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Abstract

This report is meant as a supplement or an extension to the material used

in connection to or after the courses Stochastic Adaptive Control (02421)
and Static and Dynamic Optimization (02711) given at the department

Department of Informatics and Mathematical Modelling, The Tech-
nical University of Denmark.

The focus in this paper is control of a continuous time system by means of

a digital control. In this context the control signal can only change at sample

instants and is constant between samples. The cost function do include the

variations of output between samples.

1 Introduction

In the standard discrete time LQ (and H2) control (see Appendix A and B) of
dynamic system we only consider the state vector (state variable) and the control
actions at the sampling instants. In the continuous time version of the LQ problem
the state vector and the control are considered at all times. In this report we will
consider the states at all times, but only consider control actions which can change
at the sampling instants (and are constant between samples i.e. using a zero order
hold network).

The results presented here can to a certain extend be found in [2], but is here
presented in the same (standard) settings as in [3] or in [1]. In this paper we will
use the following definitions

|x|2P = xT Px |x|2 = xT x

1



2 1 Introduction

where x (here) is any vector.

Consider the problem of controlling a continuous time LTI system

d

dt
x(t) = Ax(t) + Bu(t) x(0) = x(0) (1)

y(t) = Cx(t) + Du(t)

such that the objective function

J = |x(T )|2P +

∫ T

0

|y(t)|2V dt (2)

is minimized. That is to determine an input signal such that the system is taken
from its initial state and along a trajectory such that the cost function is minimized.
This is (a finite horizon formulation of) the H2 problem. Notice, the cost function
in (2) can also be formulated as

J = |x(T )|2P +

∫ T

0

∣

∣

∣

∣

[

x(t)
u(t)

]
∣

∣

∣

∣

2

W

dt

where

W =

[

Q S

S
T R

]

=

[

CT

DT

]

V
[

C D
]

This is the standard LQ formulation (with cross coupling between state and control
actions in the cost function). The control objective is then related to the standard
LQ problem dealt with in Appendix A and B. It is often written in the more
recognizable way

J = x(T )T Px(T ) +

∫ T

0

xT

t Qxt + uT

t Rut + 2xT

t Sut dt

In discrete time control (and in digital control) the control action is normally as-
sumed to be constant between samples, i.e.

u(t) = ui for ih < t ≤ ih + h

where h is the (constant) length of the sampling period. We assume for the sake of
simplicity that the horizon is a multiple of the sampling period, i.e. T = Nh.

For this problem the Bellman equation becomes:

Vi(xi) = min
ui

[

∫ ih+h

ih

|y(t)|2V dt + Vi+1(xi+1)

]

(3)

VN (xN ) = |xN |2P

where the Bellman function, Vi(xi), is the optimal cost to go. By definition (nota-
tion) xi = x(ih) and xN = x(T ). In a local sampling period, ih ≤ t ≤ ih + h, we
can use the local time s = t − ih where 0 ≤ s ≤ h.

If the control action is constant between sample instants the solution to (1) is well
known and is

x(t) = eAsxi +

∫ s

0

eA(s−τ)B dτ ui

= Φsxi + Γsui
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where

Φs = eAs Γs =

∫ s

0

eA(s−τ)B dτ =

∫ s

0

eAτB dτ

Now, it is easy to see that

|y(t)|2V = [Cx(t) + Du(t)]
T

V [Cx(t) + Du(t)]

=
[

xT
i uT

i

]

[

ΦT
s CT V CΦs ΦT

s CT V (D + CΓs)
(D + CΓs)

T V CΦs (D + CΓs)
T V (D + CΓs)

] [

xi

ui

]

If we furthermore define

Q1 =

∫ h

0

ΦT

s CT V CΦs ds

Q12 =

∫ h

0

ΦT

s CT V (D + CΓs) ds (4)

Q2 =

∫ h

0

(D + CΓs)
T V (D + CΓs)ds

then
∫ ih+h

ih

|y(t)|2V dt =
[

xT
i

uT
i

]

[

Q1 Q12

QT
12 Q2

] [

xi

ui

]

Let
Vi(xi) = |xi|

2
Si

= xT

i Sixi

be a candidate function. With the chosen candidate function the inner part of the
minimization in (3) can be written as

I =
[

xT

i uT

i

]

[

Q1 + ΦT

h
Si+1Φh Q12 + ΦT

h
Si+1Γh

QT
12 + ΓT

h
Si+1Φh Q2 + ΓT

h
Si+1Γh

] [

xi

ui

]

(5)

which (see e.g. Appendix C) has its minimum for

ui = −
[

Q2 + ΓT

h Si+1Γh

]

−1 [

QT

12 + ΓT

h Si+1Φh

]

xi

If we use methods in Appendix C, we notice the candidate function indeed is a
solution to (1) and Si is given by the recursion

Si = Q1 + ΦT

h Si+1Φh −
[

Q12 + ΦT

h Si+1Γh

] [

Q2 + ΓT

h Si+1Γh

]

−1 [

QT

12 + ΓT

h Si+1Φh

]

(6)
SN = P

We also notice that the problem is closely related to a standard discrete LQ problem,
just the weight matrices (as well as the system matrices) are transformed in the
sampling process.

