquid paraffin, 0.5cc 

lubricant per 100g of mixture. 

 

By using polypropylene glycol diluted with 50% methanol instead of liquid paraffin 

improved powder wettability was achieved, thus better hardness, as seen in Table 4.7. 

Table 4. 7 Vickers hardness, HV10, for as-sintered, quenched and spheroidised   Fe-

Mo-C-Si alloys, processed with polypropylene glycol diluted with methanol (50% 

methanol), 0.5cc lubricant per 100g of mixture. 

No 
Composition and  
Processing route 

Vickers hardness, HV10 

Sintered at 
1300ºC 

Held in argon at  970ºC for 2h 
Spherodised : 
750ºC for 3h, 

±10 HV10 
Vac 
±10  

Gas 
±10  

Oil 
Quenched, 
±30 HV10 

Air Cooled, 
±30 HV10, 

Vac Gas Vac Gas Vac Gas 

1 Fe.0.85Mo.1.2C.0.4Si   
dry 188 196 613 620 540 546 148 151 

A(+0.05C) 205 210 621 633 560 573 157 163 

2 Fe.0.85Mo.1.2C.0.6Si   
dry 208 213 620 639 577 589 155 162 

A(+0.05C) 223 227 636 647 610 626 168 160 

3 Fe.0.85Mo.1.3C.0.4Si   
dry 215 219 634 646 614 620 161 171 

A(+0.05C) 239 242 660 669 637 651 176 168 

4 Fe.0.85Mo.1.3C.0.6Si  
dry 236 233 659 667 634 643 175 183 

A(+0.05C) 271 278 693 705 669 677 193 197 

5 Fe-.0.85Mo.14C.0.4Si   
dry 250 256 681 688 662 669 186 194 

A(+0.05C) 291 297 767 778 679 683 214 215 

6 Fe.0.85Mo.14C.0.6Si   
dry 287 293 748 765 670 672 211 217 

A(+0.05C) 305 315 795 805 710 715 221 225 

7 Fe-0.85Mo+1.27C+0.6Si +1.5Mn A(+.05C) 355 360 830 845 525 545 285 290 

8 Fe-0.85Mo+1.3C+0.65 Si +1 Mn A(+.05C) 330 335 760 790 505 515 275 282 

9 Fe-0.85Mo+1.35C+0.6 Si+1Mn A(+.05C) 370 375 835 850 670 695 295 308 

Composition 

Vickers hardness, HV10 

Sintered at 1300ºC in 

(90N2/10H2 Gas)  

±10 HV10 

warm-Quenching, 

held in argon at 

 970ºC for 2h, ±30 

HV10  

Spherodising 

750ºC for 3h, 

±10 HV10  

Fe-0.85Mo+1.35C+0.6Si 300 795 215 

Fe-0.85Mo+1.4C+0.6Si 325 810 230 

Fe-0.85Mo+1.35C+0.6Si +1Mn 345 818 260 
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As expected, alloy compositions emanating from Astaloy CrL offered high hardness, 

especially for those samples sintered in high sintering temperature ~1300⁰C; In contrast 

silicon contents did not change the hardness, as represented in Table 4.8.  

Table 4. 8 Vickers hardness, VH10, for as-sintered, quenched and spheroidised   

CrL-C-Si alloys, processed with polypropylene glycol diluted with methanol (50% 

methanol), 0.5cc lubricant per 100g of mixture. 

 

Table 4.9 gives the microhardness for different samples of different phases. It was very 

time consuming to measure the microhardness for each phase because of difficulties 

recognizing phases from each other; additionally the thickness of some of these phases 

was very small such as cementite. It was also difficult to find individual phase regions 

large enough to obtain valid measurements, e.g. pure ferrite in the spheroidised samples. 

Table 4.9 shows that these samples containing Mn and Cr are higher in microhardness, 

than those without. It can be seen that increase in silicon content also gives slight 

increase in microhardness.   

 

 

 

No. Composition 
As-Sintered Warm-Quenched Spheroidised 

1295°C 1300°C 1295°C 1300°C 1295°C 1300°C 

1 CrL+1.5C+0.5Si 320 330 687 705 220 228 

2 CrL+1.5C+0.55Si 325 338 710 720 235 237 

3 CrL+1.5C+0.55Si 331 345 730 770 240 245 

4 CrL+1.5C+0.65Si 340 348 752 810 243 248 
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Table 4. 9 Microhardness for as-sintered, quenched and spheroidised specimens  of 

alloys based on Astaloy 85Mo and Astaloy CrL, mixed with alloying additives such 

as C, Si, and Mn, processed with polypropylene glycol diluted with methanol (50% 

methanol), 0.5cc lubricant. 

 

4.6 Mechanical Properties 

Several dog bone and three-point bend specimens were prepared and tested to measure 

the tensile strength and transverse rupture strength, respectively.  Tables 4.10 and 4.11 

give the result of those mechanical properties for Astaloy 85Mo and CrL, mixed with 

alloying additives such as C, Si, Mn and Cr, in different gas atmospheres (0-10%H2/N2). 

Table 4.10 gives the mechanical properties of Astaloy 85Mo, mixed with (1.4-1.45wt%) 

C and 0.6wt% Si, processed with liquid paraffin and sintered at 1295⁰C for one hour 

under 90N2/10H2 gas atmosphere. Mechanical properties sintered under 90N2/10H2, 

yield strength 410MPa and fracture strength 907MPa with plastic strain ~12% are 

slightly higher than those sintered in pure N2, yield strength 395MPa and fracture 

strength 880MPa with plastic strain ~10%, for the same composition Fe-

0.85Mo+1.4C+0.6Si, whereas those specimens sintered in 95N2/5H2 gas atmosphere 

gave quite low results yield strength ~370MPa and fracture strength 857MPa, however, 

it gave good plastic strain ~12%. 

No Sample 

Microhardness 

As-sintered (1300ºC) W-Q  

±50 

 

F-Mat 

 F±30 P±30 B±50  Ce 

1 Fe-0.85Mo+1.35C+0.6Si 210 390 485 1070-1210 992 140-165 

2 Fe-0.85Mo+1.4C+0.6Si 215 400 500 1090-1260 995 140-170 

3 Fe-0.85Mo+1.35C+0.6Si+1Mn 310 470 560 1100-1310 1060 185-205 

4 CrL+1.5C+0.5Si 295 380 520 1090-1290 1010 165-180 

5 CrL+1.5C+0.65Si 305 450 525 1095-1300 1030 172-195 

F-Ferrite  Phase , P-Pearlite Phase, Ce-Cementite  Phase , B-Bainite  Phase 

MR-Martensite  Phase, RA-Retained Austenite  Phase, CR-Carbide  Phase 

W-Q – Warm Quenching, F-Mat- Ferrite Matrix of  Spherodised Sample 
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Table 4. 10 Mechanical Properties of  Astaloy 85Mo mixed with liquid paraffin, 

processed 1.4 and 1.45C steels sintered at 1295ºC in different gas atmospheres of 0-

10H2/N2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After modifying the heating cycle profile and using polypropylene glycol diluted with 

methanol (50% methanol) as a lubricant instead of liquid paraffin, mechanical 

properties were improved for all those alloy compositions, as recorded in Table 4.11.  

 

Sintering atmosphere :90N2/10H2 

As-Sintered 

Composition 

 

YS  

MPa 

FS 

 MPa 

P-St 

 % 

Fe.0.85Mo.1.40C.0.6Si  590 0.0 

Fe.0.85Mo.1.45C.0.6Si  610 0.0 

Quenched 

Fe.0.85Mo.1.40C.0.6Si  530 0.0 

Fe.0.85Mo.1.45C.0.6Si  592 0.0 

Spheroidised 

Fe.0.85Mo.1.40C.0.6Si 400 906 14 

Fe.0.85Mo.1.45C.0.6Si 410 907 12 

Sintering atmosphere :95N2/5H2 

As-Sintered 

Fe.0.85Mo.1.40C.0.6Si  610 0.0 

Fe.0.85Mo.1.45C.0.6Si  600 0.0 

Quenched 

Fe.0.85Mo.1.40C.0.6Si  615 0.0 

Fe.0.85Mo.1.45C.0.6Si  490 0.0 

Spheroidised 

Fe.0.85Mo.1.40C.0.6Si 350 748 10 

Fe.0.85Mo.1.45C.0.6Si 370 857 12 

Sintering atmosphere : N2 

As-Sintered 

Fe.0.85Mo.1.40C.0.6Si  680 0.0 

Fe.0.85Mo.1.45C.0.6Si  669 0.0 

Quenched 

Fe.0.85Mo.1.40C.0.6Si  690 0.0 

Fe.0.85Mo.1.45C.0.6Si  586 0.0 

Spheroidised 

Fe.0.85Mo.1.40C.0.6Si 380 893 13 

Fe.0.85Mo.1.45C.0.6Si 395 880 10 

YS: Yield Strength 

FS: Fracture Strength  

P-St: Tensile Strain                  
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Table 4. 11 Mechanical properties for as-sintered, warm-quenched and 

spheroidised   of different alloy of Astaloy 85Mo and Astaloy CrL, mixed with 

alloying additive such as C, Si, and Mn, processed with polypropylene glycol 

diluted with methanol (50% methanol), 0. 5cc lubricant per 100g of mixture, 

sintered at 1300C for one hour, in 90N2/10H2 gas atmosphere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To be noted is macroscopic brittleness of all specimens except those spheroidised, 

which exhibited strains up to 10-18%. Fractographs of as-sintered and spheroidised 

tensile specimens are presented in Figure 4.18-419; the first showing extensive 

plasticity and (micro) dimple rupture.  

Sintering Temperature 1300⁰C for 1 hour 

Sintering atmosphere :90N2/10H2, 

As-Sintered 

No. 
Composition 

 

YS 

MPa 

FS 

MPa 

P-St 

% 

1 Fe-0.85Mo+1.35C+0.6Si  600 0.0 

2 Fe-0.85Mo+1.4C+0.6Si  630 0.0 

3 Fe-0.85Mo+1.35C+0.6Si+1Mn  720 0.0 

4 CrL+1.5C+0.65Si  650 0.0 

Warm-Quenched 

1 Fe-0.85Mo+1.35C+0.6Si  680 0.0 

2 Fe-0.85Mo+1.4C+0.6Si  700 0.0 

3 Fe-0.85Mo+1.35C+0.6Si+1Mn  995 0.0 

4 CrL+1.5C+0.65Si  690 0.0 

Spheroidised 

1 Fe-0.85Mo+1.35C+0.6Si 400 951 18.0 

2 Fe-0.85Mo+1.4C+0.6Si 410 945 16.0 

3 Fe-0.85Mo+1.35C+0.6Si+1Mn 525 980 10.0 

4 CrL+1.5C+0.65Si 470 960 13.0 

YS: Yield Strength                 FS: Fracture Strength, 

P-St: Plastic Strain                 3PBS: 3-Point Bend Strength 
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Figure ‎4.18: Fractographs of tensile specimens of Fe.0.85Mo.0.6Si.1.4C: (a) as-

sintered, macroscopically brittle: and (b) spheroidised, exhibiting 16% 

plastic strain. Please note in (a`) cracking following cementite 

networks with a tiny amount of ductility in the ferrite, and in (b`&b``) 

extensive (micro) dimple rupture as well as cleavage and 

intergranular rupture.  
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Figure ‎4.19: Fractographs of tensile specimens of Fe-1.5Cr+0.2Mo+0.6Si+1.4C: (a) 

as-sintered, macroscopically brittle: and (b) spheroidised, exhibiting 

13% plastic strain. Please note in (a) slag precipitated at grain 

boundary, and in (b) extensive (micro) dimple rupture as well as 

cleavage and intergranular rupture. 
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Three-point bend spheroidised specimens were prepared and tested in order to evaluate 

the transverse rupture strength (TRS) using specimens of rectangular beam cross 

section. The results are summarized in Table 4.12 for both Astaloy 85Mo and Astaloy 

CrL based alloys, mixed with C, Si, and Mn, processed with polypropylene glycol 

diluted with 50% methanol. It appears that increasing Cr and Mn leads to increase in 

transverse rupture strength, as expected. Figure 4.20 illustrates the materials‟ ductility.   

Table 4. 12 Three-point bend strengths for spheroidised alloys based on Astaloy 

85Mo and Astaloy CrL, mixed with as C, Si, and Mn, processed with 

polypropylene glycol diluted with 50% methanol, 0.5cc lubricant per 100g of 

mixture.  

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4.20: Three point bend samples after testing. 

No. Composition 
Three-Point Bend  

Strength  [MPa] 

1 Fe-0.85Mo+1.35C+0.6Si 1644 

2 Fe-0.85Mo+1.4C+0.6Si 1650 

3 Fe-0.85Mo+1.35C+0.6Si+1Mn 1960 

4 CrL+1.5C+0.65Si 2050 
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4.7 Warm Forging 

Several spheroidised specimens with density ~7.2g/cm
3
, were warm forged on a screw 

press between flat plates heated to 200⁰C at AGH, Krakow [courtesy of Prof. S. 

Szczepanik]. The first specimen was heated up to 700⁰C and forged once, whilst the 

second specimen was additionally re-heated to 750⁰C and forged. Table 4.13 gives the 

details and results for those specimens. The one forging strike at 700⁰C exhibited a 

crack-free microstructure, but did not weld up the pores completely. Already evident 

were more smaller carbides, Figure 4.21. The second, at 750C, strike started to break up 

ferrite grain size and gave an even better carbide distribution, Figure 4.22. 

 

Table 4. 13 Warm forging of spheroidised specimens, with sintered density of 

~7.2g/cm3,  carried out at AGH, Krakow, Poland.  