If Q2 is invertible then the recursion in (6) can be reduced significantly if we intro-
duce a new decision variable, vi, through

ui = vi − Q−1
2 QT

12xi

In that case the minimization in (5) becomes

I =
[

xT

i vT

i

]

[

Q̄1 + Φ̄T

h
Si+1Φ̄h Φ̄T

h
Si+1Γh

ΓT

h
Si+1Φ̄h Q2 + ΓT

h
Si+1Γh

] [

xi

vi

]
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where
Q̄1 = Q1 − Q12Q

−1
2 QT

12 Φ̄ = Φ − ΓQ−1
2 QT

12

The solution to this problem is the solution to the standard problem (except off
course the substitution of variable)

vi = −L̄ixi L̄i =
[

Q2 + ΓT Si+1Γ
]

−1
ΓT Si+1Φ̄

where:

Si = Q̄1 + Φ̄T

h Si+1Φ̄h − Φ̄T

h Si+1Γh

[

Q2 + ΓT

h Si+1Γh

]

−1
ΓT

h Si+1Φ̄h SN = P

The solution (to the original problem) can be written as

ui = −
[

L̄i + Q−1
2 QT

12

]

xi L̄i =
[

Q2 + ΓT Si+1Γ
]

−1
ΓT Si+1Φ̄

where S is given by the Riccati equation

Si = Q̄1 + Φ̄T

h Si+1Φ̄h − Φ̄T

h Si+1Γh

[

Q2 + ΓT

h Si+1Γh

]

−1
ΓT

h Si+1Φ̄h SN = P

or in a shorter form

Si = Φ̄T

h Si+1(Φ̄ − ΓL̄i) + Q̄1 SN = P
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A The Standard DLQ Control Problem

In this appendix we will consider the standard discrete time LQ control problem.
Consider the problem of controlling a dynamic system in discrete time

xi+1 = Φxi + Γui x0 = x0 (7)

such that the (standard LQ) cost function

J = xT

NPxN +

N−1
∑

i=0

xT

i Qxi + uT

i Rui (8)

is minimized.

The Bellman equation will in case be

Vi(xi) = min
ui

[

xT

i Qxi + uT

i Rui + Vi+1(xi+1)
]

(9)

with the end point constraints

VN (xN ) = xT

NPxN

If we test the candidate function

Vi(xi) = xT

i Sixi

then the inner part of the minimization in (9) will be

I =
[

xT
i

uT
i

]

[

Q + ΦT Si+1Φ ΦT Si+1Γ
ΓT Si+1Φ R + ΓT Si+1Γ

] [

xi

ui

]

The minimum for the this function is according to Appendix C given by

ui = −Lixi Li =
[

R + ΓT Si+1Γ
]

−1
ΓT Si+1Φ

and the candidate function is in fact a solution to the Bellman equation in (9) if

Si = Q + ΦT Si+1Φ − ΦT Si+1Γ
[

R + ΓT Si+1Γ
]

−1
ΓT Si+1Φ SN = P

If the gain, Li, is used in the recursion for Si

Si = ΦT

h Si+1(Φ − ΓLi) SN = P

As a simple implication from the proof we that

V (0(x0) = J⋆ = xT

0 S0x0

which among other things is useful in connection to a interpretation of S.

B DLQ and cross terms

In order to connect the (very) related LQ formulation and H2 formulation we have
to augment the standard problem with cross terms in the cost function. Assume a
discrete time (LTI) system is given as in (7) and the cost function (instead of (8))
is:

J = xT

NPxN +

N−1
∑

i=0

xT

i Qxi + uT

i Rui + 2xT

i Sui
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or

J = xT

NPxN +

N−1
∑

i=0

[

xT
i

uT
i

]

[

Q S

S
T R

] [

xi

ui

]

then the situation becomes a bit more complicated. The cross terms especially
occurs if the control problem is formulated as a problem in which (the square of)
an output signal

yi = Cxi + Dui

is minimized. In that case
[

Q S

S
T R

]

=

[

CT

DT

]

[

C D
]

The Bellman equation becomes in the special case

Vi(xi) = min
ui

[

[

xT
i

uT
i

]

[

Q S

S
T R

] [

xi

ui

]

+ Vi+1(xi+1)

]

VN (xN ) = xT

NPxN

and again we will try the following candidate function

Vi(xi) = xT

i Sixi

This can be solved head on or by transforming the problem into the standard one.
If R is invertible then we can introduce a new decision variable, vi, given by:

ui = vi − R−1
S

T xi

The instaneous loss term (first term in the Bellman equation) can be expressed as:

[

xT
i

uT
i

]

[

Q S

S
T R

] [

xi

ui

]

= xT

i Q̄xi + vT

i Rvi

where
Q̄ = Q − SR−1

S
T

In similar way we find for the dynamics

xi+1 = Φxi + Γui

= (Φ − ΓR−1
S)xi + Γvi

= Φ̄xi + Γvi

where
Φ̄ = Φ − ΓR−1

S

For the future cost to go (the second term in the Bellman equation) we have:

Vi+1(xi+1) = xT

i+1Si+1xi+1 = (Φ̄xi + Γvi)
T Si+1(Φ̄xi + Γvi)

We have now transformed the problem to the standard form and the inner mini-
mization in the Bellman equation

Vi(xi) = min
ui

[

xT

i Qxi + uT

i Rui + Vi+1(xi+1)
]

is then simply:

I =
[

xT

i vT

i

]

[

Q̄ + Φ̄T Si+1Φ̄ Φ̄T Si+1Γ
ΓT Si+1Φ̄ R + ΓT Si+1Γ

] [

xi

vi

]
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with the solution

vi = −L̄ixi L̄i =
[

R + ΓT Si+1Γ
]

−1
ΓT Si+1Φ̄

The candidate function is a solution to the Bellman equation if

Si = Q̄ + Φ̄T Si+1Φ̄ − Φ̄T Si+1Γ
[

R + ΓT Si+1Γ
]

−1
ΓT Si+1Φ̄ (10)

= Φ̄T Si+1(Φ̄ − ΓL̄i) + Q̄

This means that

ui = −
[

L̄i + R−1
S
]

xi L̄i =
[

R + ΓT Si+1Γ
]

−1
ΓT Si+1Φ̄

If R is not invertible then we are forced to use a more direct approach which results
in the following inner minimization (minimization of the inner part in the Bellman
equation):

I =
[

xT

i uT

i

]

[

Q̄ + Φ̄T Si+1Φ̄ S + Φ̄T Si+1Γ
S

T + ΓT Si+1Φ̄ R + ΓT Si+1Γ

] [

xi

ui

]

with the solution

ui = −Lixi Li =
[

R + ΓT Si+1Γ
]

−1 [

S
T + ΓT Si+1Φ

]

and a Riccati equation

Si = Q + ΦT Si+1Φ −
[

S + ΦT Si+1Γ
] [

R + ΓT Si+1Γ
]

−1 [

S
T + ΓT Si+1Φ

]

(11)

Notice, that (10) is the standard Riccati equation, whereas (11) contains (directly)
the cross term S. The transformation method do require that R is invertible.

C Quadratic optimization

Consider the problem of minimizing a quadratic cost function

J =
1

2

[

xT uT
]

[

h11 h12

hT
12 h22

] [

x

u

]

=
1

2
xT h11x + xT h12u +

1

2
uT h22u

It is quite elementary to find the derivative of the cost function

∂

∂u
J = xT h12 + uT h22

and the stationary point must fulfill

hT

12x + h22u = 0

The stationary point

u = −h−1
22 hT

12x
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is a minimum to the cost function if h22 is positive definite. Furthermore, the
minimum of the cost function is quadratic in x:

J =
1

2
xT h11x − xT h12h

−1
22 hT

12x +
1

2
xT h12h

−1
22 h22h

−1
22 hT

12x

=
1

2
xT

(

h11 − h12h
−1
22 hT

12

)

x

=
1

2
xT Sx

where

S = h11 − h12h
−1
22 hT

12

D Numerical methods

The numerically determination of the matrices in (4) is described in more details
in [4].