 

 

 

 

 

No. FD(g/cm
3
) NS FT (⁰C) Hardness VH10 (±10) Height. Red.% 

S1 7.65 1 700 195 30.6 

S2 7.72 2 700 then 750 205 40.8 

FD= forged Density, NS=Number of Strike, FT=Forging Temp. 
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Figure ‎4.21: Scanning electron micrograph of a spheroidised specimen 

subsequently forged on a screw press at 700⁰C. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4.22: Scanning electron micrograph of a spheroidised specimen forged at 

700⁰C, then re-heated to 750⁰C and given a second strike. 
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These encouraging results led to testing of further specimens, discs of 8 mm diameter 

and 12 mm in height (cut from the rings) on a Gleeble HDV-40 machine at the Institut  

for Metallformung, TUBA Freiburg, Germany [courtesy of Prof. R. Kaualla]. The discs 

were warm forged at 700⁰C using a fully instrumented test rig. The specimens were 

heated in argon to 700⁰C and then forged at strain rates of 10
-3

, 10
-2

, 10
-1

 and 1 sec
-1

 to 

(recorded) ~ 1.15 natural (logarithmic) strain, Figure 4.23, Table 4.14 presents the 

details and results of those warm forging experiments. Figures 4.24-4.25 show two 

Freiburg processed spheroidised samples at strain rates of 0.01 and 0.001sec
-1

. These 

resultant discs had unsuitable geometry for conventional mechanical testing.  

 

 

Figure ‎4.23: Compressive stress-natural strain relationships for Fe-1.4C-0.6Si-

0.85Mo PM steel at 700oC at strain rates in the range of 0.001 to 

1 sec
-1

. 
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Table 4. 14 Warm forging of spheroidised specimens carried out at TUBA 

Freiburg, Germany. Yield strengths were estimated from the diametral disc 

compression tests. 

 

No. 

sintered Density 

(g/cm
3
) 

forged Density 

(g/cm
3
) 

Strain Rate 

(S
-1

) 

Hardness 

VH10(±10) 

Height. Red. 

% 

S1 ~7.2 7.78 1 270 71.9 

S2 ~7.2 7.78 0.1 280 71.16 

S3 ~7.2 7.79 0.01 295 71.43 

S4 ~7.2 7.79 0.001 310 73.26 

 

 

 

Figure ‎4.24: Scanning electron micrograph of a spheroidised specimen heated to 

700⁰C and forged at a strain rate of 0.01sec
-1

. 
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Figure ‎4.25: Scanning electron micrograph of a spheroidised specimen heated to 

700⁰C and forged at a strain rate of 0.001sec
-1

. 

 

Testing discs in diametrical compression is known as: the diametral compression, 

Brazilian disc or the indirect tensile test. The test induces variable biaxial stresses: 

compressive, ơ3, and tensile, ơ1, in the transverse direction of the applied compressive 

load. It is used as a mechanical testing technique to determine the (brittle) tensile 

fracture strength (under transverse compression) of (linearly) elastic materials such as 

concrete, ceramics, composites, pharmaceutical tablets. The relevant failure region is 

the disc centre where a splitting crack originates [104]. The principal stresses have been 

computed by Hertz [105] and at the disc centre ơ1= 2P/πDt and ơ3= -6P/πDt, where P is 

the applied compressive load, D the diameter and t the specimen thickness. 

Photoelasticity experiments of Frocht [106] show clearly the complex stress distribution 

and accord with the Hertz analysis. Because of the ease of testing and the simple 

specimen geometry, this test has been applied to materials, which exhibit limited 
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macroscopic plasticity before fracture and Proccopio et al. [107] have performed finite 

element calculations for the elastic and perfectly plastic situations in order to 

incorporate the effects of limited ductility. 

In experiments with work-hardening materials it was observed that plastic zones spread 

from the platens and meet at the disc centre as seen in the Figure 4.26. This critical 

event, suggested in discussion with Prof. Andrew Wronski, was chosen to try to 

evaluate the yield stress. Neglecting plasticity, the principal stresses predict the yield 

stress to equal KP/πDt, where the factor K equals 8 and 7.2, according to Tresca and 

Huber-von Mises yielding criteria. The incorporation of plasticity into the finite element 

model, however, leads to substantial deviation between the analytical elastic 

expressions and the numerical elastoplastic solution. The maximum principal stress is 

reported to be still in the transverse direction, but that the location of this stress shifts 

away from the centre and that at (only) 2% diametrical strain, its magnitude is 

approximately 2.5–3 times the level predicted by the elastic solution. Furthermore, the 

volume over which all of the maximum transverse stress is acting showed a significant 

reduction in comparison with the purely elastic simulations.  
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Figure ‎4.26: Photograph of diametrically compressed disc of warm forged Fe-

1.4C-0.65Si-0.85Mo when the plastic zones emanating from the platen 

contact regions meet at the disc centre. 

Accordingly it is completely unrealistic to use the elastic solution for our steel and it 

was decided to evaluate K experimentally: by conducting experiments on mild steel 

discs of determined tensile yield stress. The tests were carried out in a specially 

constructed jig on an Instron machine at a compression rate of 0.5mm-sec
-1

. 

Tensile strength of this mild steel was found to be ~225MPa. Thus, by applying 

equation    
    

 
 , to one of the diametrally tested discs, the K factor was found and 

is presented below in Table 4.15.  This Table also shows that by using this calculated K 

and the dimensions and loads for the disc samples S1 and S2 that the diametral yield 

strength appears to be self-consistent for the experiments. 

   
    

 
     

                   

     
  K=1.83         

The K factor was found to be 1.83. Using this figure calculations were made for two 

further tests, Table 4.15, indicating excellent reproducibility. 
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Table 4. 15 K factor calculations for yield strength of mild steel discs of directly 

determined yield strength of 225 MPa. 

 

 

 

The same value of K was used to compute the yield strengths of forged spheroidised 

samples, Table 4.16. 

Table 4. 16: The forged disc test results. 

 

The yield stresses after warm forging at strains 10
-3

, and 10
-2 

sec
-1

 evaluate to 769, and 

744 MPa, respectively. The respective mean grain sizes were ~ 6 and ~7 μm, 

respectively. The yield strength increased substantially through warm forging of the 

spheroidised material and its dependence on grain size is consistent with the Hall-Petch 

effect. Ultra high carbon steels, can be made very strong and ductile at room 

temperature, providing that the microstructure consists of very fine ferrite grains i.e. 

0.5-2µm and ultra fine spheroidised carbide [15]. Syn et al [67] have proposed, 

following an intensive study of the effect of the cementite-particle spacing and ferrite 

grain size on the strength of  high carbon steels (0.5-1.8wt.%)C, that the yield strength 

can be predicted by microstructural observation.  

No t(mm) D(mm) Load (N) K σy (MPa) 

MS1 2.48 11.24 10590 1.83 221 

MS2 3.00 11.31 13120 1.83 225 

No. D(mm) t(mm) K Load (N) 
Strain 

Rate (S
-1

) 
σy (MPa) 

FS3 12.8 2.155 1.83 35223 0.01 744 

FS4 13.46 2.145 1.83 38100 0.001 769 

FS=Forged spheroidised sample 
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Chapter Five 

5 Discussion 

Thermocalc predicted the necessary compositions and sintering temperatures to produce 

sufficient liquid phase for densification of these ultra-high carbon steels. Accordingly, 

processing was performed but, despite some densification, the microstructure contained 

large pores and consisted of pearlite plus thick, brittle cementite networks. When 

comparing specimens sintered in vacuum with those using the normal 

nitrogen/hydrogen gas-sintering atmosphere it became obvious that the porosity must be 

a consequence of gas formation. 

Therefore, HSC chemistry software was used to model the possible gas reactions, e.g. C 

+ H2O  CO2 + H2, water-gas shift reaction, C + 2FeO  2Fe + CO2 found to be 

favourable from ~500ºC, and C + CO2  2CO Boudouard reaction complete by 

~927ºC. 

These findings led to belief that water must be adsorbed onto the surface of the 

powders, particularly graphite with its large specific surface. Therefore, powders were 

dried in a vacuum oven, mixed and sintered. The results were much improved but still 

showed some significant porosity and again thick, cementite networks.  

Concurrently, two solutions were attempted to address the above noted problems; 1) 

addition of Si in the form of fine SiC powder. Si is a known ferrite stabiliser and 

metallurgical literature shows that it helps to produce thinner cementite networks, an 

advantage as it makes solution of these easier in subsequent thermal treatments. An 
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added benefit of Si is that Thermocalc shows that the solidus line in the phase diagram 

is depressed; hence more densifying liquid phase is produced for a given sintering 

temperature. 2) The heating profile was modified to force early interconnected porosity 

for escape of generated gas and prevent build up of potentially damaging gas pressure. 

Literature tells us that faster heating rate equates to lower CO/CO2 evolution and then 

by increasing the first hold temperature above the eutectoid point graphite can be made 

to diffuse, thus creating the interconnected porosity at the powder particles‟ surfaces, 

which is necessary for gas escape. The homogenisation holding temperature was also 

increased to 1100ºC to ensure that carbon and silicon were well dispersed before rising 

to the final sintering temperature. 

After drying the graphite in a vacuum oven for overnight, by heating to ~120ºC, the 

graphite distribution and dusting problems were solved efficiently by introducing 0.5 

cm
3
 of liquid paraffin per 100g of powder to be mixed. This necessitated a modified 

mixing procedure where the base powder (e.g. Astaloy 85Mo or Astaloy CrL) and 

silicon carbide powders (plus Fe-Mn-C master alloy when required) were Turbula  

mixed with lubricant namely for 20 minutes, then the graphite powder was added and 

further mixing took place for 20 minutes to „glue‟ the graphite to the base powder. 

However, liquid paraffin is relatively viscous and often additional amount has to be 

added, to ensure coverage of the mixture base powder, in order to achieve the optimum 

homogenous mixture. Too much coverage can lead to the graphite being redistributed 

into high concentration pools during pressing, which can lead to localized melting, 

porosity and severe distortion of sintered compacts.  To help decrease the graphite 

agglomeration problem polypropylene glycol diluted with 50% of methanol was used 

instead of liquid paraffin, i.e. to guarantee that all the additive powders were „glued‟ to 
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the base powder. The powder mixture was heated to 80ºC in a vacuum oven for at least 

three hours, to boil off the methanol, leaving the powder with optimum coverage thus 

eliminating the segregation and dusting of graphite. Additionally, higher green densities 

were achieved in the range of 6.75-6.94g/cm
3
 and ensuring that best sintering 

densification would be attained.  

Comparing the green compacts sintered both in vacuum and the N2/H2 gas atmosphere, 

it is evident that, with the initial sintering cycle profile, vacuum clearly provided higher 

densities for almost all the alloy compositions. The principal reason is higher reduction 

of moisture and surface oxides and better removal of the vaporized lubricants by the 

vacuum furnace, which also produces higher decarburisation than the gas atmosphere. 

Remembering that self diffusion of Fe in Fe is approximately 100 times greater in the 

alpha phase than in gamma phase and that time is also a strong variable, the heating 

profile was changed to minimise time spent in the alpha temperature range to reduce 

solid-state densification.  Also the temperature to ensure efficient carbon and silicon 

diffusion was increased to 1100ºC from 900ºC with a hold of 2 hours before finally 

raising to the sintering temperature at 5ºC min
-1

 with sintering hold of 30-60 minutes.  

This combination finally proved successful in increasing sintered density and removing 

the large gas pores in the structure. Figures 5.1-5.3 show three different SEM 

microstructures for the same composition of Fe-0.85Mo+1.4C+0.6Si, sintered in 

90N2/10H2 gas atmosphere and different heating profile conditions. Specimens were 

heated to 600⁰C, 750⁰C and 900⁰C, respectively, and then held for 15min at 

temperature all with the same heating rate of 10⁰C-min
-1

, followed by furnace cooling. 

From Figure 5.1, it easy to see graphite and silicon blocking porosity at 600⁰C and 

preventing gases from escaping. Figure 5.2 shows that the graphite has just started to 
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react but not completely, whereas the silicon has not begun to react yet even in the 

austenitic region at temperature of ~750⁰C, thus the network of grain boundaries were 

still semi blocked. Figure 5.3 shows that the graphite and silicon were already starting 

to diffuse into austenite at 900⁰C, as the temperature increases further more diffusion 

takes place, which leads to more uniform contact melting, faster neck growth between 

particles and higher amount of liquid phase formation, before furnace cooling. When the 

sintering cycle was modified to minimise the amount of alpha phase sintering and to 

release gases from pores by speeding the heating rate to 20 ºC/min, reducing the time of 

the 900ºC hold to 15 mins, but increasing the temperature of the 

diffusional/homogenisation hold to 1100ºC, a network of grain boundary pores formed, 

allowing penetration of a liquid phase as it formed at the sintering temperature, thus 

producing higher densification, recorded in Table 3.4. 

 

 

 

 

 

 

 

 

Figure ‎5.1: Scanning electron micrograph of microstructure of Fe-

0.85Mo+1.4C+0.6Si, heated to 600⁰C for 15min with heating rate 10⁰C-

min-1, and followed by furnace cooling. 
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Figure ‎5.2: Scanning electron micrograph of microstructure of Fe-

0.85Mo+1.4C+0.6Si, heated to 750⁰C for 15min with heating rate 10⁰C-

min-1, and followed by furnace cooling. 

 

 

 

Figure ‎5.3: Scanning electron micrograph of microstructure of Fe-

0.85Mo+1.4C+0.6Si, heated to 900⁰C for 15min, with heating rate 10⁰C-

min-1, and followed by furnace cooling. Pearlite is now in evidence as 

graphite diffusion has taken place. 
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Increasing the silicon content enhanced the diffusion process between the two elements 

and, due to contact melting between iron and silicon, liquid phase sintering was 

activated, thereby increasing the sintered density [35]. These results are in accord with 

ThermoCalc modelling, i.e., as silicon, carbon, sintering temperature and time 

increased, liquid phase amount increased, Table 3.4, and so did the sintered density, 

higher than values reported for comparable compositions, ~7.40 g/cc [34, 93] for 

vacuum sintering (a batch process). Processing involving additions of liquid paraffin or 

polypropylene glycol in the mixing stage, an industrially possible process, results in 

green densities comparable with dry mixture and die wall lubrication, which is 

industrially improbable. Modifying the heating profile, again industrially attainable, 

overcomes the problems of large gas porosity and results in uniform high density 

sintered specimens. 

The best gas atmosphere appears to be 90N2/10H2, probably slightly better than 

sintering in pure nitrogen. The 90N2/10H2 route allows early reduction of the oxidised 

iron surfaces, which is necessary for graphite to be taken into solution as austenite 

forms [50]. When graphite is taken into solution, paths appear between powder particles 

to allow escape of CO/CO2, thus preventing build up of potentially damaging gas 

pressure. The nitrogen route however is purely carbothermic and thus uses up some 

graphite for cleaning surfaces and, in so doing, lowers the carbon available for 

formation of the liquid phase [108-110]. The 95N2/5H2 atmosphere does not appear to 

provide sufficient H2 to maintain sufficiently low atmosphere dewpoint. It should be 

recalled that dewpoint is defined as H2/H2O ratio, the higher the ratio the better the 

dewpoint. Now if we have excess of H2 then, even if H2O is formed as oxides reduce 

and oxygen in the furnace is reduced, the dewpoint will be good. If we have only a 
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marginal amount of hydrogen, in our case not more than 5%, then in some regions the 

dewpoint will be poor and inhibit oxide removal and thus prevent the formation of clean 

surfaces and strong sinter necks. Graphite solution will be delayed and possibly block 

escape of gas formed during processing. If liquid begins to form before surfaces are 

adequately cleaned, then porosity could close, but may trap gas still being formed as 

surfaces are cleaned. Observation of fracture surfaces confirmed the formation of 

isolated large pores, although the overall density was only impaired by   ~0.1 g/cc.  

Now, depending on the amount of liquid phase controlled by a combination of carbon 

and silicon contents and sintering temperature, large improvement in sintered density 

was obtained with gas sintering now better than that of vacuum sintering. A typical 

sintered microstructure was shown in Figure 4.11.  

Manganese was added in the form of a gas-atomised master alloy (Fe-35Mn-4.4C) in an 

attempt to reduce either the sintering temperature necessary to produce sufficient liquid 

phase, thus promoting densification, or the amount of graphite. However, results 

obtained from these Mn containing compositions did not show a significant increase in 

sintered densities even with formation of a high amount of liquid phase (>20%) for both 

sintering furnaces either in vacuum or reducing atmosphere (90N2/10H2), as can be seen 

in Table 4.3. This was due to the manganese particles beginning to volatilise and to 

generate a cloud of manganese vapour (volatilisation begins at a temperature of 

~700⁰C) [50]. This vapour will spread and fill the pores thereby covering the particles‟ 

surfaces. From the results, it can be seen that combination of Si and Mn is best avoided 

due to formation of stable complex spinel type of oxides. This spinel oxide formation is 

due to the reduction of oxides by Si as SiC reacts, diffuses and forms a liquid during the 

heating part of the sintering cycle starting at ~1175ºC, i.e. the point at which Gibbs free 
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energy, ΔG(KJ) becomes negative, see appendix A. SiO2 and/or complex MnSiO3 is in 

evidence in specimens containing Mn. Moreover, calculations were obtained from HSC 

chemistry software, showing that the carbothermic reduction of the complex oxide 

(MnSiO3) should not occur until ~1320⁰C, see appendix A.  

Astaloy CrL powder has been used in this work in order to increase the mechanical 

properties, while this powder contains elements that strengthen the α-iron phase, such as 

Cr and Mo. During scanning electron microscope examination of Astaloy CrL powder 

particles‟ cross sections, small inclusions of silicate type slag plus a thin layer of oxide 

covering the particles‟ surfaces were both observed, obviously formed during the 

powder manufacturing process. These surface oxides and slag helped to prevent proper 

wetting of the particles‟ surfaces by the liquid phase, thus reducing the metallic bonding 

and neck growth. Because the oxides contaminated the pore surfaces and prevented 

adequate wetting, then huge pores were left behind, therefore densification was low 

compared with Astaloy 85Mo, as seen in Figure 5.4.     

 

 

 

 

 

 

 

Figure ‎5.4: Scanning electron micrograph shows number of slag and huge pores 

after sintering for Astaloy CrL powder. 
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Considering the theoretical calculations performed and examining the obtained 

microstructures it can be seen that the semi-closed container method must be producing 

an oxygen partial pressure as low as ~1E
-21

 atm. The recent work of Cias & Mitchell, 

2004, [50] presented successful sintering of Mn alloy steels at 1140⁰C in semi-closed 

containers, which demands this low partial pressure of oxygen to prevent oxide of 

manganese from forming. However, the very low partial pressure required to dissociate 

SiO2 shows that once this oxide forms there is little chance of reducing it using 

conventional sintering even using the semi-closed container system.  

Predominance diagrams (Tpp Diagrams) are another thermodynamic method to 

determine the partial pressures of O2, CO and CO2 necessary to achieve the metal-oxide 

reduction at a chosen equilibrium temperature. Predominance diagrams of MnO and 

SiO2 are in good agreement with the calculations stated previously in chapter three. 

Figures 5.5-5.6 show the oxygen partial pressure required to dissociate the metal oxide 

bond at different equilibrium temperatures. The partial pressure ratio of CO/CO2 

necessary for oxide dissociation at different equilibrium temperatures is shown in 

Figures 5.7-5.8, for metal oxides MnO and SiO2 respectively. It can be seen that lower 

partial pressure of CO is necessary for oxide dissociation as temperature is lowered 

[50].  
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Figure ‎5.5: Predominance diagrams of MnO, shows the oxygen partial pressure 

required to dissociate the metal oxide bond at different equilibrium 

temperatures; upper left) ~ 900⁰C and oxygen partial pressure 1.0E
-26

 

atm, upper right) 1140⁰C and oxygen partial pressure 1.0E
-21

 atm, 

bottom left) 1300⁰C and oxygen partial pressure 1.0E
-18

 atm, bottom 

right)  1350⁰C and oxygen partial pressure 1.0E
-17

 atm. 
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Figure ‎5.6: Predominance diagrams of SiO2, shows the oxygen partial pressure 

required to dissociate the metal oxide bond at different equilibrium 

temperatures; upper left) ~ 900⁰C and oxygen partial pressure 1.0E
-31

 

atm, upper right) 1100⁰C and oxygen partial pressure 1.0E
-25

 atm,  mid 

left) 1300⁰C and oxygen partial pressure 1.0E
-21

 atm,  mid right)  

1350⁰C and oxygen partial pressure 1.0E
-20

 atm. Also shows ‘MnSiO3’ 

slag which is quite stable in the presence of Mn vapour even at high 

temperature, bottom left) 1100⁰C and oxygen partial pressure 6.0E
-26

 

atm and bottom right) 1350⁰C and oxygen partial pressure 1.0E
-20

 atm. 
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Figure ‎5.7: Predominance diagrams of MnO, at different equilibrium temperature 

shows the partial pressure of CO/CO2, upper left) ~900⁰C, upper 

right) 1140⁰C, bottom left) 1300⁰C and bottom right) 1350⁰C. 
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Figure ‎5.8: Predominance diagrams of SiO2, at different equilibrium temperature 

shows the partial pressure of CO/CO2, upper left) ~900⁰C, upper 

right) 1140⁰C, bottom left) 1300⁰C and bottom right) 1350⁰C. 

 

Heat Treatment 

Following the sintering success and the ability to tailor density by Thermocalc 

prediction of liquid phase volume percentage versus composition and temperature it was 

decided to experiment with a combination of heat treatments that would produce tough 

microstructure with the possibility of re-sizing, despite the very high carbon contents. 

The heat treatment had to be modified as conventional oil quenching resulted in 

microcracking of the martensite, owing to thermo-mechanical shocks induced by 



Chapter 5                                                                                                         Discussion 

162 

 

crystallographic volume change as martensite is formed during the fast cooling process. 

An isothermal quench (auto-tempering) was conducted into a fan assisted oven running 

at Ms-(10-15ºC) for ~20-40 minutes, in order to improve the microstructure and avoid 

microcracking. Calculations were attempted using e.g. Andrew‟s formula to predict 

Martensite start temperature (Ms). These calculations were obviously in error, as they 

suggested that Ms would be less than room temperature and from experience this was 

incorrect.  

Predictive software using Bayesian networks [103] was also employed to predict 

Martensite start and Martensite 10% of completion temperatures, these results were in 

accord with the experimental ones. The Martensite start temperatures for various 

compositions are summarized in Table 4.5 and Figure 4.15 shows the data graphically. 

The fan assisted oven quench temperature depends on the alloy composition, as 

presented in Table 4.5. It is well known that martensite forms when the quenching rate 

is fast enough to prevent the carbon from diffusing, leading to formation of body 

centred tetragonal (BCT) crystal structure and a large volume change will occur. 

Therefore, the concept of this iso-thermal quench and hold procedure is to give enough 

time for carbon to diffuse, i.e. for auto-tempering take place, when the 10% of 

martensite transforms to tempered martensite, which in this case is composed of stable 

ferrite plus very fine eta-carbide. Thereby, partial loss of tetragonality of 

martensite occurs resulting in decrease in internal stress and an increase in toughness.  

When followed by cooling to room temperature to transform the rest of the available 

~90% martensite to BCT structure the accompanying volume increase will not produce 

sufficient internal stress to create micro cracking, i.e. the generated internal stress is less 

than the critical internal stress to cause cracking of the  martensite laths.  This procedure 
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ensured crack-free microstructures of martensitic structure, which were then 

spheroidised by reheating at ~750ºC for 3 hours to produce microstructures and 

hardnesses comparable favourably with similarly heat-treated wrought materials [91]. It 

is interesting to add that microstructures of UHCS are comparable to those of Damascus 

steels, as reported by Sherby and Wadsworth [111] in an article entitled “Ancient 

blacksmiths, the Iron Age, Damascus steels, and modern metallurgy”. 

 

Mechanical properties 

The three most important parameters influencing the mechanical properties of the 

sintered specimens were carbon content, sintering temperature and the cooling rate [73]. 

Carbon content plays the most important role in increasing the mechanical properties 

but in contrast reduces the elongation as a result of brittleness caused by presence of a 

network of grain boundary carbides (cementite). These cementite networks are very 

strong but brittle and as-sintered specimens failed at stresses of 590-720 MPa. 

Hardness values, for as-sintered and heat-treated specimens, were carried out on a 

Vickers machine with a 10kg load (HV10) and 20g (HV0.02) load for apparent and 

microhardness respectively, as presented in Tables 4.6-4.9. It is clearly shown that both 

apparent and microhardness values increased as the silicon and manganese contents 

increased, because silicon is known as an effective strengthening element, while the 

manganese is found to be very effective in shifting the C-curves (pearlite transformation 

curves) to the right and allows martensite to form even at lower cooling rates, thereby 

increasing hardness. Carbon has less effect on hardenability, since it shifts the pearlite 

transformation just slightly to the right, however when the carbon increases so does the 

hardness due to increased amount and type of martensite [73]. Also hardness values 



Chapter 5                                                                                                         Discussion 

164 

 

obtained from gas sintering are slightly higher than those obtained from vacuum 

sintering, this is as expected, because some amount of carbon was lost during vacuum 

sintering due to the Boudouard reaction.  

 

Yield strength, UTS, % elongation, and TRS, values were investigated and measured 

for both as-sintered and heat treated specimens for each base powder i.e. Astaloy 85Mo 

and Astaloy CrL, with different additive elements such as Si, C, and Mn as well as 

different lubricants, at different sintering time (e.g. 30-60min), temperature (e.g. 1285, 

1295 and 1300⁰C) and sintering atmosphere (vacuum or N2/H2 reducing atmosphere).  

The results showed that the spheroidised specimen of  Astaloy 85Mo and 1.35-1.4wt%C 

with an addition of 0.4-0.6wt-%Si, added as SiC, sintered at 1300ºC, improved the yield 

strength to ~400-410MPa, the UTS to ~900-945MPa, and the TRS to ~1644-1650 MPa, 

with plastic strain 16-18%. This was expected owing to, more liquid phase forming 

which leads to solid-solution strengthening and higher densification, these results are 

not as high as some literature values [13, 15, 16] for UHCSs, but the combination of 

strength and ductility, illustrated in Figure 4.18(b), allows further (thermo) mechanical 

working. However as silicon content increases so the % elongation decreases, mainly 

due to the ferrite strengthening effect of Si, while the cementite network precipitates. 

One other advantage of adding Si is that it reduces the thickness of the cementite 

networks formed at grain boundaries in the slow cooled as-sintered microstructure and 

makes solution of these networks easier to achieve in subsequent thermal treatments. 

Spheroidised samples of Astaloy 85Mo containing Mn showed slightly higher 

mechanical strength (not as much as expected) and hardness, e.g. UTS ~980MPa, Yield 

strength ~525MPa and TRS ~1960 MPa, with 10% plastic strain, while the hardness 
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was about 260HV10.  As stated above, Astaloy CrL powder has been used in this work 

in order to increase the mechanical properties, while this powder contains elements that 

strengthen the α-iron phase. But the mechanical properties were not high as expected, 

due to powder contamination which leads to low densification and therefore lower 

mechanical properties.  

Warm Forging  

Additionally and importantly the laboratory processing sequence is easily adapted to 

industrial processing. Warm forging compression tests at 700ºC [112] at strain rates 

varying from 10
-3

 - 1 sec
-1

 resulted in (nominal) strains in excess of 70%. With a 

sufficiently fine grain size, in the appropriate temperature range, super-plastic forming 

[94] should become possible with further improvement in strength and significant 

energy saving. 

PM spheroidised steel, with yield and fracture strengths above 400 and 900 MPa, 

respectively, and plastic strains of ~16% has already a very useful combination of 

mechanical properties. These can be further enhanced, to yield strengths above 740 

MPa, by warm forging at ~ 700°C. This technique has the added advantage of accurate 

dimensional control. Depending on strain rate, compressive peak stresses of  only 150-

470 MPa were required. Superplasticity, however, was not observed in this set of 

experiments. Further work, including with as-sintered materials, is planned. The 

proposed new method of evaluating yield strength of discs was shown to be acceptable 

by carrying out experiments on mild steel. The methodology was extended to specimens 

for which the yield strength could not be directly determined. Further validation, 

especially regarding the general applicability of the calibration factor, is required. 
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The yield strength increase through warm forging results from a drastically reduced 

(mean) grain size, d, from ~ 30 to 6-7 μm, formation of sub-grains, and probably an 

increase in the friction stress, ơ0, , consistent with the Hall-Petch relation: 

                                                              σy = ơ0 + kyd
−1/2

 

where σy  is yield strength and  ky  the Hall-Petch strengthening coefficient. Syn et al [8], 

for spheroidised steels, went on to express ơ0 in terms of the inter carbide spacing, 

which is reduced somewhat by the warm forging. 
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Chapter Six 

6 Conclusions  

In the present work, extensive experimental tests have been performed to enable the 

laboratory based production of  ultra-high carbon powder metallurgy steels, which are 

high density, have excellent spheroidised microstructure and mechanical properties that 

combine strength and ductility. Several problems have been faced throughout this work 

such as, mixing, compacting, sintering conditions and heat treatment; these can be 

concluded as follows:  

6.1 Compaction Characteristics 

1. Mixing of the prealloyed powder such as Astaloy 85Mo and Astaloy CrL with 

additives such as graphite, silicon, and manganese for 20 minutes each resulted 

in good homogenous blending when liquid lubricant was added to „glue‟ these 

additives to the base powder. This technique prevented segregation and gave 

reasonable green densities in the range 6.80-7.03 g/cm
3
 depending on the 

compaction pressure. 

2. The optimum compaction pressure, promoting highest densification and 

optimum microstructure, was found to be 600 MPa. 

3. Liquid lubricant shows better densification than using either PTFE die wall 

spray or acrawax lubricant. 

4. When liquid paraffin was substituted by polypropylene glycol diluted with 50% 

methanol higher sintered densities were obtained. The polypropylene glycol 
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burnt off leaving a network of grain boundary pores allowing escape of 

generated gases and the penetration of liquid phase thus enabling higher 

densification.     

6.2 Sintering Characteristics and Microstructures Achieved 

1. It became clear that the sintered density and microstructure were directly related 

to the alloy composition and sintering conditions such as sintering temperature, 

time and reducing atmosphere.  

2. Predicted data obtained from ThermoCalc software was very much in accord 

with experimental results.  

3. Drying graphite at 120⁰C overnight in order to reduce the moisture significantly 

improved the microstructure.  

4. Modifying the heating profile cycle, i.e. the fourth heating profile used, 

produced the best results. 

5. Alloy Fe-0.85Mo+0.6Si+1.4C, compacted at 600 MPa, sintered under 

90N2/10H2 gas at 1300ºC for 60 min, gave highest sintered density ~ 7.75 g/cm
3
.  

6. As the silicon content increased so did the sintered density and microstructure 

with only very tiny pores observed. At the same time mechanical properties 

improved in line with density and microstructure.  

7. Manganese has less effect on the sintered density, owing to manganese vapour 

generated during sintering process, but is very effective for increasing the 

hardenability of the steel.  

8. Astaloy CrL, produced low sintered densities and non-uniform microstructure, 

resulting from as-received powder impurities, and that the data obtained from 
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this powder are not consistent and depend very much on the gas atmosphere 

employed. Furthermore, specimens were distorted by forming relatively massive 

„blow-holes‟ especially when sintered under pure nitrogen atmosphere. These 

„blow-holes‟ were created by gas pressure generated as chromium oxides were 

reduced carbothermically.  

6.3  Heat treatment response and hardness values 

1. Fully martensitic structures dominated all the heat treated specimens produced 

via both oil quenching and forced air cooling combined with upper and lower 

bainite and some retained austenite.  

2. Micro-cracks were visible optically across the martensite laths in most of the 

microstructures of conventional oil quenched and air cooling heat treated 

specimens.  

3. An isothermal quench (auto-tempering) was conducted into a fan assisted oven 

running at Ms-(10-15ºC) for ~20-40 minutes in order to improve the 

microstructure, minimise internal stress and therefore, crack-free microstructures 

of martensitic structure were obtained.  

4.  The crack-free microstructures were spheroidised by reheating at ~740-760ºC 

for 3 hours to give a ferrite plus fine sub-micron carbide microstructure.  

6.4 Mechanical Properties 

1. High mechanical properties, i.e. Yield strengths ~410 MPa, fracture strengths 

~950 MPa and strains ~16% were obtained from alloy composition of Fe-

0.85Mo+0.6Si+1.4C processed with polypropylene glycol diluted with 50% 
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methanol. This combination of properties is very unusual for ultra-high carbon 

steels, which normally exhibit brittle behaviour. 

2. It should be emphasised that the combination of Si and Mn is best avoided due 

to formation of stable complex spinel type oxides, which tend to inhibit 

densification thus leading to lower mechanical properties. 

3. Fracture microstructures showed higher ductility for base powder of Astaloy Fe-

85Mo, than those made from Astaloy CrL. 

4. Specimens made from Astaloy CrL powder showed lower mechanical properties 

than expected, due to the as-received powder contamination.  

5. Generally, mechanical properties are not as high as some other results reported 

for UHCSs, but the combination of strength and ductility allows further (thermo) 

mechanical working. 

6.5 Warm Forging Operation 

Warm forging of  spheroidised PM Fe-1.4C-0.6Si-0.85Mo  at 700°C reduced the ferrite 

grain size from ~30 to 6-7 μm, with sub-grains and a fine dispersion of sub-micron 

carbides. As a result of warm forging the yield stress increased from ~ 400 to above 700 

MPa. A method commonly used to determine the tensile strength of brittle materials, 

diametral compression of discs, has been adapted to the evaluation of the yield stress of 

a ductile material. These preliminary experiments indicate that warm forging promises 

improvement of both properties and dimensional control for knowledge transfer to an 

industrial situation, e.g. for high-density engine PM connecting rods. 
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6.6 Future Work 

To consider better use of warm forging by: 

1) Minimising energy usage by lowering sintering temperature thus less 

densification and finer prior austenite grain size, therefore possible use of post-

sintering warm forging where process densification will occur at the same time 

as the breaking up of cementite networks and spheroidisation of carbides. 

2) Investigate temperature/strain rate response by employing a heated tensile 

testing jig to determine optimum conditions necessary for super-plastic forming. 

3) Further validation, especially regarding the general applicability of the 

calibration factor, is required. 
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Appendix A: ‘Metal oxide reduction reactions’ 

HSC Chemistry was used to calculate the metal oxide reduction temperature as seen in 

the following reactions. 

Reaction of SiC with the MnO. 

HSC chemistry results are tabulated below. 

SiC + 3MnO = SiO2 + 3Mn + CO(g)  

 

 

 

 

 

 

 

 

 

 

Reaction of SiC to reduce the MnO formed during the heating part of the sintering cycle 

begins at ~1175⁰C, i.e. the point at which delta G (kJ) becomes negative. This must be 

why we see SiO2 or perhaps complex MnSiO3 in our sintered specimens. Some Si will 

T 

⁰C 
deltaH 

kcal 

deltaS 

cal/K 

deltaG 

kcal 

K 

  

Log(K) 

  

1000 51.71 35.522 6.486 7.70E-02 -1.113 

1020 51.721 35.53 5.775 1.06E-01 -0.976 

1040 51.732 35.539 5.064 1.44E-01 -0.843 

1060 51.742 35.547 4.354 1.93E-01 -0.714 

1080 51.753 35.554 3.642 2.58E-01 -0.588 

1100 53.318 36.704 2.918 3.43E-01 -0.464 

1120 53.386 36.753 2.183 4.55E-01 -0.343 

1140 54.803 37.757 1.446 5.98E-01 -0.224 

1160 54.897 37.823 0.69 7.85E-01 -0.105 

1180 54.992 37.889 -0.067 1.02E+00 0.01 

1200 55.089 37.955 -0.825 1.33E+00 0.122 

1220 55.187 38.022 -1.585 1.71E+00 0.232 

1240 55.286 38.088 -2.346 2.18E+00 0.339 

1260 64.641 44.246 -3.194 2.85E+00 0.455 

1280 64.739 44.309 -4.08 3.75E+00 0.574 

1300 64.836 44.371 -4.967 4.90E+00 0.69 

1320 64.932 44.432 -5.855 6.36E+00 0.803 

1340 65.027 44.491 -6.744 8.20E+00 0.914 

1360 65.122 44.55 -7.634 1.05E+01 1.022 

1380 65.216 44.607 -8.526 1.34E+01 1.127 

1400 65.309 44.663 -9.419 1.70E+01 1.23 
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have gone into solution in the Fe matrix as we have seen during sinter quench 

experiments where SiC is beginning to dissociate at ~900-1000⁰C. 

Reduction of Complex oxide (MnSiO3).  

It is also possible that a complex oxide (MnSiO3) could be formed during partial 

reduction of MnO starting at ~1150⁰C. 

 

SiC + 4MnO = MnSiO3 + 3Mn + CO(g) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T 

⁰C 
deltaH 

kcal 

deltaS 

cal/K 

deltaG 

kcal 

K 

  

Log(K) 

  

1000 44.903 31.66 4.595 1.63E-01 -0.789 

1020 44.919 31.673 3.962 2.14E-01 -0.67 

1040 44.936 31.686 3.328 2.79E-01 -0.554 

1060 44.954 31.699 2.694 3.62E-01 -0.442 

1080 44.972 31.712 2.06 4.65E-01 -0.333 

1100 46.546 32.869 1.412 5.96E-01 -0.225 

1120 46.622 32.924 0.754 7.62E-01 -0.118 

1140 48.049 33.935 0.094 9.67E-01 -0.015 

1160 48.154 34.008 -0.586 1.23E+00 0.089 

1180 48.261 34.083 -1.267 1.55E+00 0.191 

1200 48.37 34.157 -1.949 1.95E+00 0.289 

1220 48.481 34.232 -2.633 2.43E+00 0.385 

1240 48.594 34.308 -3.318 3.02E+00 0.479 

1260 57.964 40.476 -4.091 3.83E+00 0.583 

1280 58.078 40.55 -4.901 4.90E+00 0.69 

1300 74.228 50.876 -5.806 6.41E+00 0.807 

1320 74.421 50.997 -6.825 8.64E+00 0.936 

1340 74.612 51.116 -7.846 1.16E+01 1.063 

1360 74.802 51.233 -8.87 1.54E+01 1.187 

1380 74.99 51.348 -9.896 2.03E+01 1.308 

1400 75.177 51.46 -10.924 2.67E+01 1.427 
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Possibility to reduce complex MnSiO3 oxide carbothermically.  

The reducing of the complex MnSiO3 oxide carbothermically, should not occur until 

~1320⁰C but in our semi-closed container (providing it is almost full to reduce amount 

of gas volume available) then the amount of O2 available coupled with a low positive 

pressure of CO <<1atmosphere should lower the reaction temperature. This should 

ensure that at least some of the complex oxide is reduced back to Mn and Si for alloying 

with the matrix. 

MnSiO3 + 4C + H2O = Si + Mn + 4CO(g) + H2(g) 

T deltaH deltaS deltaG K Log(K) 

C kcal cal/K kcal     

1000 259.943 165.639 49.06 3.78E-09 -8.422 

1020 259.447 165.252 45.751 1.85E-08 -7.733 

1040 258.95 164.871 42.45 8.60E-08 -7.066 

1060 258.452 164.494 39.156 3.81E-07 -6.42 

1080 257.953 164.123 35.87 1.61E-06 -5.794 

1100 257.972 164.138 32.587 6.50E-06 -5.187 

1120 257.491 163.79 29.307 2.52E-05 -4.598 

1140 257.46 163.765 26.035 9.40E-05 -4.027 

1160 256.986 163.433 22.763 3.38E-04 -3.472 

1180 256.512 163.104 19.497 1.17E-03 -2.933 

1200 256.039 162.781 16.238 3.90E-03 -2.409 

1220 255.564 162.461 12.986 1.26E-02 -1.901 

1240 255.09 162.145 9.74 3.92E-02 -1.407 

1260 257.7 163.864 6.472 1.20E-01 -0.923 

1280 257.224 163.556 3.197 3.55E-01 -0.45 

1300 240.71 152.997 0.023 9.93E-01 -0.003 

1320 240.154 152.646 -3.034 2.61E+00 0.416 

1340 239.598 152.299 -6.083 6.67E+00 0.824 

1360 239.042 151.957 -9.126 1.67E+01 1.221 

1380 238.488 151.619 -12.161 4.05E+01 1.608 

1400 237.933 151.286 -15.19 9.65E+01 1.984 
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Abstract  

This work attempts to offer solutions to some of the problems of processing high carbon, high-density 

steels. Thermocalc modelling was used to predict the amount of densifying liquid phase for a range of 

alloys versus sintering temperature, in the range 1285 to 1300
○
C and 1.2 to 1.4wt.% C. The water gas 

reaction forms CO gas in the early part of sintering and can lead to large porosity, which lowers 

mechanical properties. With the use of careful powder drying, low dew point atmospheres and 

optimisation of heating profiles, densities in excess of 7.4 g/cc can readily be achieved. The brittle 

microstructure, containing carbide networks, is transformed by intelligent heat treatment to a tougher one 

of ferrite plus sub-micron spheroidised carbides. This gives the potential for production of components, 

which are both tough and suitable for sizing to improve dimensional tolerance. 

 

Keywords: PM processing, high-carbon steels, heat treatment, brittle carbides, spheroidisation, ductility, 

CO generation. 

 

INTRODUCTION 

Previously Mitchell et al [1, 2] attempted high-carbon sintering utilising thermally degraded PVC as the 

major carbon donor bonded to the iron base powder. The use of thermally degraded PVC was in response 

to problems of banding of the microstructure, which occurred due to segregation of graphite during 

handling [3]. Degradation of PVC is environmentally damaging due to hydrochloric acid forming as 

chlorine is driven from the PVC and which acts to catalytically convert the structure to a conjugated 

polymer containing double bonds. Therefore the subject was subsequently revisited using only graphite as 

the carbon source, but now bound to the surfaces of the base powder by judicious use of liquid paraffin 

during the mixing process. It is the purpose of this communication to show that a careful combination of 

Thermocalc modelling, powder mixing, processing and heat treatments can help minimise the potential 

problems of high carbon sintering and create a microstructure suitable for the production of components 

with good dimensional tolerance and which are subjected to high cyclical loadings.  

 

 

EXPERIMENTAL PROCEDURES 

 

Höganäs Astaloy 85Mo HP was used as the base iron powder. Carbon was introduced as fine graphite (of 

99.5% purity) varying from 1.2 to 1.45wt%.  0.2 – 0.6 wt% silicon was added as fine <9μm silicon 

carbide powder and manganese as fine <20μm Fe-Mn-C in the form of a gas atomised master alloy. 

Starting compositions chosen can be seen in Table 1. Turbula powder mixing was performed 

initially without a binder and then as follows: the base powder and silicon carbide (plus 

Fe-Mn-C master alloy when required) were mixed for 20 minutes and then 0.5 cc of 

liquid paraffin/100 g of powder mix was carefully added and mixing resumed for 20 

minutes in order to coat base powder and additive metal powders with paraffin. The 

mixing was then stopped, graphite powder added and mixing re-started in order to 

„glue‟ the graphite to the base powder particles.  

______________________________________________________________________

_______________ 
Stephen C Mitchell, Mansour Youseffi, Alhadi S. Abosbaia, Engineering Materials Research Group, School of Engineering, Design 

& Technology, University of Bradford, Bradford, United Kingdom  
Jonah Ernest, Botswanan Bureau of Standards, Botswana  
 

 



Appendix  B                                                                                                    First Paper 

191 

 

 
Die compaction at  600 MPa of 15.3 mm x 15.3 mm x 5 mm size specimens was performed and followed 

by sintering in nearly full semi-closed steel containers with a labyrinth seal, illustrated in Fig.1. Pure 

(99.9%) alumina paper was placed between the bottom of the container and the samples to ensure no 

diffusion of carbon between sample and container. The container had no additional oxygen getter 

material. The container was pushed into the mullite tube furnace. The furnace atmospheres were either 

10% hydrogen – 90% nitrogen with a gas flow of ~500 cm
3 

min
-1 

and an inlet dew point no worse than -

60°C or vacuum.  At least 6 compacts were simultaneously sintered; heating rates were 10°C min
-1

 to 

600ºC with a hold of 15 minutes for removal of liquid paraffin and adsorbed water and hydroxides, then 

10ºC min
-1

 to 900ºC with a hold of 2 hours, to allow distribution of the carbon and silicon, followed by 

heating to the sintering temperature at 5ºC min
-1

 with sintering time of 30 minutes at sintering 

temperatures varying from 1285 to 1295°C. After sintering, the specimens were allowed to cool slowly to 

room temperature.  

Heat treatments were performed using a container with flowing argon atmosphere placed into a pre-

heated muffle furnace to dissolve carbide networks, followed by quenching to produce a martensite plus 

retained austenite structure. The samples were then placed immediately into a refrigerator in an attempt to 

transform some of the retained austenite to martensite. This quenching procedure was later modified to an 

iso-thermal treatment and is detailed in the following text.  A spheroidising treatment followed using a 

container with flowing argon gas inserted into a muffle furnace and heated to AC1 plus 20ºC temperature 

for a particular alloy then held for 2 hours, followed by slow cooling to room temperature. 

 

Metallographic specimens were prepared by mounting in Bakelite, polishing, etching in Nital (2 vol.% 

HNO3 in ethanol) and examined either using a Reichert MeF3 optical microscope or a JEOL 6400 

scanning electron microscope equipped with a Kevex Sigma-3 microanalysis system. 

 

 

 
 

Fig. 1: Schematic of semi-closed sintering container  

 

 

To minimise the number of necessary sintering experiments, Thermocalc, TCW3, thermo-chemistry 

software was used to generate phase equilibrium diagrams with the especial aim to predict the amount of 

liquid phase that would be present for a given alloy at a particular sintering temperature. The assumption 

was made from experience that ~15 to 20% volume of liquid would be necessary for efficient liquid phase 

sintering and densification. The effect of varying the amounts of carbon, silicon and manganese was 

modelled and typical results are presented in Table 1 below. 
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Table 1: Thermocalc Liquid Phase Volume % versus temperature and composition. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXPERIMENTAL RESULTS 

 

Microstructural observations of Figures 2a and 2b led to the belief that the additional porosity and its size 

must be linked to gas evolution during the heating cycle. The obvious gas production route was that of the 

water gas reaction (see below for details). It was decided therefore to dry the graphite by heating to 120ºC 

overnight in a vacuum oven and then reproducing the same composition mixes but with reduced water 

content. The results can be seen below in Figures 3 and 4: Figure 3 shows gas sintered microstructure 

before graphite drying and Figure 4 after graphite drying. Even after drying the best density obtained at 

1295ºC in gas atmosphere was ~7.4 g/cm
3
 compared with 7.55 g/cm

3
 sintered in vacuum. This is clearly 

illustrated in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Microstructural variation for the same composition (Fe-0.85%Mo+0.6%Si+1.4%C+0.5cc 

LP) in different sintering furnaces a) vacuum furnace (left) and b) gas atmosphere (90N2/10H2) 

furnace (right). 
 

  

Base-Powder 
Carbon 

wt. % 

Silicon 

wt. % 

Manganese 

wt. % 

Temperature 

(ºC) 

Liquid Phase 

% 

Astaloy 

85Mo 

1.3 0.3 0.0 1285 2.19 

1.3 0.3 0.0 1295 5.81 

1.3 0.4 0.0 1285 8.57 

1.3 0.4 0.0 1295 12.3 

1.3 0.5 0.0 1285 10.81 

1.3 0.5 0.0 1295 13.37 

1.3 0.6 0.0 1285 10.8 

1.3 0.6 0.0 1295 15.27 

1.4 0.3 0.0 1285 13.44 

1.4 0.3 0.0 1295 16.67 

1.4 0.4 0.0 1285 14.7 

1.4 0.4 0.0 1295 18.1 

1.4 0.5 0.0 1285 16.40 

1.4 0.5 0.0 1295 19.9 

1.4 0.6 0.0 1285 18.1 

1.4 0.6 0.0 1295 20.8 

1.27 0.6 1.5 1300 18.8 

1.3 0.65 1.00 1300 20.00 

b a 
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Again, on comparing vacuum and gas sintered microstructures, it was obvious that some gas „bubbles‟ 

were still preventing maximum densification during sintering. It was therefore decided to adjust the 

conventional sintering heating profile to minimise the amount of alpha sintering due to the Fe in Fe self 

diffusion by speeding up the heating rate and also increasing the temperature for the first hold to above 

the alpha-gamma transition temperature. The profile was changed as follows:  heat 10ºC min
-1

 to 900ºC 

with a hold of 15 minutes for removal of liquid paraffin and adsorbed water and hydroxides, then 10ºC 

min
-1

 to 1100ºC with a hold of 2 hours to allow distribution of the carbon and silicon, followed by heating 

to the sintering temperature at 5ºC min
-1

 with sintering time of 30 minutes.  

 

Figure 3: Large pores of alloy composition Fe-0.85%Mo+0.6%Si+1.4%C+0.5 cc LP: 

 sintering at 1295ºC in gas atmosphere (90N2/10H2) before drying graphite powder. 

Figure 4: Few pores of alloy composition Fe-0.85%Mo+0.6%Si+1.4%C+0.5cc 

LP 

 sintered in gas atmosphere (90N2/10H2) at 1295 ºC after drying graphite at 

120ºC. 
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Figure 5: Comparison of vacuum and gas sintered densities at 1295

○
C with 0.6wt% Si addition versus 

temperature (LP=liquid paraffin): original heating profile. 

 

The results showed significant improvements in sintered densities, which can be seen below in Table 3 

and a graphical representation in Figure 6.  

 

 
 

Figure 6: Comparison of vacuum and gas sintered densities at 1295
○
C with 0.6wt% Si addition versus 

temperature (LP=liquid paraffin): Dried graphite plus modified heating profile. 
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 Table 3: Density results for gas and vacuum sintering after modification of the heating profile and drying 

of graphite powder. 

  

Gas Furnace Results 1295ºC: Fe-0.85%Mo-0.6%Si:  

LP=liquid paraffin: Heating Profile 2 

Composition 

(Wt%) 

Sample 

No. 

Green Density 

(g/cc) 

Sintered 

Density (g/cc) 

1.4C + LP 1.1 6.84 7.70 

1.4C + LP 1.2 6.78 7.75 

1.4C 2.1 6.74 7.65 

1.4C 2.2 6.87 7.63 

1.375C + LP 7.1 6.84 7.67 

1.375C + LP 7.2 6.87 7.69 

1.375C 8.1 6.92 7.64 

1.375C 8.2 6.89 7.63 

1.35C + LP 5.1 6.86 7.64 

1.35C + LP 5.2 6.81 7.63 

1.35C  6.1 6.83 7.70 

1.35C  6.2 6.88 7.61 

1.3C + LP 3.1 6.76 7.54 

1.3C + LP 3.2 6.87 7.50 

1.3C  4.1 6.84 7.05 

1.3C  4.2 6.79 7.04 

Vacuum Furnace Results 1295ºC: Fe-0.85%Mo-0.6%Si: 

LP=liquid paraffin: Heating Profile 2 

Composition 

Wt% 

Sample 

No. 

Green Density 

(g/cc) 

Sintered 

Density (g/cc) 

1.4C + LP 1.3 6.86 7.69 

1.4C + LP 1.4 6.75 7.72 

1.4C 2.3 6.88 7.66 

1.4C 2.4 6.80 7.65 

1.375C + LP 7.3 6.93 7.65 

1.375C + LP 7.4 6.93 7.64 

1.375C 8.3 6.89 7.59 

1.375C 8.4 6.89 7.60 

1.35C + LP 5.3 6.90 7.62 

1.35C + LP 5.4 6.90 7.60 

1.35C  6.3 6.88 7.63 

1.35C  6.4 6.90 7.66 

1.3C + LP 3.3 6.88 7.39 

1.3C + LP 3.4 6.92 7.44 

1.3C  4.3 6.81 7.10 

1.3C  4.4 6.94 7.07 

 

 

Metallographic and Microstructural Observations 

 

The sintered microstructures consisted of fine pearlite plus cementite networks at the grain boundaries. A 

typical example is presented in Fig. 7 containing 1.4wt%C and 0.6wt%Si sintered at 1295ºC.  The 

microstructures of both gas and vacuum sintered samples were very similar when processed using dried 

graphite and the modified heating profile. It is obvious from the microstructure that the material would be 

brittle due to the grain boundary cementite network and it was necessary to design heat treatments to 

confer some ductility to the compacts. 

Severe quenching into oil from 970°C invariably led to micro-cracking across the martensite laths (see 

Fig. 8) and a modified iso-thermal quench/autotemper route was chosen (see details in Discussion) and 

the crack-free microstructure is presented in Figure 9. 
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The successfully hardened alloy was spheroidised at 750°C for 2 hours to give a ferrite plus fine carbide 

microstructure, is presented in Figure 10. 

 

 

 

Figure 7: Typical as-sintered microstructure showing fine pearlite matrix with cementite networks 

at prior austenite grain boundaries. 

 

 

 

 

 

Figure 8: Microcracking resulting from large volume change of martensite during severe quench. 
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Figure 9: Martensitic microstructure free from cracks following a quench from 970
○
C into fan 

assisted oven at 180
○
C and isothermal hold for 2 hours, followed by removal from oven and cooling 

to room temperature. 

 

 

 

 

Figure 10: Microstructure following spheroidising treatment at 750
○
C for 3 hours: Shows ferrite 

matrix plus fine well dispersed spheroidal carbides. 

 

 

 

 

 

 



Appendix  B                                                                                                    First Paper 

198 

 

DISCUSSION 
 

The work presented here has the ultimate aim to increase dynamic mechanical properties by 

improvements in density and optimisation of microstructure by careful selection of processes, i.e. mixing, 

binding, alloying, heating profile and intelligent heat treatment. The modulus of ferrous materials is 

highly dependent on the density as can be seen in Figure 11 below. 

 

 
 

Figure 11: Dependence of Young’s modulus on sintered density, also showing normal PM limits 

and the targeted limit for wrought materials [5]. 

 

Many challenging problems had to be solved during this work aimed at the production of a carbide plus 

ferrite structure soft enough to allow limited re-sizing for dimensional control, namely: inhomogenous 

distribution of graphite during mixing and handling, excessive gas formation creating gas „bubbles‟ 

during sintering, micro-cracking of the structure during quenching due to volume change induced by 

transformation to martensite.  

 

The graphite distribution problem was solved efficiently by introducing 0.5 cm
3
 of liquid paraffin per 

100g of powder to be mixed. This necessitated a modified mixing procedure where the Astaloy 85Mo and 

silicon carbide powders were Turbula  mixed with liquid paraffin for 10 minutes, then the graphite 

powder was added and further mixing took place for 15 minutes to „glue‟ the graphite to the Astaloy 

85Mo. After this procedure was put into place, no further problems of graphite separation were noted.  

 

The problem of gas formation and the large sintered porosity presented more of a challenge to solve. It 

was noted that, on comparing the initial trial samples from gas and vacuum furnace sintering, porosity 

was less for vacuum. This was obviously because more gas could be pulled from the internal part of the 

vacuum sintering compact during the early part of heating while porosity was still interconnected.  Also 

the evolving gas must be formed either from reduction of oxides or from adsorbed water vapour. CO2/CO 

gas production is dictated by kinetics as follows: 

 

C + H2O  CO + H2         (Water gas reaction: From ~500ºC) 

C + 2FeO  2Fe + CO2 (From ~500ºC) 

CO2 + C  2CO   (Boudouard reaction: From ~500ºC complete ~930ºC) 

 

 

 Therefore removal of the adsorbed water vapour was attempted by drying the graphite at 120ºC in a 

vacuum oven overnight before mixing. This proved successful in reducing the porosity but did not 

completely remove it, especially in the gas sintering process. It was discovered that there was another 

reason for retention of gas porosity. Remembering that self diffusion of Fe in Fe is approximately 100 

times greater in the alpha phase than in gamma phase and that time is also a strong variable, the heating 

profile was changed to minimise time spent in the alpha temperature range to reduce solid-state 

densification.  Also the temperature to ensure efficient carbon and silicon diffusion was increased to 
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1100ºC from 900ºC with a hold of 2 hours before finally raising to the sintering temperature at 5ºC min
-1

 

with sintering hold of 30 minutes.  This combination finally proved successful in increasing sintered 

density and removing the large gas pores in the structure.  

 

Now, depending on the amount of liquid phase controlled by a combination of carbon and silicon contents 

and sintering temperature, large improvement in sintered density was obtained with gas sintering now 

closely resembling that of vacuum sintering. A typical sintered microstructure was shown above in Figure 

7.  

Following this success and the ability to tailor density by Thermocalc prediction of liquid phase volume 

percentage versus composition and temperature it was decided to experiment with a combination of heat 

treatments that would produce tough microstructure with the possibility of re-sizing, despite the very high 

carbon contents. Lessons for prospective heat treatments can be learned from the area of high carbon wire 

drawing and also from experiments conducted by the Stackpole Company over the last decade. It was 

decided to use a simple quenching heat treatment to produce initially a martensite plus retained austenite 

structure. This was performed by heating in a small container, through which argon was flowing, placed 

into a muffle furnace pre-heated to 950ºC and held for 30 minutes after reaching temperature to ensure 

that all carbides were taken into solution. The samples were quickly quenched into oil, then sectioned and 

microstructures examined carefully. This showed problems of microcracking, where large volume change 

and hence build up of internal stress had occurred. The experiments were repeated using air cooling to 

room temperature but again microcracks appeared due to the high hardenability of the material. This 

again prompted some serious thought to provide a solution to the problem and after consulting heat 

treatment text books and looking at TTT and CCT diagrams, it was decided to attempt an isothermal 

quench into a fan assisted oven running at 180ºC. This temperature was decided on after performing 

calculations for martensite start temperature (Ms) using Andrew‟s formula [4]. For the Fe- 0.85Mo-0.6Si-

1.4C material the Ms temperature was found to be 210ºC and the Ms-10% temperature ~180ºC. To 

improve the chances of success this iso-thermal quench was allowed to run for 2 hours in the hope that 

auto-tempering of the martensite laths would reduce internal stresses before the compacts were removed 

from the furnace and allowed to transform further on cooling to room temperature. The samples were 

sectioned and examined and showed no micro-cracking and still showed hardness of ~650-700HV10.  

These successfully hardened specimens were then given a standard spheroidising treatment to try to 

produce a ferrite plus sub-micron carbide structure suitable for structural components such as automotive 

or compressor connecting rods and also soft enough to allow a modest amount of re-sizing for 

dimensional control purposes. A typical spheroidised microstructure is shown in Figure 10 having a 

hardness of   ~160-180HV10. 

 

 

 

CONCLUSIONS 

 

The work reported here looks extremely promising with gas sintering now producing marginally higher 

density than the more expensive vacuum sintering route. Mechanical and re-sizing tests are planned for 

the near future to ensure that the microstructural evidence obtained is adequately translated into the 

necessary properties for commercial exploitation. 

Further work is planned and the effects of manganese additions, in the form of a master alloy powder, are 

also being investigated in an attempt to reduce either the amount of graphite or the sintering temperature 

necessary to produce sufficient liquid phase to promote densification.  

 

ACKNOWLEDGEMENTS 

 

The authors wish to thank The School of Engineering, Design & Technology at The University of 

Bradford for making facilities available for this work and are grateful to Hoganas UK for supplying the 

Astaloy 85Mo base powder. Also thanks are expressed to Ms. Linda Maude for her technical assistance. 

 

References: 

1. Mitchell Stephen C., Georgiev Jordan and Stoytchev Marin, 

"Mechanical properties of Mn-Cr-Mo steels nitrogen sintered from 

hydrocarbon-coated powders", Proc. of PM2004 Congress, Vol. 3, pp 313-318, Vienna, 17- 21
st
 

October, 2004. ISBN 1899072 15 2 



Appendix  B                                                                                                    First Paper 

200 

 

2:  T. PIECZONKA, J. GEORGIEV, M. STOYTCHEV, S.C. MITCHELL, T. TEODOSIEV and S. 

GYUROV, Proc. Euro PM2003, EPMA, Vol. 1, pp 441-446. 

3:  S.C. MITCHELL, M. SELECKÁ, M. STOYTCHEV, NATO Science for Peace project 972395 Final 

Report, April 2003. 

4:  Steel Forming and Heat Treatment Handbook, Antonio Augusto Gorni, April 2007, 

www.gorni.eng.br . 

5: United States Patent US5516483: Hi-density Sintered Alloy, Stackpole Ltd. (CA), 1996. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.gorni.eng.br/


Appendix B                                                                                                Second Paper 

201 

 

LIQUID PHASE SINTERING, HEAT TREATMENT AND 

PROPERTIES OF ULTRA HIGH CARBON STEELS 
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Abstract 

ThermoCalc modelling was employed to predict liquid phase amounts for Fe-0.85Mo- (0.4-0.6)Si-(1.2-

1.4)C in the temperature range 1285-1300ºC and such powder mixes were pressed and liquid phase 

sintered.  In high-C steels carbide networks form at the prior particle boundaries, leading to brittleness, 

unless the steel is heat-treated. To assist the breaking up of these continuous carbide networks, 0.4-0.6% 

silicon, in the form of silicon carbide, was added. After solution of processing problems associated with 

the formation of CO gas in the early part of the sintering cycle, and hence large porosity, densities in 

excess of 7.75g/cc were attained. A spheroidising treatment resulted in microstructures having the 

potential of producing components, which are both tough and suitable for sizing - to improve dimensional 

tolerance. Yield strengths up to 410 MPa, fracture strengths up to 950 MPa and strains of up to 16 % 

were attained. 

 

Keywords: Ultra-high carbon PM steels, phase diagram modelling, liquid phase sintering, 

spheroidisation. 
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Introduction   

Liquid phase sintering, technically proven for e.g. high speed steels
1-3

, has been shown, on the laboratory 

scale
4
, to be applicable to structural steels. For direct sintering to full density of high speed steels, 

annealed high-carbon powders tend to be used. When the starting powder is low-carbon (alloyed) iron, 

however, one of the processing problems is the introduction of carbon. If it is added simply as graphite, 

segregation during handling
5 

results in banding of the microstructure. Mitchell et al
5 

attempted high-

carbon sintering utilising PVC, which had been heated in argon atmosphere to catalytically convert the 

structure to a conjugated polymer containing double bonds, as the major carbon donor bonded to the iron 

base powder. This conversion technique, however, is environmentally damaging, as hydrochloric acid 

forms from the PVC and is driven off as a corrosive vapour. This communication deals with a modified 

method of introducing graphite, by a judicious use of liquid paraffin or polypropylene glycol, bound to 

the surfaces of the base powder, during the mixing process. In order to optimise the sintering cycle, 

ThermoCalc modelling was employed to design and predict combinations of alloy composition(s) and 

temperature(s) to maintain a permanent liquid phase during sintering, and thus promote densification with 

a low porosity microstructure.  

Ultrahigh-carbon steels
6-17

, UHCSs, i.e. where C is in the range of 1.0-2.1%,
 
have tended to be neglected 

by industry due to their brittleness, resulting from the presence of a severe grain boundary carbide 

network. Traditional heat treatments used for normal steels create coarse microstructures
9
; a 

spheroidisation treatment, however, can produce fine spheroidised carbides in fine ferrite. PM UHCSs 

have been extensively studied by Sherby et al 
6,8,9,11-15

. Yield strengths reaching 1.5 GPa
10

 and super-

plastic properties 
7,11,14,15,17

 of UHCSs have been reported. 

EXPERIMENTAL PROCEDURES 

Höganäs Astaloy Mo85HP was used as the base iron powder. Carbon was introduced as fine graphite (of 

99.5% purity), varying from 1.2 to 1.45wt%, and silicon, 0.4 – 0.6 wt%, was introduced as fine <9µm 

silicon carbide, which reacts with the iron powder forming a Fe-Si-C liquid phase at ~1080°C 

(ThermoCalc). Starting compositions are recorded in Table 1. Turbula dry mixing of the base powder and 

graphite was carried out for 20 minutes. Using dry wall lubrication, these powders were pressed: adequate 

green densities were recorded, but the microstructures exhibited banding. To distribute C and Si 

uniformly, the heating profile included a high temperature hold below the sintering temperature. Liquid 

paraffin was introduced into the powder mix, increasing the base carbon level by about 0.05%, thus 

creating more liquid phase during sintering. Then powder mixing was performed as follows: 100 g of the 

base powder and silicon carbide were dry mixed for 20 minutes. Then 0.5 cc of liquid paraffin was 
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carefully added to the powder and mixing resumed for 20 minutes - thereby coating the metal powders 

with paraffin. The mixing was then stopped, graphite powder added and mixing re-started in order to 

„glue‟ the graphite to the base powder particles. Metallographic specimens 15.3 mm x 15.3 mm x 5 mm 

high were die compacted, generally at 600 MPa. Green and sintered densities were measured using 

physical calculation for ρ: green densities were    ~ 6.8 g/cc.  

Sintering was carried out in nearly full semi-closed steel containers
18

 pushed into a mullite tube furnace, 

with pure (99.9%) alumina paper placed between the bottom of the container and the samples - to ensure 

no diffusion of carbon between sample and container. Each container had a labyrinth seal, but no 

additional oxygen getter material. The furnace atmospheres were either vacuum or nitrogen plus 0-10% 

hydrogen, with a gas flow of ~500 cm
3 

min
-1 

and an inlet dew point no worse than -60°C.  Sintering 

temperatures were chosen in accord with ThermoCalc calculations (see Fig. 1) to ensure presence of 2-

20% liquid phase (Table 1). At least 6 compacts were simultaneously sintered. Dry mixed compacts were 

concurrently sintered with those that had liquid paraffin added to the powder mix. 

  Initially heating rates were 10C min
-1

 to 600ºC with a hold of 15 minutes for the removal of 

liquid paraffin and adsorbed water and hydroxides, then 10ºC min
-1

 to 900ºC, with a hold of 2 hours, to 

allow distribution of carbon and silicon, followed by heating to the sintering temperature at 5ºC/min, with 

sintering time of 30-60 minutes at temperatures varying from 1285 to 1300°C. After sintering, the 

specimens were allowed to cool slowly to room temperature.  

Microstructural observations of initially sintered specimens showed excessive porosity. It was noted that, 

on comparing samples from gas and vacuum sintering, that porosity was less for vacuum, because more 

gas could escape from the internal part of the sintering compact during the early stage of heating in vacuo, 

while porosity was still interconnected.  As the evolving gas must be formed either from reduction of 

oxides or from adsorbed water vapour, via the water-gas reaction: C + H2O  CO + H2, from ~500ºC, 

therefore graphite was dried by heating to 120ºC overnight in a vacuum oven. 

 

 
 

Fig. 1. ThermoCalc Phase Diagram for Fe.0.85Mo.0.6Si-C. 
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Table 1: Starting powder compositions and Thermocalc % volume  

liquid-phase calculations at selected temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This procedure was only partially successful; after drying the best density obtained at 1295ºC in gas 

atmosphere was ~7.40 g/cc and ~7.55 g/cc for vacuum. Gas escape was hindered by very low carbon 

diffusion rates below 600ºC, at 900ºC graphite will diffuse into the now austenitic Fe-Mo, creating linked 

porosity to facilitate gas escape. To reduce this type of porosity, an alternative mixing procedure was then 

employed in which polypropylene glycol, diluted to 50% by methanol, was substituted for the liquid 

paraffin. Noting that self diffusion of Fe in Fe is approximately 100 times greater in the alpha than in the 

gamma phase and that time is also a strong variable, the heating profile was changed to minimise time 

spent in the alpha temperature range. 

 The heating rate was increased to 20ºC/min and the 900ºC hold was reduced to 10 mins. This still 

ensured that graphite could begin to go into solution in the austenite and leave gaps (pores) for escape of 

any gases produced, simultaneously with minimisation of CO2/CO production and any alpha phase 

sintering. The temperature to ensure carbon and silicon diffusion and homogenisation was increased from 

900ºC to 1100ºC, with a hold of 2 hours. Finally at 5ºC/minute temperature was raised for sintering at 

1285-1300 ºC for 30-60 mins, followed by slow-cooling. Large improvement in (macroscopic) sintered 

density was obtained, with gas sintering now closely resembling vacuum sintering and propylene glycol 

processed specimens possessing a homogeneous porosity distribution. 

Initially a simple quenching heat treatment to produce a martensite plus retained austenite structure was 

performed. This involved loading the specimens into a small container, through which argon was flowing, 

placing it into a muffle furnace pre-heated to 950ºC and holding for 45-60 minutes after reaching this 

temperature - to ensure that all carbides were taken into solution. The samples were then quenched into 

oil, which resulted in some micro-cracking, where large volume change and hence build up of internal 

stress had occurred. Air cooling to room temperature did not solve the problem due to the high 

hardenability of the material and an isothermal quench into a preheated fan assisted oven proved 

necessary.  

 

A temperature of 130ºC was decided, since the martensite start temperature, Ms, for Fe-0.85Mo-0.6Si-

1.4C is 145ºC and the Ms-10% temperature 130ºC
19,20

. To promote auto-tempering of the martensite laths, 

this isothermal quench was for 2 hours, which also reduced internal stresses before the compacts were 

Carbon wt. 

% 

Silicon 

wt.% 
Temperature, ºC 

Liquid Phase, 

% 

1.3 

 

0.3 

1285 2.2 

1295 5.8 

 

0.4 

1285 8.6 

1295 12.3 

 

0.5 

1285 10.8 

1295 13.4 

 

0.6 

1285 10.8 

1295 15.3 

1.35 0.6 1300 19.6 

1.4 

 

0.3 

1285 13.4 

1295 16.7 

0.4 
1285 14.7 

1295 18.1 

0.5 
1285 16.4 

1295 19.9 

0.6 

1285 18.1 

1295 20.8 

1300 22.6 
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removed from the oven, and allowed further transformation on cooling to room temperature. The crack-

free hardened specimens were then given a standard spheroidising treatment to produce a ferrite plus sub-

micron carbide structure, soft enough to allow a modest amount of resizing for dimensional control 

purposes.  

Polished metallographic specimens were etched in 2 % Nital and examined either using a Reichert MeF3 

optical microscope or a JEOL 6400 scanning electron microscope equipped with a Kevex Sigma-3 

microanalysis system. Hardness tests, on as-sintered and heat-treated specimens, were carried out on a 

Vickers machine with a 10 kg load (HV10). Tensile specimens were uniaxially pressed at 600MPa using a 

spring loaded floating dog-bone type die to dimensions specified by ISO 2740. They were uniaxially 

tested on an Instron 1195 SM219 machine at a crosshead speed of 0.5 mm/min.  

 

 

RESULTS 

Green densities for dry-mixed specimens were generally 6.8-7.0 g/cc, decreasing with an increase in 

silicon content
21

, and were similar for specimens processed using liquid paraffin (Table 2). Using the 

initial sintering profile for these specimens, optimum sintered density, 7.55 g/cc, was obtained for 

Fe.0.85Mo.1.45C.0.6Si sintered in vacuum at 1300ºC for 60 min., comparable to values attained by 

Shivanath et al
22,23

.  For gas sintering similar densities were attainable, but microstructural observations of 

sintered samples, Fig.2a, showed, that, in spite of relatively high overall densities, there were regions of 

high porosity linked to gas evolution during the heating cycle. When this problem was overcome by 

graphite drying and modification of the heating profile, satisfactory microstructures, e.g. Fig. 2b, and 

densities, up to 7.75 g/cc, presented in Table 2, were attained. It should be added that closed porosity is 

attained at ~ 7.4 g/cc and therefore to attain this (and improvement in anti-fatigue properties) a minimum 

of 1.3%C is required for sintering at 1300°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Microstructural variation for liquid lubricant processed Fe 0.85%M+o.0.6%Si+1.45%C  

after sintering in 90N2/10H2 atmosphere: (a) initial and (b) final heating profiles. 

 

The sintered microstructures consisted of fine pearlite plus cementite networks at the grain boundaries. 

The materials were brittle due to the grain boundary cementite, failing at stresses of 590-680 MPa.  

Severe quenching into oil from 970°C invariably led to micro-cracking across the martensite laths (Fig. 

3a), but, utilising a modified isothermal quench/autotemper route, a crack-free microstructure resulted, 

Fig. 3b. The successfully hardened alloy was spheroidised at 750°C for 3 hours to give a ferrite plus fine 

carbide microstructure, presented in Fig. 4. 

 

 

 

 

 

 

 

 

a b 
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Fig. 3. (a) Microcracking in  Fe0.85%Mo.0.6%Si.1.45%C resulting from severe quench-induced 

large volume change due to martensite formation, and (b) its absence when isothermal 

quench/auto-temper route was employed. 

 

 
 

Fig. 4. Microstructure of Fe.0.85%Mo.0.6%Si.1.45%C resulting from the spheroidising treatment 

at 750
○
C for 3 hours: ferrite matrix plus fine well-dispersed spheroidal carbides. 

 

Table 3 lists the apparent hardness values of Fe-Mo-C-Si, dry, liquid paraffin and polypropylene glycol 

processed specimens, (1) sintered at 1300 ºC (gas or vacuum), reheated in argon and then either (2) oil 

quenched or (3) quenched into a fan controlled oven followed by air cooling and refrigeration, and (4) 

then spheroidised. Results of tensile testing of similarly processed specimens are presented in Table 4. To 

be noted is macroscopic brittleness of all specimens except those spheroidised, which exhibited strains up 

to 16%. Fractographs of as-sintered and spheroidised tensile specimens are presented in Fig. 5; the latter 

showing extensive plasticity and (micro) dimple rupture.  

 

 

 

 

 

 

 

 

a b 
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Fig. 5. Fractographs of tensile specimens of Fe.0.85Mo.0.6Si.1.4C: (a) as-sintered, macroscopically 

brittle: and (b) spheroidised, exhibiting 13% plastic strain. Please note in (a) cracking following 

cementite networks with a tiny amount of ductility in the ferrite, and in (b) extensive (micro) 

dimple rupture as well as cleavage and intergranular rupture. 

 

Table 2: Densities after drying of the graphite powder and mixing with either liquid paraffin or 

with polypropylene glycol (diluted with 50% methanol), compacting at 600 MPa and sintering at 

1300ºC for 1hour in 90N2/10H2 employing the modified heating profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Composition Mixing additive 
Green Density, 

g/cc 

Sintered Density, 

g/ cc 

 

Fe-0.85Mo-1.25C-0.6Si 

 

Liquid paraffin 6.95 7.25 

Polypropylene glycol 6.94 7.31 

 

Fe-0.85Mo-1.30C-0.6Si 

 

Liquid paraffin 6.93 7.30 

Polypropylene glycol 6.92 7.35 

 

Fe-0.85Mo-1.35C-0.6Si 

 

Liquid paraffin 6.87 7.54 

Polypropylene glycol 6.88 7.54 

 

Fe-0.85Mo-1.40C-0.6Si 

 

Liquid paraffin 6.85 7.62 

Polypropylene glycol 6.85 7.64 

 

Fe-0.85Mo-1.425C-0.6Si 

 

Liquid paraffin 6.83 7. 66 

Polypropylene glycol 6.84 7.69 

 

Fe-0.85Mo-1.45C-0.6Si 

 

Liquid paraffin 6.82 7.71 

Polypropylene glycol 6.82 7.75 
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Table 3: Vickers hardness, HV10, for as-sintered, quenched/fan oven-air cooled and spheroidised 

Fe-Mo-C-Si alloys, dry processed, using A: liquid paraffin and B: polypropylene glycol diluted with 

methanol, B. 

 

 

 

  

Composition and 

Processing route 

Vickers hardness, HV10 

Sintered at 

1300ºC 
Held in argon at  970ºC for 2h 

Spheroidised : 

750ºC for 3h, 

±10 HV10 Vacuum 

±10 

HV10 

Gas 

±10 

HV10 

Oil 

Quenched, 

±30 HV10 

Fan-Oven 

Cooled, 

±30 HV10, 

Va

c 
Gas Vac Gas Vac Gas 

Fe.0.85Mo.1.2C.0.4

Si 

dry 188 196 613 620 540 546 148 151 

A(+0.05C) 205 210 621 633 560 573 157 163 

Fe.0.85Mo.1.2C.0.6

Si 

dry 208 213 620 639 577 589 155 162 

A(+0.05C) 223 227 636 647 610 626 168 160 

Fe.0.85Mo.1.3C.0.4

Si 

dry 215 219 634 646 614 620 161 171 

A(+0.05C) 239 242 660 669 637 651 176 168 

Fe.0.85Mo.1.3C.0.6

Si 

dry 236 233 659 667 634 643 175 183 

A(+0.05C) 271 278 693 705 669 677 193 197 

Fe.085Mo.1.35C.0.

6Si 
B - 300 - 795 - - - 215 

Fe-

0.85Mo.14C.0.4Si 

dry 250 256 681 688 662 669 186 194 

A(+0.05C) 291 297 767 778 679 683 214 215 

Fe.0.85Mo.14C.0.6

Si 

dry 287 293 748 765 670 672 211 217 

A(+0.05C) 305 315 795 805 710 715 221 225 

B - 325 - - - 810 - 230 
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Table 4: Mechanical Properties of   liquid paraffin and, B: polypropylene glycol processed 1.40 and 

1.45C steels sintered at 1300ºC in atmospheres of 0-10%H2/ N2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sintering atmosphere :90N2/10H2 

As-Sintered 

Composition 

 

Yield 

strength, 

MPa 

Fracture

Strength 

MPa 

Plastic 

Strain, % 

Fe.0.85Mo.1.35C.0.6Si (B) - 600 - 

Fe.0.85Mo.1.40C.0.6Si - 590 - 

Fe.0.85Mo.1.40C.0.6Si (B) - 630 - 

Fe.0.85Mo.1.45C.0.6Si - 610 - 

Quenched 

Fe.0.85Mo.1.35C.0.6Si (B) - 680 - 

Fe.0.85Mo.1.40C.0.6Si - 530 - 

Fe.0.85Mo.1.40C.0.6Si (B) - 700 - 

Fe.0.85Mo.1.45C.0.6Si - 592 - 

Spheroidised 

Fe.0.85Mo.1.35C.0.6Si (B) 400 951 16 

Fe.0.85Mo.1.40C.0.6Si 400 906 14 

Fe.0.85Mo.1.40C.0.6Si (B) 410 945 15 

Fe.0.85Mo.1.45C.0.6Si 410 907 12 

Sintering atmosphere :95N2/5H2 

As-Sintered 

Fe.0.85Mo.1.40C.0.6Si - 610 - 

Fe.0.85Mo.1.45C.0.6Si - 600 - 

Quenched 

Fe.0.85Mo.1.40C.0.6Si - 615 - 

Fe.0.85Mo.1.45C.0.6Si - 490 - 

Spheroidised 

Fe.0.85Mo.1.40C.0.6Si 350 748 10 

Fe.0.85Mo.1.45C.0.6Si 370 857 12 

Sintering atmosphere : N2 

As-Sintered 

Fe.0.85Mo.1.40C.0.6Si - 680 - 

Fe.0.85Mo.1.45C.0.6Si - 669 - 

Quenched 

Fe.0.85Mo.1.40C.0.6Si - 690 - 

Fe.0.85Mo.1.45C.0.6Si - 586 - 

Spheroidised 

Fe.0.85Mo.1.40C.0.6Si 380 893 13 

Fe.0.85Mo.1.45C.0.6Si 395 880 10 
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DISCUSSION 

Comparing the green compacts sintered both in vacuum and the 90N2/10H2 atmosphere, it is evident that, 

with the initial sintering cycle profile, vacuum clearly provided higher densities for almost all the alloy 

compositions. The principal reason is higher reduction of moisture and surface oxides and better removal 

of the vaporized lubricants by the vacuum furnace, which also produces higher decarburisation than the 

gas atmosphere. When the sintering cycle was modified to minimise the amount of alpha phase sintering 

and to release gases from pores by speeding the heating rate to 20 ºC/min, reducing the time of the 900ºC 

to 10 mins, but increasing the temperature of the diffusional/homogenisation hold to 1100ºC, a network of 

grain boundary pores formed, allowing penetration of a liquid phase as it formed at the sintering 

temperature, thus producing higher densification, recorded in Table 2. Increasing the silicon content 

enhanced the diffusion process between the two elements and, due to contact melting between iron and 

silicon, liquid phase sintering was activated, thereby increasing the sintered density
24

. For the initial 

sintering cycle, Table 2, the increasing density with increasing carbon content and sintering temperature 

is due to the formation of a higher amount of a liquid phase. A good example is the alloy   

Fe.0.85Mo.0.6Si.1.45C sintered at 1285, 1295 and 1300ºC for 30 min with predicted  liquid phase of 

18.1, 20.8 and 23.0%, which  attained densities of ~ 7.26, ~ 7.54  and ~ 7.55 g/cc, respectively. 

These results are in accord with ThermoCalc modelling, i.e., as silicon, carbon, sintering temperature and 

time increased, liquid phase amount increased, Table 1, and so did the sintered density, higher than values 

reported for comparable compositions, ~7.40 g/cc
22,23

 for vacuum sintering (a batch process). Processing 

involving additions of liquid paraffin or polypropylene glycol in the mixing stage, an industrially possible 

process, results in green densities comparable with dry mixing and die lubrication, which is industrially 

improbable. Modifying the heating profile, again industrially attainable, overcomes the problems of large 

gas porosity and results in uniform high density sintered specimens/components. The best gas atmosphere 

appears to be 90N2/10H2, probably slightly better than sintering in pure nitrogen. The 90N2/10H2 route 

allows early reduction of the oxidised iron surfaces, which is necessary for graphite to be taken into 

solution as austenite forms
4,18

. When graphite is taken into solution, paths appear between powder 

particles to allow escape of CO/CO2, thus preventing build up of potentially damaging gas pressure. The 

nitrogen route however is purely carbothermic and thus uses up some graphite for cleaning surfaces and, 

in so doing, lowers the carbon available for formation of the liquid phase 
26-28

. The 95N2/5H2 atmosphere 

does not appear to provide sufficient H2 to maintain sufficiently low atmosphere dewpoint. It should be 

recalled that dewpoint is defined as H2/H2O ratio, the higher the ratio the better the dewpoint. Now if we 

have excess of H2 then, even if H2O is formed as oxides reduce and oxygen in the furnace is reduced, the 

dewpoint will be good. If we have only a marginal amount of hydrogen, in our case not more than 5%, 

then in some regions the dewpoint will be poor and inhibit oxide removal and thus the formation of clean 

surfaces and strong sinter necks. Graphite solution will be delayed and possibly block escape of gas 

formed during processing. If liquid begins to form before surfaces are adequately cleaned, then porosity 

could close, but may trap gas still being formed as surfaces are cleaned. Observation of fracture surfaces 

confirmed the formation of isolated large pores, although the overall density was only impaired by ~0.1 

g/cc.  

The heat treatment had to be modified as conventional quenching resulted in microcracking of the 

martensite. An isothermal quench into a fan assisted oven running at Ms-(10-15ºC) was followed by 

cooling to room temperature - to transform the rest of the available austenite to martensite. This procedure 

ensured crack-free microstructures, which were spheroidised by reheating at 750ºC for 3 hours to produce 

microstructures and hardnesses comparable favourably with similarly heat-treated wrought materials
13

. It 

is interesting to add that microstructures of UHCS are comparable to those of Damascus steels, as 

reported by Sherby and Wadsworth
25

 in an article entitled “Ancient blacksmiths, the Iron Age, Damascus 

steels, and modern metallurgy”. 

The strengths of our spheroidised samples: yield of 350-410 MPa and fractures at 750-950 MPa with 

strains of 10-16 %, Table 4, are not as high as some literature values 
6, 9-11

 for UHCSs, but the 

combination of strength and ductility, illustrated in Fig. 5(a), allows further (thermo) mechanical working. 

Additionally and importantly the laboratory processing sequence is easily adapted to industrial 

processing. With a sufficiently fine grain size, in the appropriate temperature range, super-plastic 

forming
17

 should become possible. Compression tests at 700ºC 
29 

at strain rates of 10
-3

 - 1 sec
-1

 resulted in 

(nominal) strains in excess of 200%. Further experiments are planned. 

 

CONCLUSIONS 

Combination of practical work with computer programming software (ThermoCalc) allowed proper 

design of alloy composition and PM processing steps, terminating by liquid phase sintering, for a series of 
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high density ultra high carbon steels. This involved choosing the proper lubricant (best proved to be 50% 

polypropylene glycol/50% methanol), drying the graphite, optimising the mixing procedure and 

modifications to the heating stage of the sintering cycle. Similarly, the conventional spheroidisation heat 

treatment procedure had to be modified, especially to avoid microcracking. The best mechanical 

properties, including plastic strains of 12-16%, were obtained with an atmosphere of 90N2/10H2, slightly 

better than sintering in pure nitrogen. With a sufficiently fine grain size, in the appropriate temperature 

range, super-plastic forming should become possible. 

Detailed work is planned on the effects of manganese additions, in the form of a master alloy powder, 

particularly in an attempt to reduce either the amount of graphite or the sintering temperature necessary to 

produce sufficient liquid phase to ensure reproducible considerable densification.  
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Abstract  

Liquid phase sintered and spheroidised Fe-1.4C-0.65Si-0.85Mo specimens were warm forged to 

discs at 750 and 700°C. The latter experiments were conducted at strain rates of 10
-3

, 10
-2

, 10
-1

 

and 1 s
-1

 to ~ 1.15 natural strain. Ferrite grain size of the spheroidised PM steel, ~30 μm, 

diminished as a result of the forging to  6-7 μm, with a fine distribution of sub-micron carbides. 

The discs were tested in diametral compression and a procedure is presented for the 

determination, in this testing geometry, of the (compressive) yield strength,  These values, above 

740 MPa, compare favourably with 350-410  MPa , determined directly in tension, for the as-

spheroidised material.  

 

Keywords: ultrahigh carbon ductile steels, spheroidisation, warm forging  

INTRODUCTION 

Liquid phase sintering, heat treatment, microstructure and mechanical properties of Powder 

Metallurgy, PM, spheroidised ultrahigh carbon, UHC, steels are being reported in a concurrent 

publication [1]. These materials have yield and tensile strengths above 400 and 900 MPa, respectively and 

plastic strains of ~ 15%. The aim was to examine in detail the resultant microstructures, especially in the 

contexts of increased (room temperature) strength and the possibility of superplastic elevated temperature 

forming [2].  

EXPERIMENTAL PROCEDURES 

Dried [1] Höganäs Astaloy Mo85HP was used as the base iron-molybdenum powder, 0.6% 

silicon was introduced as fine <9µm silicon carbide, and 1.35% carbon as fine graphite (of 99.5% purity), 

which reacts with the Fe-Mo powder, forming a transient Fe-Si-C liquid phase at ~ 1080°C, speeding up 

diffusion of Si into the base powder [1], Turbula dry mixing of the base powder and SiC was carried out 

for 20 minutes. Liquid paraffin was introduced into the powder mix, thereby coating the metal powders 

with paraffin in order to bind the graphite to the base powder particles. This addition increased the base 

carbon level by about 0.05%, thus creating more liquid phase during sintering. Graphite was eventually 

added and mixing resumed for 20 minutes. Rings of outside and inside diameter 30 and 10 mm, 

respectively, and height 26.5 mm were pressed at 550 MPa to give green densities of ~ 6.8 g/cc.  

Sintering of Fe-1.4C-0.6Si-0.85Mo at 1300C was carried out for 1 hr in nearly full semi-closed 

steel containers
 
[1,3] pushed into a mullite tube furnace in nitrogen plus 0-10% hydrogen, with a gas flow 

of ~500 cm
3 

min
-1 

and an inlet dew point no worse than -60°C. The rings were cooled slowly from the 

sintering temperature, austenitised at 950°C for 1 hour, then quenched into a warm fan assisted oven at 

~130°C,  followed by air cooling and refrigeration, then spheroidised at 750°C for 3 hours [1], slow 

cooled to room temperature, to give densities of ~7.2 g/cc and grain sizes of ~ 30 μm. 

Two types of forging experiments were subsequently carried out. In one, the rings were heated to 

the working temperature in argon for 30 minutes and forged on a screw press between flat plates heated to 

200°C. Examined were specimens after 1 strike at 700°C and after a similar strike, heating to 750°C, and 

a subsequent strike. The second set of experiments was carried out on discs of 8 mm diameter and 12 mm 

in height (cut from the rings) on a Gleeble HDV-40 machine at TUBA, Freiberg. The specimens were 

heated in argon to 700°C and then forged at strain rates of  10
-3

, 10
-2

, 10
-1

 and 1 s
-1

 to (recorded) ~ 1.15 

natural (logarithmic) strain, Fig 1. The resultant discs had diameters of ~ 13 mm and were 3.15 mm thick. 
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Fig. 1: Compressive stress – natural strain relationships for Fe-1.4C-0.65Si-0.85Mo PM steel at 700°C  at 

strain rates in the range of 10
-3 

-  1 s
-1

. 

These forged discs had unsuitable geometry for conventional mechanical testing. Accordingly  it 

was decided to employ diametral compression to the discs: adapt  the procedure of determination of 

brittle fracture strength [4,5] to the meeting of plastic zones at the disc centre [5]. The tests were carried 

out in a specially constructed jig on an Instron machine at a compression  rate of 5.10
-1

 s
-1

. 

 

RESULTS                                                                                                                                               

Density and Microstructure. 

The as-spheroidised microstructures, density of ~ 7.2 g/cm
3
, consisted of ferrite plus, generally, 

fine carbides, e.g. Fig.2. Occasionally the original cementite network has not "balled" up 

completely and showed a cementite necklace in places. The one forging strike at 700°C did not weld up 

the pores completely but already evident were more and smaller carbides, Fig.3. The second, at 750°C, 

strike started to break up ferrite grain size and gave an even better carbide distribution, Fig.4. Gleeble 

700°C forging resulted in densities approaching 7.8 g/cm
3 

and microstructures with no pores, sub-grains 

and a uniform fine distribution of sub 1-2 micron-sized carbides, Figs. 5 and 6. These specimens were 

tested in diametral compression.      
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Fig. 2: Microstructure of as-spheroidised Fe-1.4C-0.6Si-0.85Mo. 

                    

                                      

 

 

 

 

 

 

 

 

 

Fig. 3: Microstructure of as-spheroidised Fe-1.4C-0.6Si-0.85Mo forged on a screw press at 700°C. Note 

the fineness of the carbides, occasionally in “necklaces”. 
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Fig. 4: Microstructure of as-spheroidised Fe-1.4C-0.6Si-0.85Mo forged on a screw press at 700°C, 

reheated and given a second strike at 750°C. Note the improved carbide distribution. 

 

Fig.5: Uniform microstructure of ferrite grains and fine sub-micron spheroidised carbides after forging 

Fe-1.4C-0.6Si-0.85Mo at 700°C at a strain rate of 10
-3 

s
-1

. 
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Fig.6:  Uniform microstructure of ferrite grains and fine sub-micron carbides after forging Fe-1.4C-0.6Si-

0.85Mo at 700°C at a strain rate of 10
-2

 s
-1

. 

Yield Strength 

The as-spheroidised specimens had yield and tensile strengths above 400 and 900 MPa, 

respectively and plastic strains of ~ 16%, determined in conventional tensile tests. To estimate the as-

forged yield strength, the diametral disc compression test was adapted [4,5]. This test is known also as 

Brazilian disc test and the  indirect tensile test. Axial loading  induces variable biaxial stresses: 

compressive, ơ3, and  tensile, ơ1,  in the transverse direction of the applied compressive load. It is used as 

a mechanical testing technique to determine the (brittle) tensile fracture strength (under transverse 

compression) of (linearly) elastic materials such as  concrete, ceramics, composites, pharmaceutical 

tablets, PM compacts. The relevant failure region is the disc centre where a splitting crack originates 

[4,5]. The principal stresses have been computed by Hertz [6] and at the disc centre   ơ1= 2P/πDt and  ơ3= 

-6P/πDt, where P is the applied compressive load,  D the diameter and  t the specimen thickness. 

Photoelasticity experiments of Frocht [7] show clearly the complex stress distribution and accord with the 

Hertz analysis. Because of the ease of testing and the simple specimen geometry, this test has been  

applied to materials which exhibit limited macroscopic plasticity before fracture and Proccopio et al. [5] 

have performed finite element calculations for the elastic and perfectly plastic situations in order to 

incorporate the effects of limited ductility. 

In our experiments with work-hardening materials it was observed that plastic zones spread from the 

platens and meet at the disc centre (Fig. 7). This PM disc, 2.15 mm thick, had initial and final heights of 

13.5 .and 9.2 mm, respectively. The critical event of plastic zones meeting was chosen to try to evaluate 

the yield stress. Neglecting plasticity, the principal stresses predict the yield stress to equal KP/πDt, where 

the factor K equals 8 and 7.2, respectively, according to Tresca and Huber-   criteria. The incorporation of 

plasticity into the finite element model, however, leads to substantial deviation between the analytical 

elastic expressions and the numerical elastoplastic solution. The maximum principal stress is reported to 

be still in the transverse direction, but that the location of this stress shifts away from the centre and that 

at (only) 2% diametrical strain, its magnitude is approximately 2.5–3 times the level predicted by the 

elastic solution. Furthermore, the volume over which all of the maximum transverse stress is acting 

showed a significant reduction in comparison with the purely elastic simulations. Thus it is completely 

unrealistic to use the elastic solution for our steel and it was decided to evaluate K experimentally: by 

conducting experiments on mild steel discs of determined tensile yield stress of 225 MPa. 3 experiments 

with discs evaluated K as 1.82, 1.84 and 1.82, respectively. Accordingly K=1.83 is now used with 

confidence to evaluate the yield stress of forged discs of the materials under investigation. Assuming 

uniaxial yield stress to equal 1.83 P/πDt, the yield stresses after warm forging at  10
-3

, and 10
-2 

sec
-1

 

evaluate to 769 and 744 MPa, respectively. Sub-grains formed and grain sizes were in the range 6-7 μm. 

The yield strength thus increased substantially, from ~ 410 MPa, through warm forging of the 

spheroidised material.  
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Fig 7. Photograph of diametrically compressed disc of Fe-1.4C-0.6Si-0.85Mo when the plastic zones 

emanating from the platen contact regions meet at the disc centre. The height of the disc, warm forged at 

700°C at a strain rate of 10
-3

 s
-1

, reduced from 13.5 to 9.2 mm. 

 

DISCUSSION 

PM spheroidised steel, with yield and fracture strengths above 400 and 900 MPa and plastic strains of ~ 

16% has already a very useful combination of mechanical properties. These can be further enhanced, to 

yield strengths above 740 MPa, by warm forging at  ~ 700°C. This technique  has the added advantage of 

accurate dimensional control. Depending on strain rate, compressive peak stresses of  only 150-470 MPa 

were required. Superplasticity, however, was not observed in this set of experiments. Further work, 

including with as-sintered materials, is planned.  

The proposed new method of evaluating yield strength of discs was shown to be acceptable by carrying 

out experiments on mild steel. The methodology was extended to specimens for which the yield strength 

could not be directly determined. Further validation, especially regarding the general applicability of the 

calibration factor, is required. 

The yield strength increase through warm forging results from a drastically reduced (mean) grain size, d, 

from ~ 30 to 6-7 μm, formation of sub-grains, and probably an increase in the friction stress, ơ0, 

consistent with the Hall-Petch relation: 

                                                              σy = ơ0 + kyd
−1/2

 

where σy  is yield strength and  ky  the Hall-Petch strengthening coefficient. Syn et al [8], for spheroidised 

steels, went on to express ơ0 in terms of the inter carbide spacing, which is reduced somewhat by the 

warm forging. 

 

CONCLUSIONS                                                                                                                          

Forging of  spheroidised PM Fe-1.4C-0.65Si-0.85Mo  at 700°C reduced the ferrite grain size from ~30 to 

6-7 μm, with fine dispersion of submicron carbides. As a result of warm forging the yield stress increased 

from ~ 400 to above 700 MPa. A method commonly used to determine the tensile strength of brittle 

materials, diametral compression of discs, has been adapted to the evaluation of the yield stress of a 

ductile material. These preliminary experiments indicate that warm forging promises improvement of 

both properties and dimensional control for knowledge transfer to an industrial situation, e.g. for high-

density engine PM connecting rods. 
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