The following Lemma can be found in e.g. [2] (page 235). Consider matrices A11,
A12 and A22 with adequate dimensions. Let

[

F11 F12

0 F22

]

= exp

([

A11 A12

0 A22

]

h

)

(12)

Then
F11 = eA11h F22 = eA22h

and

F12 =

∫ h

0

eA11(h−s)A12e
A22s ds

Since the matrices are block upper triangular, we easily get

F11 = eA11h and F22 = eA22h

If we differentiate (12) we get

d

dt

[

F11 F12

0 F22

]

=

[

A11 A12

0 A22

] [

F11 F12

0 F22

]

and
d

dt
F12 = A11F12 + A12F22

Using the solution for F22 and F12(0) = 0 we have

F12 =

∫ h

0

eA11(h−s)A12e
A22sds

As stated in he lemma.

Now focus on the determination of the matrices in (4). Let

Σ =

(

Q1 Q12

QT
12 Q2

)

and Qc =

[

CT

DT

]

V
[

C D
]

=

[

Q S

S
T R

]
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Define the square matrix

A =

[

A B

0 0

]

Then by the Lemma

eAt =

[

eAt
∫ h

0
eA(t−s)ds

0 I

]

=

[

eAt
∫ t

0
eAsds

0 I

]

It is straight forward to check that

Σ =

∫ h

0

eA
T

s

[

CT

DT

]

V
[

C D
]

eAs ds =

∫ h

0

eA
T

sQce
As ds

Compute the matrix

[

F11 F12

0 F22

]

= exp

([

−AT Q

0 A

]

h

)

Then

Σ = FT

22F12

and

F22 =

[

Φ Γ
0 I

]

The Matlab implementation of this algorithm is listed in Appendix F as smplq.m.

E The Continuous Time LQ Control

In this section we will review the results given in the previous sections but in
continuous time. We will start with the standard LQ problem and then in order to
connect with the H2 formulation review the LQ problem with a cross term in the
cost function.

E.1 The Standard CLQ Control problem

Consider the problem of controlling a continuous time LTI system

d

dt
xt = Axt + But x0 = x0 (13)

such that the performance index

J = xT

T PxT +

∫ T

0

xT

t Qxt + xT

t Qxt dt

is minimized. The Bellman equation is for this situation

−
∂

∂t
Vt(xt) = min

ut

[

xT

t Qxt + uT

t Rut +
∂

∂x
Vt(xt) (Axt + But)

]

with
VT = xT

T PxT
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as boundary condition. For the candidate function

Vt(xt) = xT

t Stxt

this (Bellman) equation becomes

−xT

t Ṡtxt = min
ut

[

xT

t Qxt + uT

t Rut + 2 xT

t StAxt + 2 xT

t StBut

]

This is fulfilled for

ut = −R−1BT Stxt

The candidate function is indeed a Bellman function if St is the solution to the
Riccati equation

−Ṡt = StA + AT St + Q − StBR−1BT St ST = P

In terms of the gain
Lt = R−1BT St

the Riccati equation can also be expressed as

−Ṡt = StA + AT St + Q − LT

t RLt

−Ṡt = St(A − BLt) + AT St + Q = (A − BLt)
T St + StA + Q

−Ṡt = St(A − BLt) + (A − BLt)
T St + Q + LT

t RLt

It can be shown that
J = xT

0 S0x0

E.2 CLQ and cross terms

Let us now focus on the problem where performance index has a cross term, i.e.
where

J = xT

T PxT +

∫ T

0

xT

t Qxt + xT

t Qxt + 2xT

t Sut dt

As in the discrete time case this will typically be the case if the problem arise from
a minimization of the weighted (V ) square of the output

yt = Cxt + Dut

i.e. the H2 problem. In that case
[

Q S

S
T R

]

=

[

CT

DT

]

V
[

C D
]

The Bellman equation is now for this situation

−
∂

∂t
Vt(xt) = min

ut

[

[

xT
t uT

t

]

[

Q S

S
T R

] [

xt

ut

]

+
∂

∂x
Vt(xt) (Axt + But)

]

(14)

with
VT = xT

T PxT

as boundary condition. Again we can go directly for a solution, but if R is invertible,
we can transform the problem to the standard form. If we use the same method as
in the discrete time and introduce a new decision variable, vt through

ut = vt − R−1
S

T xt
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then instantaneous loss term is rewritten to

[

xT
t uT

t

]

[

Q S

S
T R

] [

xt

ut

]

= xT

t Q̄xt + vT

t Rvt

where
Q̄ = Q − SR−1

S
T

Furthermore the dynamics is transformed to

Axt + But = (A − BR−1
S

T )xt + Bvt = Āxt + Bvt

where
Ā = (A − BR−1

S
T )

The Bellman equation is now in the newly introduced variable

−
∂

∂t
Vt(xt) = min

vt

[

xT

t Q̄xt + vT

t Rvt +
∂

∂x
Vt(xt)

(

Āxt + Bvt

)

]

with
VT = xT

T PxT

as boundary condition. For the candidate function

Vt(xt) = xT

t Stxt

this Bellman equations becomes

−xT

t Ṡtxt = min
vt

[

xT

t Q̄xt + vT

t Rvt + 2 xT

t StĀxt + 2 xT

t StBvt

]

The solution to this problem is

vt = −L̄txt L̄t = R−1BT St

where

−Ṡt = StĀ + ĀT St + Q̄ − StBR−1BT St ST = P (15)

The last equation ensures that the candidate function indeed is a solution. The
total solution is consequently given as

ut = −(L̄t + R−1
S

T )xt L̄t = R−1BT St

or simply as
ut = −R−1(BT St + S

T )xt

Notice, that (15) is the same Riccati equation that arise from the standard problem
except for the transformation of A and Q. Furthermore L̄ is the same as arise from
the standard problem.

If R is not invertible then (14) must be solved directly. For the candidate function

Vt(xt) = xT

t Stxt

the Bellman equation, (14), becomes

−xT

t Ṡtxt = min
ut

[

xT

t Qxt + uT

t Rut + 2xT

t Sut + 2 xT

t StAxt + 2 xT

t StBut

]
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which is minimized for

ut = −R−1(BT St + S
T )xt

where

−Ṡt = StA + AT St + Q − (StB + S)R−1(BT St + S
T ) ST = P (16)

It is quite easy to check that (for R being invertible) the solutions to (16) and (15)
are identical.

F Code

� �

function [Ad,Bd ,Qd,Rd,Nd]=smplq ( va ra rg in )
% Usage : [Ad,Bd ,Qd,Rd,Nd]=smplq (A,B,Q,R,N, h )
% [Ad,Bd ,Qd,Rd,Nd]=smplq (A,B,Q,R, h )

i f nargin==6,
A=vara rg in {1} ; B=vara rg in {2} ;
[ n ,m]= s ize (B) ;
Q=vara rg in {3} ; R=vara rg in {4} ;
N=vara rg in {5} ; h=vara rg in {6} ;
e l s e i f nargin==5,
A=vara rg in {1} ; B=vara rg in {2} ;
[ n ,m]= s ize (B) ;
Q=vara rg in {3} ; R=vara rg in {4} ;
N=zeros (n ,m) ; h=vara rg in {5} ;

else

disp ( ’Wrong argument l i s t in smplq ’ ) ;
return

end

Qc=[Q N; N’ R ] ;
Ac=[A B; zeros (m, n+m) ] ;
F=expm([−Ac ’ Qc ; zeros (n+m, n+m) Ac ]∗h ) ;
F22=F(n+m+1:end , n+m+1:end ) ;
F12=F( 1 : n+m, n+m+1:end ) ;
Q=F22 ’∗F12 ;
Ad=F22 ( 1 : n , 1 : n ) ;
Bd=F22 ( 1 : n , n+1:end ) ;
Qd=Q(1 : n , 1 : n ) ;
Rd=Q(n+1:end , n+1:end ) ;
Nd=Q(1 : n , n+1:end ) ;

� �
� �

function [Ad,Bd ,Cd ,Dd]=smph2 (A,B,C,D, h)
% Usage : [Ad,Bd ,Cd ,Dd]=smph2 (A,B,C,D, h )
% or sysd=smph2 ( sysc , h )

i f nargin==5,
typ=1;

e l s e i f nargin==2,
typ=2,
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[A,B,C,D]= sysenc ( sy s c ) ;
else

disp ( ’Wrong argument l i s t ’ ) ;
return

end

[ n ,m]= s ize (B) ;
Qc=[C ’ ;D’ ] ∗ [ C D] ;
Ac=[A B; zeros (m, n+m) ] ;
F=exp([−Ac ’ Qc ; zeros (n+m, n+m) Ac ]∗h ) ;
F22=F(n+m+1:end , n+m+1:end ) ;
F12=F( 1 : n+m, n+m+1:end ) ;
Q=F22 ’∗F12 ;
Ad=F22 ( 1 : n , 1 : n ) ;
Bd=F22 ( 1 : n , n+1:end ) ;
[U, S]=svd (Q) ;
H=sqrt (S)∗U’ ;
Cd=H( : , 1 : n ) ;
Dd=H( : , n+1:end ) ;

i f typ==2,
Ad=ss (Ad,Bd,Cd ,Dd, h ) ,

end
� �


