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Abstract

Quantum systems with a finite Hilbert space, where position x and momen-

tum p take values in Z(d) (integers modulo d), are studied. An analytic

representation of finite quantum systems is considered. Quantum states are

represented by analytic functions on a torus. This function has exactly d

zeros, which define uniquely the quantum state. The analytic function of a

state can be constructed using its zeros. As the system evolves in time, the

d zeros follow d paths on the torus. Examples of the paths ζn(t) of the zeros,

for various Hamiltonians, are given. In addition, for given paths ζn(t) of the

d zeros, the Hamiltonian is calculated. Furthermore, periodic finite quantum

systems are considered. Special cases where M of the zeros follow the same

path are also studied, and general ideas are demonstrated with several ex-

amples. Examples of the path with multiplicity M = 1, 2, 3, 4, 5 are given. It

is evidenced within the study that a small perturbation of the initial values

of the zeros splits a path with multiplicity M into M different paths.
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Chapter 1
Introduction

This thesis is devoted to the study of zeros of analytic representations for

finite quantum systems on a torus (the phase space is Zd × Zd) and the

time evolution of these zeros. Various Hamiltonians and initial states are

considered.

Analytic functions have been used in various contexts in quantum me-

chanics [1, 2, 3]. The Bargmann function in the complex plane [4, 5, 6] is

perhaps the most popular of these, and is an important tool for studying the

overcompleteness of coherent states [7] and has been used in the context of

semiclassical methods [8, 9, 10, 11] and chaotic systems [12]. Especially the

zeros of Bargmann functions, which are also the zeros of the Q or Husimi

function (sometimes called ‘Husimi zeros’ or ‘stellar representation’), have

been used in the study of several models [13, 14, 15, 16, 17, 18, 19]. Recently,

there has been a lot of work on quantum systems whereby the position and

momentum take values in Zd (the integers modulo d). A review with many

references is given in [20]. Ref [21, 22] studied an analytic representation for

1
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these systems on a torus, using Theta functions. It was shown that the ana-

lytic function representing a quantum state has exactly d number of zeros in

any such square region (which obey a constraint), and that these zeros define

uniquely the quantum state. In this thesis, we extend this work.

We consider the time evolution of the system and the motion of the d

zeros on the torus. The d paths ζn(t) of the d zeros define completely the

finite quantum system. For example, from the ζn(t) we can calculate the

Hamiltonian and the quantum states. In this sense, the paths of the zeros

provide an alternative description for the standard quantum formalism, for

finite quantum systems. In infinite dimensional systems, the paths of the ze-

ros do not define uniquely the quantum system (this is related to Hadamard’s

theorem [2]). We demonstrate these general ideas with various concrete ex-

amples. Further, we consider various Hamiltonians and initial states, and we

calculate the d paths of the zeros. Using its zeros, the analytic function of

a state can be constructed. We also consider the inverse problem, where the

paths of the zeros are given, and we calculate the Hamiltonian.

An important special case relates to periodic systems. The Hamiltonians

in periodic systems have commensurate eigenvalues. In this case, the paths

of the zeros are closed paths. Interesting results show that in some cases M

of d zeros follow the same path, in which instance we say that this path has

multiplicity M. We consider this in more detail and show that after a period

the zeros exchange their positions.

Furthermore, we give a brief introduction to the Symplectic transforma-

tions into the Zd × Zd phase space of a finite quantum system. We consider

the effect of a change in the basis on the zeros using Symplectic transforma-
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tions.

1.1 Structure of this thesis

This thesis consists of six chapters. This first chapter is an introduction to

the thesis.

Chapter 2 gives a review on phase space methods for quantum particles

on a real line. A number of fundamental aspects in quantum systems with

a continuous Hilbert space are discussed. The Wigner and Weyl functions

are introduced, while the Bargmann analytic representation in the complex

plane is studied. In addition the Husimi function is introduced.

Chapter 3 gives a brief introduction to finite quantum systems. We dis-

cuss the analytic representation and its zeros, after which various Hamilto-

nians and initial states are considered.

Chapter 4 discusses periodic systems and discusses examples where two

or more zeros follow the same path.

In chapter 5, The Symplectic transformations into the Zd × Zd phase

space of a finite quantum system are introduced. The effect of a change in

the basis on the zeros using Symplectic transformations is studied. various

examples have been given.

Finally, we conclude in Chapter 6 with a discussion of our results.



Chapter 2
Quantum Systems on a Real Line

2.1 Introduction

In this chapter, we consider the phase space methods used to describe the

states of quantum particles on a real plane R. The standard Dirac notation

|ψ〉 is used for a quantum state in this case.

Quantum mechanics for a particle on a real line is defined in terms of a pair

of hermitian operators x̂ (position operator) and p̂ (momentum operator),

which satisfy the canonical commutation relation

[x̂, p̂] = i. (2.1)

We are going to set Planck’s constant ~ = 1 for simplicity. The position

operator x̂ and momentum operator x̂ obey the relation

x̂ψ(x) = xψ(x), p̂ψ(x) = −i
∂

∂x
ψ(x), (2.2)

4
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where ψ(x) is the wave function of the particle in the position representation.

The position and momentum take real values, so the phase space is a R×R
plane.

In the next section, we introduce basic formalism of the R × R phase

space.

Section 2.3 gives a brief introduction to the basic formalism of a one-

dimensional linear harmonic oscillator, including expressions of some special

states such as number states, displacement and parity operators, coherent

states, and the Wigner and Weyl functions.

In section 2.4, we give a brief introduction to the Bargmann analytic

representation in the complex plane, which is defined by the Glaubar coherent

states, including a brief introduction to the P and Q functions.

2.2 Position and Momentum

In this section, we investigate the position operator x̂ and the momentum

operator p̂ in more detail. These operators satisfy the Dirac quantum con-

dition in Eq. (2.1), as it is well known that the eigenstates of x̂ and p̂ form

the basis for the representation of a quantum system. Let |x〉 be the position

eigenstates and |p〉 the momentum eigenstates, they satisfy

x̂|x〉 = x|x〉, (2.3)

p̂|p〉 = p|p〉, (2.4)
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where x and p are real numbers (their operators are hermitian). They both

form orthogonal (not normalised) bases for the Hilbert space L2(R) and they

satisfy

〈x|x′〉 = δ(x− x
′
), (2.5)

〈p|p′〉 = δ(p− p
′
), (2.6)

here δ(x) is the Dirac delta function. The eigenstates of the position operator

|x〉 satisfy the completeness relation

∫ ∞

−∞
|x〉〈x|dx = 1̂. (2.7)

We can then expand any quantum state |ψ〉 into position states

|ψ〉 =

∫ ∞

−∞
|x〉〈x|ψ〉dx ≡

∫ ∞

−∞
ψ(x)|x〉dx, (2.8)

where we define

ψ(x) ≡ 〈x|ψ〉. (2.9)

The eigenstates of the momentum operator |p〉 also satisfy the completeness

relation

∫ ∞

−∞
|p〉〈p|dp = 1̂. (2.10)
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and we expand |ψ〉 as

|ψ〉 =

∫ ∞

−∞
|p〉〈p|ψ〉dp ≡

∫ ∞

−∞
ψ̃(p)|p〉dp, (2.11)

and define

ψ̃(p) ≡ 〈p|ψ〉. (2.12)

We call the two wave functions ψ(x) and ψ̃(p) – the position representation

and momentum representation of the state |ψ〉, respectively, which satisfy

∫ ∞

−∞
|ψ(x)|2dx = 1, (2.13)

∫ ∞

−∞
|ψ̃(p)|2dp = 1, (2.14)

where |ψ(x)|2 and |ψ̃(p)|2 are the position and momentum probability of the

state |ψ〉, respectively. The position representation and momentum represen-

tation of state |ψ〉 are related to each other through the Fourier transform:

by inserting Eq. (2.10) we can see that

ψ(x) = (2π)−1/2

∫ ∞

−∞
exp (ixp) ψ̃(p)dp, (2.15)

ψ̃(p) = (2π)−1/2

∫ ∞

−∞
exp (−ixp) ψ(x)dx. (2.16)
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The state vectors |x〉 and |p〉 are related to each other by Fourier transform

|x〉 = (2π)−1/2

∫ ∞

−∞
exp (−ixp) |p〉dp, (2.17)

|p〉 = (2π)−1/2

∫ ∞

−∞
exp (ixp) |x〉dx. (2.18)

By using an important property of the delta function

δ (x− x1) =
1

2π

∫ ∞

−∞
exp [−i(x− x1)p] dp, (2.19)

we can prove the inner product between |x〉 and |p〉

〈x|p〉 = (2π)−1/2exp (ixp) . (2.20)

We can represent the Fourier transform by an unitary operator F̂ , which is

called the Fourier operator and defined as

F̂ ≡
∫ ∞

−∞
|ξ〉px〈ξ|dξ, (2.21)

where |ξ〉x means the position eigenstate corresponding to the eigenvalue ξ.

The Fourier operator obeys

F̂ |ξ〉x = |ξ〉p, F̂ |ξ〉p = | − ξ〉x, (2.22)

F̂ †x̂F̂ = p̂, F̂ †p̂F̂ = −x̂. (2.23)
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It is easy to see that

F̂ 4 = 1̂. (2.24)

We have seen that the position and momentum are real, then the phase space

is R× R.

2.3 Quantum harmonic oscillator

In this section, we consider the special case of a quantum system on a real

line, namely a one-dimensional linear harmonic oscillator. The potential

energy of the system at position x is given as

V (x) =
1

2
kx2, (2.25)

where k is the constant force. For simplicity, let k = 1 and assume that the

mass m = 1 and angular frequency ω = 1.

The Hamiltonian of the harmonic oscillator in the position and momen-

tum operators is

Ĥ =
1

2

(
x̂2 + p̂2

)
. (2.26)
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2.3.1 Number State

We introduce the annihilation operator a and creation operator a†, which are

defined as

a = (2)−1/2 (x̂ + ip̂) ,

a† = (2)−1/2 (x̂− ip̂) . (2.27)

These two operators obey the canonical commutation relation

[a, a†] = I. (2.28)

The Hamiltonian operator in Eq. (2.26) can be expressed as

Ĥ = a†a +
1

2
. (2.29)

We derive the following commutator relations:

[a, Ĥ] = a, (2.30)

[a†, Ĥ] = −a†. (2.31)

The eigenstates |n〉 of the Hamiltonian operator Ĥ are known as the number

states satisfying

Ĥ|n〉 = (n + 1/2)|n〉, n = 0, 1, 2, ... (2.32)
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here the non-negative integers n characterise the energy spectrum of the

linear harmonic oscillator. The vacuum state |0〉 is defined as

â|0〉 = 0, 〈0|0〉 = 1. (2.33)

The position representation of the number states is

ψn(x) = 〈x|n〉 =

(
1√

π2nn!

)1/2

exp

(
−x2

2

)
Hn(x), (2.34)

where Hn(x) are the Hermite polynomials of order n. The number states |n〉
form an orthonormal basis of a Hilbert space

〈m|n〉 = δmn,
∞∑

n=0

|n〉〈n| = 1̂. (2.35)

For the normalised eigenkets |n〉, the operators a†, a act on the number state

as follows:

â†|n〉 =
√

n + 1|n + 1〉,

â|n〉 =
√

n|n− 1〉. (2.36)

It is evident that the operator a† creates one quantum of energy by raising

the system from |n〉 to |n+1〉. Thus, the operator a† is known as the creation

operator or the rising operator. Where the operator â destroys one quantum

of energy by lowering the system from |n〉 to |n− 1〉, the operator a is called

the annihilation operator or the destruction operator. For proof, see [23].
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The number operator n̂ is defined as

n̂ =
∞∑

n=0

n|n〉〈n|, n̂|n〉 = n|n〉. (2.37)

Using the definition (2.27), the position and momentum operators can be

defined as follows:

x̂ =
(â + â†)√

2
,

p̂ =
i(â† − â)√

2
. (2.38)

2.3.2 Displacement operator and parity operator

The displacement operators can be defined as

D̂(α) = exp
(
αâ† − α∗â

)
, (2.39)

where α is a complex number and can be written in terms of x and p as

α = (x + ip)/
√

2.

The displacement operator can be expressed in terms of the position and

momentum operators x̂, p̂ as

D̂(x0, p0) = exp (ip0x̂− ix0p̂) . (2.40)

We also define the parity operator as

Û0 ≡
∫ ∞

−∞
| − x〉〈x|dx =

∫ ∞

−∞
| − p〉〈p|dp. (2.41)
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This parity operator, acting on the position and momentum operator and

their eigenstates, changes them into their inverses

Û0x̂Û0
†
= −x̂, Û0p̂Û0

†
= −p̂, (2.42)

Û0|x〉 = | − x〉, Û0|p〉 = | − p〉, (2.43)

and also changes the signs of the parameters of the displacement operator

Û0D̂(x0, p0)Û0
†
= D̂(−x0,−p0). (2.44)

2.3.3 Coherent state

The Glauber coherent state [24, 25, 26, 27, 28, 29, 30, 31] is defined as the

eigenstate of the destruction operator â

â|α〉 = α|α〉, (2.45)

where α is a complex number. It is generated by acting the displacement

operator on the vacuum state

|α〉 = D̂(α)|0〉. (2.46)

The coherent state can be written in terms of number states

|α〉 = exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!
|n〉. (2.47)
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Eq. (2.46) shows that the coherent state is a displaced vacuum state in the

phase space. The average photon number of 〈n〉 in the coherent state is equal

to |α|2.

〈n〉 = 〈α|n|α〉 = |α|2, (2.48)

∆2n = 〈n2〉 − 〈n〉2 =
(|α|4 + |α|2)− |α|4 = |α|2 = 〈n〉. (2.49)

The position representation of the coherent state is a Gaussian function

〈x|α〉 = π−1/4exp

(
−x2

2
+
√

2αx− ααR

)
, (2.50)

where α = αR + iαI .

The momentum representation of the coherent state is

〈p|α〉 = π−1/4exp

(
−p2

2
−
√

2αip + ααIi

)
. (2.51)

We can obtain the expectation value of x̂ and p̂ from Eqs. (2.50) and (2.51)

〈x〉 = 〈α|x̂|α〉 =
√

2αR, 〈p〉 = 〈α|p̂|α〉 =
√

2αI . (2.52)

The variances of x̂ and p̂ are equal

(∆x)2 = (∆p)2 =
1

2
. (2.53)
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The inner product of two coherent states |α〉 and |β〉 is

〈β|α〉 = exp

(
−1

2
|α|2 − 1

2
|β|2 + αβ∗

)
. (2.54)

The completeness relation for the coherent states is

1

π

∫

C
|α〉〈α|d2α = 1̂, (2.55)

where C is the complex plane.

2.3.4 Wigner function and Weyl function

The Wigner function was described by E. Wigner in 1932 [32]. It is a quasi-

probability distribution function in the phase space, and it shows important

properties of the quantum state described by a density operator. The Wigner

function [33, 34, 35, 36] can be viewed as the intermediate between two

representations and is defined as

Wρ(x, p) ≡ 1

2π

∫ ∞

−∞
exp(ipX)

〈
x− X

2

∣∣∣∣ ρ̂

∣∣∣∣x +
X

2

〉
dX (2.56)

Wρ(x, p) ≡ 1

2π

∫ ∞

−∞
exp(−iPx)

〈
p− P

2

∣∣∣∣ ρ̂

∣∣∣∣p +
P

2

〉
dP, (2.57)

where X and P are the position and momentum increments. This is also

written in terms of the displaced parity operator as

Wρ(x, p) =
1

π
Tr

[
ρ̂Û(x, p)

]
. (2.58)
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The Wigner function corresponding to the density matrix is real, i.e.

Wρ(x, p) = W ∗
ρ (x, p).

In addition, it can be defined for an arbitrary operator Â by replacing the

density matrix ρ̂ with Â

WA(x, p) =
1

π
Tr

[
ÂÛ(x, p)

]
. (2.59)

The Wigner distribution for a density operator may contain some negative

values.

The Weyl function is defined as

W̃ρ(X,P ) ≡
∫ ∞

−∞
exp (iPx)

〈
x− X

2

∣∣∣∣ ρ̂

∣∣∣∣x +
X

2

〉
dx

=

∫ ∞

−∞
exp (−ipX)

〈
p− P

2

∣∣∣∣ ρ̂

∣∣∣∣p +
P

2

〉
dp. (2.60)

and is expressed in terms of the displacement operator as

W̃ρ(X, P ) = Tr
[
ρ̂D̂(X, P )

]
. (2.61)

The Wigner and weyl functions are related to each other through the two-

dimensional Fourier transform

Wρ(x, p) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
W̃ρ(X, P ) exp [−i(Xp− Px)] dX dP. (2.62)
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2.3.5 Examples of the Wigner and Weyl functions

To highlight some examples, we derive the Wigner representation and Weyl

representation of number states and coherent states:

• The Wigner representation of the number states |n〉 is

Wn(x, p) =
(−1)n

π
exp

(−x2 − p2
)
Ln

[
2(x2 + p2)

]
, (2.63)

where Ln(x) are the Laguerre polynomials.

The corresponding Weyl function is

W̃n(x, p) = exp

[
−x2 + p2

4

]
Ln

[
x2 + p2

2

]
. (2.64)

• The Wigner representation of the coherent states |α〉 is

Wα(x, p) =
1

π
exp

[
−

(
x−

√
2αR

)2

−
(
p−

√
2αI

)2
]

, (2.65)

Correspondingly, the Weyl function is

W̃α(x, p) = exp

[
−

(x

2
+
√

2iαI

)2

−
(p

2
−
√

2iαR

)2

− 2|α|2
]

. (2.66)

In Fig. 2.1 we show the Wigner representation of the number states |3〉,
whereas in Fig. 2.2 we show the Wigner representation of the coherent states

|2 + 2i〉.
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Figure 2.1: The Wigner representation of the number states |3〉.
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Figure 2.2: The Wigner representation of the coherent state |2 + 2i〉.
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2.4 Bargmann analytic representation

We have seen in section 2.3.3 that the coherent states are defined on a com-

plex plane, and in addition they obey the completeness relation (2.55).

In this section, we introduce the Bargmann analytic representation in

the complex plane defined by the Glaubar coherent state. The space of

the Bargmann representation is a space of entire functions, which has no

singularities in the complex plane. The growth of an analytic function is

characterised by its order and type [37, 38, 39, 40].

2.4.1 Definition

We consider an arbitrary |f〉 state

|f〉 =
∞∑

n=0

fn|n〉, (2.67)

∞∑
n=0

|fn|2 = 1. (2.68)

We then use the notation

|f ∗〉 =
∞∑

n=0

f ∗n|n〉, (2.69)

∞∑
n=0

|fn|2 = 1. (2.70)
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In the Bargmann representation [4, 5, 6, 41], the state |f〉 is represented by

f(z) = exp

( |z|2
2

)
〈z∗|f〉 =

∞∑
n=0

fn zn

√
n!

, (2.71)

which is an entire function (i.e. analytic function in the complex plane C).

If we let f(ζ) = 0 (i.e. ζ is a zero of f(z)), then the coherent state |ζ〉 is

orthogonal to |f ∗〉.
The inner product of the two states is given by

〈f |g〉 =
1

π

∫

C
[f(z)]∗ g(z) exp

(−|z|2) d2z. (2.72)

If we let Ω̂ be an arbitrary operator

Ω̂ =
∞∑

m,n=0

Ωmn |m〉〈n|, (2.73)

we can represent this by the two variable analytic functions in the Bargmann

analytic representation

Ω(z, ζ∗) = exp

(
1

2
|z|2 +

1

2
|ζ|2

)
〈z∗| Ω̂ |ζ∗〉, (2.74)

= exp

(
1

2
|z|2 +

1

2
|ζ|2

) ∞∑
m,n=0

Ωmn zm ζ∗n√
m! n!

,

here |z∗〉 and |ζ∗〉 are coherent states.

Following this, we can express the action of an operator on a state in

terms of its analytic function. As an example

|g〉 = Ω̂ |f〉,
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it is evident that

g(z) =

∫

C
d2ζ exp(−|ζ|2) Ω(z, ζ∗) f(ζ). (2.75)

The Bargmann analytic representation of the creation and annihilation op-

erator is

a −→ ∂z;

a† −→ z. (2.76)

2.4.2 The growth of Bargmann analytic functions

The growth of an analytic function f(z) is characterised by its order ρ and

type σ [37, 38, 39, 40], where

ρ = lim
R→∞

sup
lnlnM(R)

lnR
, σ = lim

R→∞
sup

lnM(R)

Rρ
. (2.77)

Here M(R) is the maximum value of f(z) on |z| = R. We shall denote as

H(ρ, σ) the space of functions of an order not exceeding ρ and of a type not

exceeding σ if of order ρ.

We say that H(ρ, σ) is a subspace of H(ρ
′
, σ

′
) if ρ < ρ

′
or both ρ = ρ

′

and σ < σ
′
.

Using the convergence of the scalar product of Eq. (2.72) we conclude

that the space of a Bargmann analytic function is a subspace of H(2, 1
2
) [40].

We can now derive the Bargmann analytic representation of some quan-

tum states as examples.
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• The number state |n〉 is represented as

f(z) =
zn

√
n!

, (2.78)

and is of order 0.

• The coherent state |α〉 is represented as

f(z) = exp

(
α z − 1

2
|α|2

)
, (2.79)

which is of order ρ = 1 and type |α|.

2.4.3 P and Q (Husimi) functions

The P function [42] of a density operator ρ̂ is defined as

ρ̂ =

∫
P (α) |α〉 〈α| d2α (2.80)

where |α〉 are the Glauber states. The trace of a density operator ρ̂ is given

by

Trρ̂ = Tr

∫

C
d2α P (α) |α〉 〈α|

=

∫

C
d2 αP (α) = 1. (2.81)

If we let |ψ〉 be an arbitrary state, the Q function or Husimi function [43, 44]

is defined by

Q(α) =
|〈α|ψ〉|2

π
(2.82)
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with

∫

C
d2α Q(α) = 1 (2.83)

Various examples of the Husimi function are given below as follows:

The Husimi function of the coherent state |β〉 is

Q(α) =
1

π
|〈α|β〉|2 =

1

π
exp

(−|α− β|2) . (2.84)

The Husimi function of the number state |n〉 is

Q(α) =
1

π
|〈α|n〉|2 =

1

π
exp

(−|α|2) |α|2n

n!
. (2.85)

In Fig. 2.3 we plot the Husimi representation of the coherent state |2 + 2i〉,
whereas in Fig. 2.4 we plot the Husimi representation of the number state

|2〉.

2.4.4 Zeros of the Husimi functions

The Husimi function and Bargmann function f(z) are related to each other

as follows:

Q(z, z∗) = exp
(−|z|2) |f(z)|2, (2.86)

so they have the same zeros (i.e ζ is a zero of f(z) providing ζ is a zero of

the Husimi function).

The number state |n〉 has exactly n zeros, it has the zero ζ = 0 (with
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multiplicity n). As an example we consider the function

f(z) =
14∑

n=0

fn zn

√
n!

. (2.87)

The coefficients fn are given in Table. 2.1.

i fi i fi

0 0.14-0.62i 8 0.54-0.09i
1 0.91+0.79i 9 0.41-0.52i
2 0.95+0.65i 10 0.18-0.30i
3 0.03-0.84i 11 -0.18+0.61i
4 0.93-0.67i 12 0.46+0.78i
5 0.27-0.04i 13 -0.04-0.29i
6 0.78+0.04i 14 -0.02-0.25i
7 0.28+0.04i

Table 2.1: The coefficients fn

In Fig. 2.5 we plot the zeros of function f(z) which is polynomial of order

14 and has 14 zeros.
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Figure 2.3: The Husimi representation of the coherent state |2 + 2i〉.
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Figure 2.4: The Husimi representation of the number state |2〉.
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Figure 2.5: The distributions of zeros of function f(z) of Eq. (2.87). The
coefficients fn are give in Table. 2.1
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2.5 Summary

In this chapter, we undertook a review of the phase space methods for quan-

tum particles on a real line R, and the basic formalisms of this phase space

were introduced. Some special states such as number states, displacement,

parity operators and coherent states were studied, and the most popular

functions used in phase space – the Wigner function and the Weyl func-

tion methods – were described. The Bargmann analytic representation in

the complex plane, which was defined by the Glaubar coherent states, was

considered.

Finally, we briefly introduced the P and Q functions.



Chapter 3
Analytic Representations of Finite

Quantum Systems

3.1 Introduction

Finite quantum systems, with the position and momentum take values in Zd

(the integers modulo d) [45, 46, 47], have been studied by many authors. A

review with many references is given in [20]. The Wigner function in this

phase space has been defined by [48], this definition has been discussed by

[49, 50]. A slightly different definition given by [51]. Both methods have been

applied in different fields, such as quantum computing [52, 53] and quantum

optics [54]. When d is a prime number, Zd is a Galois field [20]. In such case,

a group of discrete symplectic transformations are well defined [55, 56, 57].

The wigner functions are defined in this Galois field phase space [58, 59, 60].

Analytic functions have been used in various contexts in quantum mechanics

[1, 2, 3]. Ref [21, 61] studied an analytic representation for these systems

30
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on a torus, using Theta functions. It was shown that the analytic function

representing a quantum state has exactly d zeros (which obey a constraint).

We derive some examples within this chapter to show the zero distributions

of various states. Ref [21] constructed the function f(z) from its zeros. In

this chapter, we study the time evolution of the system and the motion of

the d zeros on the torus. We study various Hamiltonians and various initial

states, and we calculate the d paths of the zeros. The zeros of this analytic

representation define uniquely the quantum state. In addition, we consider

the inverse problem and we calculate the Hamiltonian for given zeros, We

assume that the paths ζn(t) of the zeros are given and we calculate the

Hamiltonian.

3.2 Finite Quantum Systems

We consider a quantum system with a d−dimensional Hilbert spaceH, where

position and momentum take values in Zd. We use the notation |f〉 for the

states in this particular Hilbert space L2(Zd).

3.2.1 Position and Momentum States

Let |X ; m〉 and |P ; m〉, where m ∈ Zd (the integers modulo d), are both

orthonormal bases of L2(Zd), which we call position states and momentum

states correspondingly.

〈X ; m|X ; n〉 = δmn, 〈P ; m|P ; n〉 = δmn; (3.1)
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d−1∑
m=0

|X ; m〉〈X ; m| =
d−1∑
m=0

|P ; m〉〈P ; m| = 1̂. (3.2)

δmn in Eq. 3.1 is the Kronecker Delta satisfying

δmn =





0 if m 6= n;

1 if m = n.

(3.3)

The position and momentum states are related to each other through the

finite Fourier transformation

|P ; n〉 = d−1/2

d−1∑
m=0

ω(mn)|X ; m〉. (3.4)

where

ω(α) = exp

(
2πiα

d

)
. (3.5)

The position and momentum operators are given by

x̂ =
d−1∑
n=0

n|X ; n〉〈X ; n|; p̂ =
d−1∑
n=0

n|P ; n〉〈P ; n|; (3.6)

The Fourier operator is a unitary operator defined as

F̂ = d−1/2

d−1∑
m,n=0

ω(mn)|X ; m〉〈X ; n|; (3.7)

and satisfies

F̂ x̂F̂ † = p̂; F̂ p̂F̂ † = −x̂; (3.8)
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and

F̂ |X ; m〉 = |P ; m〉; F̂ |P ; m〉 = |X ;−m〉; (3.9)

therefore

|X ; m〉 F−→ |P ; m〉 F−→ |X ;−m〉 F−→ |P ;−m〉 F−→ |X ; m〉; (3.10)

x̂
F−→ p̂

F−→ −x̂
F−→ −p̂

F−→ x̂ (3.11)

F̂4 = 1̂. (3.12)

3.2.2 Displacement Operators

In the finite quantum system, the position and momentum are both integers

modulo d, therefore, the phase space is the toroidal lattice Zd × Zd.

The displacement operators in this particular phase space are defined as

Ẑ = exp

(
i
2π

d
x̂

)
; X̂ = exp

(
−i

2π

d
p̂

)
. (3.13)

These operators perform displacements along the P and X axes in the Zd×Zd

phase space, obeying the relations

X̂d = Ẑd = 1̂; X̂βẐα = ẐαX̂βω(−αβ). (3.14)
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where α, β are integers in Zd.

Ẑα|P ; m〉 = |P ; m + α〉; Ẑα|X; m〉 = ω(αm)|X; m〉; (3.15)

X̂β|P ; m〉 = ω(−mβ)|P ; m〉; X̂β|X; m〉 = |X; m + β〉. (3.16)

The general displacement operators are defined as

D̂(α, β) = ẐαX̂βω(−2−1αβ) = X̂βẐαω(2−1αβ). (3.17)

with

D̂† = D̂(−α,−β). (3.18)

It is easy to see that

D̂(α, β)|X; m〉 = ω(2−1αβ + αm)|X; m + β〉; (3.19)

D̂(α, β)|P ; m〉 = ω(−2−1αβ − βm)|P ; m + α〉. (3.20)

3.3 Zak Transform

We introduce a map between states in the infinite dimensional Hilbert space

H and the d-dimensional Hilbert space H as follows

Φ(x) ∈ H −→ Φm = N−1/2

∞∑
ω=−∞

Φ

[
x =

(
2π

d

)1/2

(m + d ω)

]
∈ H;

(3.21)
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where m ∈ Zd. N is a normalisation factor given by

N =
d−1∑
m=0

{ ∞∑
ω=−∞

Φ∗
[
x =

(
2π

d

)1/2

(m + d ω)

]}{ ∞∑

ω′=−∞
Φ

[
x =

(
2π

d

)1/2

(m + d ω′)

]}
.

(3.22)

Then Φm+d = Φm.

We consider the coherent states |z〉, whose wave function is

f(x, z) = 〈x|z〉 = π−1/4 exp

(
−1

2
x2 + z x− 1

2
zR z

)
, (3.23)

where z = zR + izI .

We use Eq. (3.21) to find the corresponding state |z〉finite in H:

|z〉finite =
d−1∑
m=0

fm(z) |X ; m〉; (3.24)

where

fm(z) = N (z)−1/2 π−1/4 d−1/2 exp

(
i

2
zIz

)
ϑ3

[
πm

d
− z

( π

2d

)1/2

;
i

d

]
.

(3.25)

Here ϑ3 is the Jacobi Theta functions [64, 65], defined as

ϑ3(u; τ) =
∞∑

n=−∞
exp

(
iπτn2 + i2nu

)
, (3.26)

and τ is a complex number with positive imaginary parts.
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3.4 Analytic Representation

3.4.1 Definition of an Analytic Representation

We consider an arbitrary pure normalised state |F 〉

|F 〉 =
d−1∑
m=0

Fm |X; m〉;
d−1∑
m=0

|Fm|2 = 1. (3.27)

We will use the notation

|F ∗〉 =
d−1∑
m=0

F ∗
m |X; m〉; 〈F | =

d−1∑
m=0

F ∗
m〈X; m|; 〈F ∗| =

d−1∑
m=0

Fm 〈X; m|. (3.28)

Using Eq. (3.25), we define the analytic representation of |F 〉 as:

f(z) = [N (z)]1/2 d1/2 exp

(−i

2
zI z

)
finite〈z∗|F 〉

= π−1/4

d−1∑
m=0

Fm ϑ3[
πm

d
− z (

π

2d
)1/2 ;

i

d
]. (3.29)

The function f(z) satisfies

f
[
z + (2πd)1/2

]
= f(z),

f
[
z + i (2πd)1/2

]
= f(z) exp

[
πd− i (2πd)1/2 z

]
. (3.30)

f(z) is defined on a square area S on the complex plane

S = [a, a + (2πd)1/2)× [b, b + (2πd)1/2); a, b ∈ R. (3.31)
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The scalar product is given by

〈F ∗|G〉 = (2π)−1/2d−3/2

∫

S

d2 z exp(−z2
I ) f(z) g(z∗); (3.32)

where

z = zR + izI ; z = dzR dzI . (3.33)

The orthogonality relation

2−1/2π−1d−3/2
∫

S
d2z exp

(−z2
I

)
ϑ3

[
πnd−1 − zπ1/2(2d)−1/2; id−1

]

× ϑ3

[
πmd−1 − z∗π1/2(2d)−1/2; id−1

]
= δ(m,n), (3.34)

where m,n ∈ Zd, is proved as follows:

Using the definition of Theta functions:

ϑ3(u; τ) =
∞∑

n=−∞
exp(iπτn2 + i2nu), (3.35)

we rewrite the right-hand side R of Eq. (3.34) as:

R = 2−1/2π−1d−3/2
∑

k,`

exp

[
i2π(km + `n)

d

]
R1

×
∫ (2πd)1/2

0

dzI exp

[
−z2

I +

(
2π

d

)1/2

(k − `)zI −
(π

d

)
(k2 + `2)

]
; (3.36)
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where

R1 =

∫ (2πd)1/2

0

dzR exp

[
−i

(
2π

d

)1/2

(k + `)zR

]
= (2πd)1/2 δ(k,−`). (3.37)

Inserting Eq. (3.37) into Eq. (3.36), we get:

R = π−1/2d−1

∞∑

k=−∞
exp

[
i2πk(m− n)

d

]

×
∫ (2πd)1/2

0

dzI exp



−

[
zI −

(
2π

d

)1/2

k

]2


 . (3.38)

We can rewrite k as k = k0 + dN , where 0 ≤ k0 ≤ d− 1 and N is an integer.

Then

R = π−1/2d−1

d−1∑

k=0

exp

[
i2πk0(m− n)

d

]

×
∞∑

N=−∞

∫ (2πd)1/2

0

dzI exp



−

[
zI −

(
2π

d

)1/2

(Nd + k0)

]2


 . (3.39)

However

∞∑
N=−∞

∫ (2πd)1/2

0

dzI exp



−

[
zI −

(
2π

d

)1/2

(Nd + k0)

]2




=

∫ ∞

−∞
dzI exp



−

[
zI −

(
2π

d

)1/2

k0

]2


 = π1/2. (3.40)
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Therefore

R = d−1

d−1∑

k=0

exp

[
i2πk0(m− n)

d

]
= δ(m,n). ¤

Using this, we can prove that

Fm = 2−1/2 π−1 d−3/2

∫

S

d2z exp
(−z2

I

)
ϑ3

[
πm

d
− z (

π

2d
)1/2;

i

d

]
f(z∗). (3.41)

We derive the analytic representations of position eigenstates |X ; m〉 and

momentum eigenstates |P ; m〉 as follows

|X ; m〉 −→ π−1/4 ϑ3

[
πm

d
− z

( π

2d

)1/2

;
i

d

]
; (3.42)

|P ; m〉 −→ π−1/4 exp

(
−1

2
z2

)
ϑ3

[
πm

d
− z i

( π

2d

)1/2

;
i

d

]
. (3.43)

correspondingly. We consider an example where d = 5 and the |F 〉 at t = 0

are described through the coefficients

F0 = 0.14 + i0.42; F1 = 0.91 + i0.79; F2 = 0.95 + i0.65;

F3 = 0.03 + i0.84; F4 = 0.93− i0.67. (3.44)

In Fig. 3.1 we plot the real part of the function (3.29), where d = 5 and

the |F 〉 are described through the coefficients in Eq. (3.44). In Fig. 3.2 we

plot the imaginary part of the function (3.29), where d = 5 and the |F 〉 are

described through the coefficients in Eq. (3.44).
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Figure 3.1: The real part of the function f(z) of Eq. (3.29). d = 5 and the
|F 〉 is described through the coefficients in Eq. (3.44).
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Figure 3.2: The imaginary part of the function f(z) of Eq. (3.29). d = 5
and the |F 〉 is described through the coefficients in Eq. (3.44).
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3.5 Zeros of the functions f (z)

We shall now denote as ζn the zeros of f(z), i.e. f(ζn) = 0.

Let f(z) be an analytic function. We consider the integrals

J0 =

∮

`

dz

2πi

∂zf(z)

f(z)
; J1 =

∮

`

dz

2πi

∂zf(z)

f(z)
z. (3.45)

J0 is equal to the number of zeros of this function (with the multiplicities

taken into account), inside the contour `.

J1 is equal to the sum of these zeros.

The analytic function f(z) satisfies the quasi-periodicity of Eq. (3.30).

Using the quasi-periodicity of Eq. (3.30) we prove that the integral J0,

for a contour along the boundary of the cell S, is equal to d. Therefore the

analytic functions f(z) have exactly d zeros, within each cell S.

Using the quasi-periodicity of Eq. (3.30) we also prove that

∮

`

dz

2πi

∂zf(z)

f(z)
z = (2π)1/2 d3/2 (M + iN) +

(π

2

)1/2

d3/2 (1 + i). (3.46)

In the plane which acts as the covering surface of the torus, each cell is

characterised by a pair of integers (M,N).

Integration on the contour along the boundary of the cell characterised

by (0, 0), gives
(

π
2

)1/2
d3/2 (1 + i).

Integration on the contour along the boundary of the cell characterised

by (M,N), gives
(

π
2

)1/2
d3/2 (1 + i) + (2π)1/2 d3/2 (M + iN).
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Therefore, the sum of the zeros ζn of f(z) is

d∑
n=1

ζn = (2π)1/2 d3/2 (M + iN) +
(π

2

)1/2

d3/2 (1 + i). (3.47)

In order to provide some examples, we demonstrate the distributions of zeros

for three different cases

• In Fig. 3.3 we show the distributions of zeros for case d = 3, and the

|F (t)〉 is described through the coefficients

F0(0) = 0.23 + i0.13; F1(0) = 0.67− i0.04; F2(0) = 0.67− i0.09. (3.48)

• In Fig. 3.4 we show the distributions of zeros for case d = 5, and the

|F (t)〉 at t = 0 is described through the coefficients in Eq. (3.44).

• In Fig. 3.5 we show the distributions of zeros for case d = 5, and the

|F (t)〉 at t = 0 is described through the coefficients

F0(0) = 0.84; F1(0) = 0.33; F2(0) = 0.18; F3(0) = 0.18; F4(0) = 0.33; (3.49)

where we see only one zero( because the five zeros are identical).
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Figure 3.3: The zeros of function f(z) for case d = 3. The |F (t)〉 at t = 0 is
described through the coefficients in Eq. (3.48).
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Figure 3.4: The zeros of function f(z) for case d = 5. The |F (t)〉 at t = 0 is
described through the coefficients in Eq. (3.44).



CHAPTER 3. ANALYTIC REPRESENTATIONS OF FINITE QUANTUM SYSTEMS46

0 2 4
0

1

2

3

4

5

Z
R

Z
I

Figure 3.5: The zeros of function f(z) for case d = 5. The |F (t)〉 at t = 0 is
described through the coefficients in Eq. (3.49).
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3.5.1 Construction of the analytic representation from

its zeros

We suppose that d zeros ζn in the cell S are given, and that they satisfy the

constraint of Eq. (3.47). In other words, d − 1 zeros are given and the last

is found through the constraint of Eq. (3.47).

We consider the function

ϕ(z) =
d∏

n=1

ϑ3

[( π

2d

)1/2

(z − ζn) +
π(1 + i)

2
; i

]
; (3.50)

It is evident that ϕ(z) has the given zeros. The entire function f(z)/ϕ(z)

has no zeros, which means it is the exponential of entire function:

f(z) = ϕ(z)exp (φ(z)) . (3.51)

If we take into account the periodicity constraints of Eq. (3.30) we find

φ
[
z +

√
2πd

]
= φ(z) + i2πN ;

φ
[
z + i

√
2πd

]
= φ(z) + 2π (N + iM); (3.52)

where N ;M are arbitrary integers and N is the integer entering the con-

straint of Eq. (3.47). The growth of f(z) is of order 2. The order of ϕ(z) is

2; which means that the φ(z) is a polynomial of maximum possible degree 2.

From Eq. (3.52) we find that

φ(z) = −
(

2π

d

)1/2

Nzi + Λ, (3.53)
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here Λ is a constant. Therefore the function f(z) is given by

f(z) = exp(Λ) exp

[
−

(
2π

d

)1/2

Nzi

]
ϕ(z);

= C exp

[
−i

(
2π

d

)1/2

Nz

]
d∏

n=1

ϑ3 [wn(z); i] ;

wn(z) =
( π

2d

)1/2

(z − ζn) +
π(1 + i)

2
; (3.54)

where N ∈ Z in the constraint of Eq. (3.47), and C is a constant determined

by the normalisation condition.

3.5.2 Numerical Example

Analytically, using Eq. (3.41) we can calculate the coefficients Fm.

Numerically, we insert d arbitrary values z0, ..., zd−1 and solve the system

of d equations with d unknowns:

f(zj) = π−1/4

d−1∑
m=0

Fm ϑ3

[
π m d−1 − zj π1/2 (2d)−1/2; i d−1

]
. (3.55)

We take the normalisation coefficients equal to one, and after the calculation

we normalise the vector Fm.

As an example, let d = 3 and ζ0; ζ1 be given as follows:

ζ0 = 0.26 + 2.95i; ζ1 = 2.16 + 2.22i. (3.56)

Using Eq. (3.47), we get ζ2 = 4.09 + 1.34i.

We choose three arbitrary values 0, 1,−1 and insert them with ζ0; ζ1; ζ2



CHAPTER 3. ANALYTIC REPRESENTATIONS OF FINITE QUANTUM SYSTEMS49

in Eq. (3.54). We then find f(0), f(1), f(−1) to insert them in Eq. (3.55)

and solve the system of three equations with three unknowns, in which case

we get




F0

F1

F2




=




0.2349 + 0.1301i

0.6778− 0.0490i

0.6760− 0.0952i




3.6 Paths of the Zeros

Using the Hamiltonian H, the state |F (0)〉 =
∑

Fm(0)|X; m〉 at t = 0 evolves

at time t into

|F (t)〉 = exp(itH)|F (0)〉 =
d−1∑
m=0

Fm(t)|X; m〉. (3.57)

Let f(z; t) be the analytic function corresponding to exp(itH)|f〉 (where

f(z; 0) = f(z)) and ζn(t) the zeros.

We consider the evolution operators

UA(t) = exp(itHA); HA =
x2

2
+

p2

2
,

UB(t) = exp(itHB); HB = −i ln

[
exp

(
ix2

2

)
exp

(
ip2

2

)]
,

UC(t) = exp(itHC); HC = FHBF † = −i ln

[
exp

(
ip2

2

)
exp

(
ix2

2

)]
. (3.58)

Each of these is the analogue of a harmonic oscillator evolution operator with

Hamiltonian H = 1/2x2 + 1/2p2. Here, there is no analogous formula to the

Baker-Campbell-Hausdorff relation, and therefore there is no simple relation
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between them.

Below, we show the eigenvalues of the d × d matrices HA, HB, HC . The

HB, HC have the same eigenvalues, because they are related with a unitary

transformation.

Mathematically, the eigenvalues of HB, HC are defined modulo 2πN , be-

cause there is a multivaluedness associated with the logarithms in HB, HC .

Physically, the eigenvalues of HB should be close to the eigenvalues of

HA, because in the semiclassical limit these Hamiltonians are the same.

This physical requirement defines which of the logarithms should be cho-

sen.

3.6.1 Eigenvalues of the Hamiltonians HA, HB, HC

We calculate the eigenvalues of the Hamiltonians HA, HB, HC for the case

d = 5. The calculation of the eigenvalues Ai of HA (labelled in ascending

order) is straightforward, and the results are shown in Table 3.1.

The eigenvalues Bi of HB are defined modulo 2πN , and as we explained

we chose those close to the eigenvalues Ai of HA, because in the semiclassical

limit the corresponding Hamiltonians are the same.

In order to do this, we express Ai as

Ai = A′
i + 2πNi (mod 2π); 0 ≤ A′

i < 2π (3.59)

We then calculate the eigenvalues of the matrix exp(iHB) = exp
(

ix2

2

)
exp

(
ip2

2

)
,

which are Bi = exp(iBi). From Bi, we calculate the values of B′
i = −i lnBi

such that 0 ≤ B′
i < 2π (the B′

i are labelled in ascending order). We then
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add 2πNi (calculated in Eq. (3.59)) to B′
i and we get the Bi. In Table 3.1,

we show the Bi, which are eigenvalues of both HB, HC .

HA HB, HC

12.82 12.90
8.15 8.46
5.17 4.44
2.87 3.41
0.96 0.77

Table 3.1: The eigenvalues of HA, HB, HC

As an example, we consider the case where

• d = 5 and the state |F (0)〉 at t = 0 are described through the coeffi-

cients in Eq. (3.44). We calculate the coefficients Fm(t) for the three cases

of Hamiltonians HA, HB, HC in Eq. (3.58), and we further calculate the cor-

responding f(z; t) using Eq. (3.29). Following this, we find numerically the

zeros ζn(t) using MATLAB.

In Fig. 3.6 we show the plot of the five curves ζn(t) for the Hamiltonians

HA (solid line), HB (broken lines) and HC (dotted line) of Eq. (3.58). We

plot part of these curves in the adjacent cells only (these curves should appear

in the original cell also, although through periodicity). In Fig. 3.7 we show

the plot of the real part of one of the zeros as a function of time t.

• d = 3 and the state |F (0)〉 at t = 0 are described through the coefficients

F0(0) = 0.51− 0.33i; F1(0) = 0.22− 0.21i; F2(0) = 0.23− 0.22i; (3.60)

We calculate the coefficients Fm(t) for the Hamiltonian HB in Eq. (3.58),

and we further calculate the corresponding f(z; t) using Eq. (3.29), from
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which we find numerically the zeros ζn(t) using MATLAB. In Fig. 3.8 we

show the plot of the three curves ζn(t) for the Hamiltonian HA of Eq. (3.58).

• d = 3 and the state |F (0)〉 at t = 0 are described through the coefficients

F0(0) = 0.8881; F1(0) = 0.3250; F2(0) = 0.3250. (3.61)

We calculate the coefficients Fm(t) for the Hamiltonian HC in Eq. (3.58),

and further calculate the corresponding f(z; t) using Eq. (3.29). In this case,

we find numerically three Identical zeros using MATLAB.

ζ0(0) = ζ1(0) = ζ2(0) = 2.1708 + 2.1708i. (3.62)

In Fig. 3.9 we show the plot of the three curves ζn(t) for the Hamiltonian

HB of Eq. (3.58).

• In Fig. 3.10 we consider the case where d = 3 and the state |F (0)〉 at

t = 0 are described through the coefficients

F0(0) = 0.84 + 0.09i; F1(0) = 0.36− 0.04i; F2(0) = 0.36− 0.04i. (3.63)

We calculate the coefficients Fm(t) for the Hamiltonian

HD =




1 1− i 0

1 + i 1 0

0 0 2.5




(3.64)

which has the eigenvalues −0.41, 2.41, 2.5 and we calculate the corresponding
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f(z; t) using Eq. (3.29).

• In Fig. 3.11 we consider the case where d = 4 and the state |F (0)〉 at

t = 0 are described through the coefficients

F0(0) = 0.03 + 0.25i; F1(0) = 0.53 + 0.05i;

F2(0) = 0.74− 0.22i; F3(0) = 0.12− 0.16i. (3.65)

We calculate the coefficients Fm(t) for the Hamiltonian

HE =




1 −i 0 0

i 1 0 0

0 0 1/2 0

0 0 0 1/2




(3.66)

which has the eigenvalues 0, 0.5, 0.5, 2 and we calculate the corresponding

f(z; t) using Eq. (3.29).
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Figure 3.6: The zeros ζn(t) for state |F (t)〉, which at t = 0 are described in
Eq. (3.44). We consider the three Hamiltonians HA (solid line), HB (broken
lines) and HC (dotted line) of Eq. (3.58). For clarity, parts of these curves are
plotted in the adjacent cells only (although through periodicity they should
appear in the original cell also).
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Figure 3.7: The real part of one of the zeros as a function of time t for the
state |F (t)〉, which at t = 0 is described in Eq. (3.44). We consider the three
Hamiltonians HA (solid line), HB (broken lines) and HC (dotted line) of Eq.
(3.58).
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Figure 3.8: The zeros ζn(t) for the state |F (t)〉, which at t = 0 are described
in Eq. (3.60). We consider the Hamiltonian HB of Eq. (3.58).
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Figure 3.9: The zeros ζn(t) for the state |F (t)〉, which at t = 0 are described
in Eq. (3.61). We consider the Hamiltonian HC of Eq. (3.58).
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Figure 3.10: The zeros ζn(t) for the state |F (t)〉, which at t = 0 are described
in Eq. (3.63). We consider the Hamiltonian HD of Eq. (3.64).
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Figure 3.11: The zeros ζn(t) for the state |F (t)〉, which at t = 0 are described
in Eq. (3.65). We consider the Hamiltonian HE of Eq. (3.66).
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3.7 Calculation of the Hamiltonian from the

paths of the zeros

In Eq. (3.54) we explained how, from the zeros ζn, we can calculate the

state f(z) in the analytic representation. In section 3.6 we assumed that

the Hamiltonian was given, and we then calculated the paths ζn(t) of the

d zeros which define completely a finite quantum system. In this section,

we consider the inverse problem inasmuch that we calculate the Hamiltonian

for a given path ζn(t) of the d zeros. We use Eq. (3.54) to calculate the

f(z; t) and then solve the system of Eq. (3.55) to calculate the Fm(t). The

Hamiltonian is a d × d Hermitian matrix, with d2 real variables, which in

general are time-dependent.

For small time intervals δt, we can write the evolution operator

U(t) = exp (iHt)

approximately as

Umn(δt) ≈ δmn + iHmnδt; m, n = 0, ..., d− 1 (3.67)

The above equation involves a truncation and is approximate.

We calculate the Fm(0), Fm(δt), ..., Fm(Nδt). We then solve the linear

system

Fm [(j + 1)δt] = Fm(jδt) +
d−1∑
n=0

iδtHmn(jδt)Fn(jδt); j = 0, ..., (N − 1). (3.68)

We obtain d2 real unknowns (the degrees of freedom of the matrix H), so we
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therefore need (K > d2) real independent equations. The equations corre-

sponding to each interval (e.g. from t = 0 to δt) give d complex equations, i.e.

2d real equations, in which case we need at least d/2 intervals (or (d + 1)/2

if d is an odd number). We assume that the Hamiltonian is constant for the

small time interval. We then solve the overdetermined system of equations

(we use more equations than unknowns).

We here rewrite the system of Eq. (3.68) as AX = B, where A is a

K × d2 matrix, X is the Hamiltonian written as a d2 × 1 vector and B is

a K × 1 vector. Using a numerical method we minimise ||AX − B||. We

can find many numerical techniques for such systems, and the advantage is

that we find stable solutions. A change to δt or the number K of equations

gives approximately the same results. To measure the error we calculate the

matrix

UU † − 1

which has the elements

Kik = (δt)2
∑

j HijH
∗
kj.

This matrix should be zero in an exact calculation. We calculate its Frobenius

norm as a measure of the error

E =

(∑

i,k

|Kik|2
)1/2

(3.69)

We now consider a simple example where d = 2. Let

ζ0(t) = sin(10t) + (5 + 5i)t + (2 + i) + 2π1/2(M + iN)
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be the path of the first zero (the term 2π1/2(M +iN) is related to the toroidal

structure). From the constraint of Eq. (3.47), we calculate the path of the

second zero to be

ζ1(t) = 2π1/2(1 + i)− ζ0(t) + 2π1/2(M ′ + iN ′).

We choose small time intervals δt and calculate the Fm(0), Fm(δt), Fm(2δt).

We solve the system

Fm(δt) = Fm(0) +
1∑

n=0

iδtHmnFn(0);

Fm(2δt) = Fm(δt) +
1∑

n=0

iδtHmnFn(δt). (3.70)

of four complex equations (K = 8) with four real unknowns as follows:

We want to calculate the Hamiltonian

H =




a c + id

c− id b


 ; (3.71)

and the evolution operator

U(δt) =




1 + iδta iδt(c + id)

iδt(c− id) 1 + iδtb


 . (3.72)

where a, b, c, d are real numbers.

Let

Fm(0) =




x0 + iy0

x1 + iy1


 ; Fm(δt) =




x2 + iy2

x3 + iy3


 ; Fm(2δt) =




x4 + iy4

x5 + iy5


 ; (3.73)
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We here rewrite the system of Eq. (3.70) as follows:




1 + iδta iδt(c + id)

iδt(c− id) 1 + iδtb







x0 + iy0

x1 + iy1


 =




x2 + iy2

x3 + iy3


 ; (3.74)




1 + iδta iδt(c + id)

iδt(c− id) 1 + iδtb







x2 + iy2

x3 + iy3


 =




x4 + iy4

x5 + iy5


 ; (3.75)

This system of four complex equations

ia(x0 + iy0) + i(c + id)(x1 + iy1) = (x2 + iy2)− (x0 + iy0);

i(c− id)(x0 + iy0) + ib(x1 + iy1) = (x3 + iy3)− (x1 + iy1);

ia(x2 + iy2) + i(c + id)(x3 + iy3) = (x4 + iy4)− (x2 + iy2);

i(c− id)(x2 + iy2)+ ib(x3 + iy3) = (x5 + iy5)− (x3 + iy3); (3.76)

and eight real equations with four unknowns

−ay0 − cy1 − dx1 = x2 − x0;

ax0 + cx1 − dy1 = y2 − y0;

−cy0 + dx0 − by1 = x3 − x1;

cx0 + dy0 + bx1 = y3 − y1;

−ay2 − cy3 − dx3 = x4 − x2;
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ax2 + cx3 − dy3 = y4 − y2;

−cy2 + dx2 − by3 = x5 − x3;

cx2 + dy2 + bx3 = y5 − y3. (3.77)

We here rewrite the system of Eq. (3.77) as AX = B




−y0 −y1 −x1 0

x0 x1 −y1 0

0 −y0 x0 −y1

0 x0 y0 x1

−y2 −y3 −x3 0

x2 x3 −y3 0

0 −y2 x2 −y3

0 x2 y2 x3







a

c

d

b




=




y5 − y3

y2 − y0

x3 − x1

y3 − y1

x4 − x2

y4 − y2

x5 − x3

y5 − y3




; (3.78)

In this case we choose δt = 0.01 and evaluate the Fm(0), Fm(0.01), Fm(0.02).

We then solve the system in Eq. (3.78), which gives the Hamiltonian matrix

H0 =




8.6187 −11.8703 + 4.5382i

−11.8703− 4.5382i 19.7692


 (3.79)

with error E0 = 0.07.

A different choice of δt gives approximately the same Hamiltonian, in

order to confirm that we repeat the calculation with δt = 0.005 and also

δt = 0.015.

In the case of δt = 0.005 we evaluate the Fm(0), Fm(0.005), Fm(0.01), after
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which we then solve the system in Eq. (3.78). This gives the Hamiltonian

matrix

H ′
0 =




9.7607 −11.8789 + 3.9414i

−11.8789− 3.9414i 19.2609


 , (3.80)

with error E ′
0 = 0.019.

In the case of δt = 0.015 we evaluate the Fm(0), Fm(0.015), Fm(0.03). We

then solve the system in Eq. (3.78). This gives the Hamiltonian matrix

H ′′
0 =




7.4048 −11.7168 + 5.0944i

−11.7168− 5.0944i 19.7303


 , (3.81)

with error E ′′
0 = 0.17.

We see that the Hamiltonians H0, H
′
0 and H ′′

0 are approximately equal.

As expected, an increase in the time step increases the error.

The Hamiltonian is in general time-dependent, and in order to show this

we have repeated the calculation of the Hamiltonian HN for the intervals

(0.01N, 0.01N + 0.01), (0.01N + 0.01, 0.01N + 0.02) with N = 2, 4, 6, 8.

as follows:

• We evaluate the Fm(0.02), Fm(0.03), Fm(0.04) and we then solve the

system in Eq. (3.78). This gives the Hamiltonian matrix

H1 =




5.6607 −12.8322 + 4.7287i

−12.8322− 4.7287i 17.9470


 , (3.82)
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with error E1 = 0.07.

• We evaluate the Fm(0.04), Fm(0.05), Fm(0.06) and we then solve the

system in Eq. (3.78). This gives the Hamiltonian matrix

H2 =




3.0297 −11.4457 + 5.0043i

−11.4457− 5.0043i 14.1393


 , (3.83)

with error E2 = 0.05.

• We evaluate the Fm(0.06), Fm(0.07), Fm(0.08), and we then solve the

system in Eq. (3.78). This gives the Hamiltonian matrix

H3 =




2.5176 −8.8037 + 3.2893i

−8.8037− 3.2893i 10.8301


 , (3.84)

with error E3 = 0.03.

• We evaluate the Fm(0.08), Fm(0.09), Fm(0.10) and we then solve the

system in Eq. (3.78). This gives the Hamiltonian matrix

H4 =




5.6293 −7.0773 + 0.7992i

−7.0773− 0.7992i 7.7871


 , (3.85)

with error E4 = 0.02.

From the above calculations, it is evident that the Hamiltonian is time-

dependent.
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3.8 summary

We have considered a quantum system with a d−dimensional Hilbert space

H, where position and momentum take vales in Zd. Quantum states have

been represented with the analytic function of Eq. (3.29) on a torus, which

has exactly d zeros and obeys the constraint of Eq. (3.47). We have con-

sidered the construction of the analytic function of state from its zeros. As

the system evolves in time, the d zeros follow d paths on the torus, which

define the Hamiltonian. We have also considered the inverse problem, i.e.

calculated the paths ζn(t) of the d zeros for a given Hamiltonian.



Chapter 4
Periodic finite quantum systems

In the previous chapter we studied the time evolution of the system, and the

motion of the d zeros on the torus. We saw that the d zeros follow d paths on

the torus when the system evolves in time. In addition, we considered various

Hamiltonians and various initial states, and numerically we calculated the d

paths of the d zeros.

In this chapter, we study the periodic systems (systems with Hamiltonians

with commensurate eigenvalues) and discuss some examples where two or

more zeros follow the same path.

68
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4.1 Introduction

In this chapter, we consider periodic finite quantum systems. We showed in

Chapter 3 that as a system evolves in time, the d zeros follow d paths on

the torus. If the eigenvalues of the Hamiltonian are rational numbers, the d

paths of d zeros in general closed curves on the torus.

The chapter then moves on to give a brief introduction to the periodic

system. During a period the zeros follow closed paths. We show that, in

some cases, the M of the zeros follow the same path. We say that this path

has multiplicity M, which we back up with M = 2, 3, 4, 5 examples. We then

discuss how a perturbation of the initial values of the zeros splits a path with

multiplicity M into M different paths. Near the point where the splitting

occurs, we approximate the paths of the zeros with the quadratic equation.

4.2 Periodic systems with paths with multi-

plicity M = 1

Let Ωi (where i = 0, ..., d − 1) be the eigenvalues of the Hamiltonian H of

the system. If the ratios Ωi/Ω0 are rational numbers, the system is periodic.

In this case the d paths of the zeros ζn(t) are in general closed curves on the

torus.

We now present the following examples:
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• We consider the Hamiltonian

H =




1 −i

i 1


 (4.1)

which has the eigenvalues 0, 2 and the period T = π.

Let ζ0(t), ζ1(t) be the paths of the zeros. We assume that at t = 0

ζ0(0) = 0.39 + 2.27i; ζ1(0) = 3.15 + 1.27i. (4.2)

These zeros obey the constraint of Eq. (3.47) and are on a torus (i.e. they

are defined modulo (4π)1/2). During a period, the zeros ζ0, ζ1 follow closed

paths.

In Fig. 4.1 we present the paths of these zeros.

• We consider the Hamiltonian

H =




1 −i 0

i 1 0

0 0 2




(4.3)

which has the eigenvalues 0, 2, 2 and the period T = π.

Let ζ0(t), ζ1(t), ζ2(t) be the paths of the three zeros. We assume that at

t = 0

ζ0(0) = 2.01 + 2.12i; ζ1(0) = 2.28 + 2.47i; ζ2(0) = 2.21 + 1.91i. (4.4)

These zeros obey the constraint of Eq. (3.47) and are on a torus (i.e. they
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are defined modulo (6π)1/2).

In Fig. 4.2 we present the paths of these zeros. During a period, the zeros

ζ0, ζ1, ζ2 follow a closed path. These zeros return to their original position

after a period.

• We will now consider the Hamiltonian of Eq. (4.3). Let ζ0(t), ζ1(t), ζ2(t)

be the paths of the three zeros. We assume that at t = 0

ζ0(0) = ζ1(0) = ζ2(0) = 2.1708 + 2.1708i; (4.5)

These zeros obey the constraint of Eq. (3.47) and are on a torus (i.e. they

are defined modulo (6π)1/2).

In Fig. 4.3 we present the paths of these zeros. During a period, the zeros

ζ0, ζ1, ζ2 follow a closed path. These zeros return to their original position

after a period.

In some cases, some or all of the zeros follow the same path. If M of the

zeros follow the same path, we say this path has multiplicity M. We can now

present examples with M = 2, 3, 4, 5.
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Figure 4.1: The paths of the zeros ζ0(t), ζ1(t) for the system with the Hamil-
tonian of Eq. (4.1). The zeros ζ0(t), ζ1(t) follow a closed path. At t = 0 the
zeros ζ0(0), ζ1(0) are given in Eq. (4.2) and are indicated in the diagram.
After a period T , the zeros ζ0, ζ1 return to their initial positions.
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Figure 4.2: The paths of the zeros ζ0(t), ζ1(t), ζ2(t) for the system with the
Hamiltonian of Eq. (4.3). The zeros ζ0(t), ζ1(t), ζ2(t) follow a closed path.
At t = 0 the zeros ζ0(0), ζ1(0), ζ2(0) are given in Eq. (4.4) and are indicated
in the diagram. After a period T , the zeros ζ0, ζ1, ζ2 return to their initial
positions.



CHAPTER 4. PERIODIC FINITE QUANTUM SYSTEMS 74

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Z
R

Z
I

Figure 4.3: The paths of the zeros ζ0(t), ζ1(t), ζ2(t) for the system with the
Hamiltonian of Eq. (4.3). The zeros ζ0(t), ζ1(t), ζ2(t) follow a closed path.
At t = 0 the zeros ζ0(0), ζ1(0), ζ2(0) are given in Eq. (4.5) and are indicated
in the diagram. After a period T , the zeros ζ0, ζ1, ζ2 return to their initial
positions.
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4.3 Periodic systems with paths with multi-

plicity M = 2

• We consider the Hamiltonian

H =




1 1 0

1 1 0

0 0 1




(4.6)

which has the eigenvalues 0, 1, 2 and the period T = 2π. Let ζ0(t), ζ1(t), ζ2(t)

be the paths of the three zeros. We assume that at t = 0

ζ0(0) = 1.34 + 2.27i; ζ1(0) = 2.15 + 2.32i; ζ2(0) = 3.01 + 1.91i. (4.7)

These zeros obey the constraint of Eq. (3.47) and are on a torus (i.e. they

are defined modulo (6π)1/2).

In this case, we find numerically that

ζ1(T + t) = ζ2(t); ζ2(T + t) = ζ1(t). (4.8)

Here, two of the zeros follow the same path (which by definition has multi-

plicity M = 2) while the third follows a different path.

In Fig. 4.4 we present the paths of these zeros. Here, after a period

ζ1(T ) = ζ2(0); ζ2(T ) = ζ1(0); ζ0(T ) = ζ0(0) (4.9)

During a period, the zero ζ0 follows a closed path, whilst the other two
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zeros exchange positions after a period. These zeros return to their original

position after 2 periods

ζ1(2T ) = ζ1(0); ζ2(2T ) = ζ2(0). (4.10)

• We now consider the Hamiltonian of Eq. (4.6).

Let ζ0(t), ζ1(t), ζ2(t) be the paths of the three zeros. We assume that at

t = 0

ζ0(0) = 0.26 + 2.95i; ζ1(0) = 2.16 + 2.22i; ζ2(0) = 4.09 + 1.34i; (4.11)

which obey the constraint of Eq. (3.47).

Here, we find numerically that

ζ0(T + t) = ζ2(t); ζ2(T + t) = ζ0(t). (4.12)

In this case, two of the zeros follow the same path (which by definition has

multiplicity M = 2) while the third follows a different path.

In Fig. 4.5 we present the paths of these zeros. In this case, after a period

ζ0(T ) = ζ2(0); ζ2(T ) = ζ0(0); ζ1(T ) = ζ1(0). (4.13)

The zero ζ1 follows a closed path during a period, while the other two zeros

exchange positions after a period. These zeros return to their original position
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after 2 periods.

ζ1(2T ) = ζ1(0); ζ2(2T ) = ζ2(0). (4.14)

• We consider the Hamiltonian

H =




1 −i 0

i 1 0

0 0 2




(4.15)

which has the eigenvalues 0, 2, 2, and the period is T = π.

Let ζ0(t), ζ1(t), ζ2(t) be the paths of the three zeros. We assume that at

t = 0

ζ0(0) = 2.01 + 2.33i; ζ1(0) = 1.46 + 2.62i; ζ2(0) = 3.10 + 1.62i; (4.16)

which obey the constraint of Eq. (3.47). Here, we find numerically that

ζ1(T + t) = ζ2(t); ζ2(T + t) = ζ1(t). (4.17)

In this case, two of the zeros follow the same path (which by definition has

multiplicity M = 2) while the third follows a different path.

In Fig. 4.6 we present the paths of these zeros. In this case, after a period

ζ1(T ) = ζ2(0); ζ2(T ) = ζ1(0). (4.18)

During a period, the zero ζ0 follows a closed path. The other two zeros
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exchange position after a period. These zeros return to their original position

after 2 periods.

ζ1(2T ) = ζ1(0); ζ2(2T ) = ζ2(0). (4.19)
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Figure 4.4: The paths of the zeros ζ0(t), ζ1(t), ζ2(t) for the system with the
Hamiltonian of Eq. (4.6). The zeros ζ1(t), ζ2(t) follow the same path while
the zero ζ0(t) follows a different path. At t = 0, the zeros ζ0(0), ζ1(0), ζ2(0)
are given in Eq. (4.7) and are indicated in the diagram. After a period T ,
the zeros ζ1, ζ2 exchange positions, as described in Eq. (4.9), while ζ0 returns
to its initial position.
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Figure 4.5: The paths of the zeros ζ0(t), ζ1(t), ζ2(t) for the system with the
Hamiltonian of Eq. (4.6). The zeros ζ0(t), ζ2(t) follow the same path while
the zero ζ1(t) follows a different path. At t = 0, the zeros ζ0(0), ζ1(0), ζ2(0)
are given in Eq. (4.11) and are indicated in the diagram. After a period T ,
the zeros ζ0 and ζ2 exchange positions, as described in Eq. (4.13), while ζ1

returns to its initial position.
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Figure 4.6: The paths of the zeros ζ0(t), ζ1(t), ζ2(t) for the system with the
Hamiltonian of Eq. (4.15). The zeros ζ1(t), ζ2(t) follow the same path while
the zero ζ0(t) follows different paths. At t = 0, the zeros ζ0(0), ζ1(0), ζ2(0)
are given in Eq. (4.16) and indicated in the diagram. After a period T , the
zeros ζ1, ζ2 exchange positions, as described in Eq. (4.18), while ζ0(t) returns
to its initial position.
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4.3.1 Splitting of a path with multiplicity M = 2 into

two different paths

In this section, we show that a small perturbation in the initial values of the

zero splits the path with multiplicity M = 2 into two paths.

• We now consider the Hamiltonian of Eq. (4.6).

We consider two cases where the zeros at t = 0 are slightly different from

each other. In the first case,

ζ0(0) = 1.40 + 2.33i; ζ1(0) = 2.15 + 2.32i; ζ2(0) = 2.95 + 1.85i; (4.20)

and in the second case,

ζ0(0) = 1.46 + 2.39i; ζ1(0) = 2.15 + 2.32i; ζ2(0) = 2.89 + 1.79i. (4.21)

In the case of Eq. (4.20), we get

ζ1(T + t) = ζ2(t); ζ2(T + t) = ζ1(t), (4.22)

and therefore these zeros follow the same path with multiplicity M = 2. The

third zero follows its own path, which is shown in Fig. 4.7 (broken line).

In the case of Eq. (4.21), each zero follows its own path (continuous lines

in Fig. 4.7).

It is established that a small perturbation in the initial values of the zeros

splits the path with multiplicity M = 2 into two paths.

Near the point where the splitting occurs, we approximate the paths of
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the zeros with the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, (4.23)

which is an approximation of part of these paths. It is well known that

the graph of a quadratic equation in two variables is always a conic section,

where:

if B2 − 4AC < 0, the equation represents an ellipse,

if B2 − 4AC = 0, the equation represents a parabola, and

if B2 − 4AC > 0, the equation represents a hyperbola.

In the case of Eq. (4.20), this is an ellipse (and has a single branch ),

while in the case of Eq. (4.21) it is a hyperbola and has two branches (we

remind the reader that it is on a torus).

More generally, we consider the case where the zeros at t = 0 are

ζ0(0) = (1.40 + λ) + (2.33 + µ)i; ζ1(0) = 2.15 + 2.32i;

ζ2(0) = (2.95− λ) + (1.85− µ)i, (4.24)

and define

∆ = B2 − 4AC. (4.25)

In Fig. 4.8 we present the sign of ∆ as a function of λ, µ. The toroidal

structure is taken into account in deriving these values.

The case of Eq. (4.20) corresponds to the point (0, 0) (point B in the

figure), and the case of Eq. (4.21) corresponds to the point (0.06, 0.06)
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(point A in the figure).
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Figure 4.7: The path of the zeros ζ0(t), ζ1(t), ζ2(t) for the system with the
Hamiltonian of Eq. (4.6). In the case of the initial zeros of Eq. (4.20), the
zeros ζ1, ζ2 follow the same path while the third zero follows its own path
(broken line). In the case of the slightly different initial zeros of Eq. (4.21),
each zero follows its own path (continuous lines).

• We consider the Hamiltonian

H =




1 −i 0

i 1 0

0 0 2




(4.26)
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Figure 4.8: The sign of ∆ as a function of λ, µ.
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which has the eigenvalues 0, 2, 2, and the period is T = π.

We present two cases where the zeros at t = 0 are slightly different from

each other. In the first case

ζ0(0) = 2.19 + 2.19i; ζ1(0) = 1.39 + 3.40i; ζ2(0) = 2.93 + 0.91i; (4.27)

and in the second case,

ζ0(0) = 2.12 + 2.12i; ζ1(0) = 1.39 + 3.40i; ζ2(0) = 3 + 0.98i. (4.28)

In the case of Eq. (4.27) we get

ζ0(T + t) = ζ1(t); ζ1(T + t) = ζ0(t), (4.29)

which means that ζ0(t) and ζ1(t) follow the same path with multiplicity

M = 2. The third zero follows its own path, which is shown in Fig. 4.9

(continuous line).

In the case of Eq. (4.28), each zero follows a different path (broken lines

in Fig.4.9).

It is evident that a small perturbation in the initial values of the zeros

splits the path with multiplicity M = 2 into two paths.

We now approximate the paths of the zeros with the quadratic equation

near the point where the splitting occurs.

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, (4.30)
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which is an approximation of part of these paths.

In the case of Eq. (4.27), this is an ellipse (and has a single branch ),

whereas in the case of Eq. (4.28) it is a hyperbola (and has two branches).

More generally, we consider the case where the zeros at t = 0 are

ζ0(0) = (2.12 + λ) + (2.12 + µ)i; ζ1(0) = 1.39 + 3.40i;

ζ2(0) = (3.00− λ) + (0.98− µ)i. (4.31)

In Fig. 4.10 we show the sign of ∆ as a function of λ, µ.

The case of Eq. (4.27) corresponds to the point (0.07, 0.07) (point A in

the figure), and the case of Eq.(4.28) corresponds to the point (0, 0) (point

B in the figure).
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Figure 4.9: The path of the zeros ζ0(t), ζ1(t), ζ2(t) for the system with the
Hamiltonian of Eq. (4.26). In the case of the initial zeros of Eq. (4.27),
the zeros ζ0, ζ1 follow the same path and the third zero follows its own path
(continuous lines). In the case of the slightly different initial zeros of Eq.
(4.28), each zero follows its own path (broken lines).
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Figure 4.10: The sign of ∆ as function of λ, µ.



CHAPTER 4. PERIODIC FINITE QUANTUM SYSTEMS 90

4.4 Periodic systems with paths with multi-

plicity M = 3.

• We consider the Hamiltonian

H =




1 1 0

1 1 0

0 0 1




(4.32)

which has the eigenvalues 0, 1, 2 and the period T = 2π.

Let ζ0(t), ζ1(t), ζ2(t) be the paths of the three zeros. We assume that at

t = 0

ζ0(0) = 2.03 + 2.03i; ζ1(0) = 2.02 + 2.51i; ζ2(0) = 2.51 + 2.02i. (4.33)

These zeros obey the constraint of Eq. (3.47) and they are on a torus (i.e.,

they are defined modulo (6π)1/2).

Numerically, we find that

ζ0(T + t) = ζ1(t); ζ1(T + t) = ζ2(t); ζ2(T + t) = ζ0(t). (4.34)

The three zeros follow the same path.

In Fig. 4.11 we show the path of these zeros (for clarity, we show three

paths, which are the same due to the periodicity).
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We see that after a period

ζ0(T ) = ζ1(0); ζ1(T ) = ζ2(0); ζ2(T ) = ζ0(0). (4.35)

It is established that after a period T , each zero moves to the original position

of another zero. Therefore, within a period a single zero does not follow a

closed path, although the three zeros together do follow this route. After

three periods, each zero returns to its original position

ζi(3T ) = ζi(0) where i = 0, 1, 2.

• We consider the Hamiltonian

H =




1 −i 0

i 1 0

0 0 1




(4.36)

which has the eigenvalues 0, 1, 2 and the period T = 2π.

We assume that at t = 0 the zeros are given by Eq. (4.11).

Numerically, we find that

ζ0(T + t) = ζ2(t); ζ2(T + t) = ζ1(t); ζ1(T + t) = ζ0(t). (4.37)

In Fig. 4.12 we show the path of these zeros.

We find that after a period

ζ0(T ) = ζ2(0); ζ2(T ) = ζ1(0); ζ1(T ) = ζ0(0) (4.38)
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This shows that after a period T , each zero moves to the original position of

another zero. Therefore, within a period, although the three zeros together

do follow a closed path, a single zero does not follow this route.

After three periods, each zero returns to its original position

ζi(3T ) = ζi(0) where i = 0, 1, 2.

• We consider the Hamiltonian of Eq. (4.26) with the initial zeros of Eq.

(4.11).

Numerically, we find that

ζ0(T + t) = ζ1(t); ζ1(T + t) = ζ2(t); ζ2(T + t) = ζ0(t). (4.39)

In Fig. 4.13 we present the path of these zeros.

After a period

ζ0(T ) = ζ1(0); ζ1(T ) = ζ2(0); ζ2(T ) = ζ0(0). (4.40)

As in the previous example, the zeros exchange position after a period.
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Figure 4.11: The path of the zeros ζ0(t), ζ1(t), ζ2(t) for the system with the
Hamiltonian of Eq. (4.32). All zeros follow the same path. At t = 0 the zeros
ζ0(0), ζ1(0), ζ2(0) are given in Eq. (4.33) and are indicated in the diagram.
After a period T , the zeros exchange positions as described in Eq. (4.35)



CHAPTER 4. PERIODIC FINITE QUANTUM SYSTEMS 94

−1 0 1 2

−1

0

1

2

Z
R

Z
I

Figure 4.12: The path of the zeros ζ0(t), ζ1(t) and ζ2(t) for the system with
the Hamiltonian of Eq. (4.36). All zeros follow the same path. At t = 0,
the zeros ζ0(0), ζ1(0), ζ2(0) are given in Eq. (4.11) and are indicated in the
diagram. After a period T , the zeros exchange positions as described in Eq.
(4.38).
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Figure 4.13: The path of the zeros ζ0(t), ζ1(t) and ζ2(t) for the system with
the Hamiltonian of Eq. (4.26). All zeros follow the same path. At t = 0,
the zeros ζ0(0), ζ1(0), ζ2(0) are given in Eq. (4.11) and are indicated in the
diagram. After a period T , the zeros exchange positions as described in Eq.
(4.40).
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4.4.1 Splitting of a path with multiplicity M = 3 into

two different paths with multiplicities M = 2 and

M = 1.

In this section, we show that a small perturbation in the initial values of the

zeros splits the path with multiplicity M = 3 into two paths with multiplic-

ities M = 2 and M = 1.

We consider the Hamiltonian of Eq. (4.26) as well as two cases where the

zeros at t = 0 are in the first case

ζ0(0) = 0.26 + 2.95i; ζ1(0) = 4.41 + 1.66i; ζ2(0) = 1.84 + 1.90i; (4.41)

and in the second case

ζ0(0) = 0.26 + 2.95i; ζ1(0) = 4.46 + 1.71i; ζ2(0) = 1.79 + 1.85i. (4.42)

In the case of Eq. (4.41), we get

ζ0(T + t) = ζ2(t); ζ2(T + t) = ζ1(t); ζ1(T + t) = ζ0(t). (4.43)

The three zeros follow the same path with multiplicity M = 3, which shown

in Fig. 4.14 (broken line).

In the case of Eq. (4.42) the zeros ζ2, ζ1 follow the same path and the

third zero ζ0 follows a different path (continuous lines in Fig. 4.14).

It is evident that a small perturbation in the initial values of the zeros

splits the path with multiplicity M = 3 into two paths with multiplicities
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M = 2 and M = 1.

Near the point where the splitting occurs, we approximate the paths of

the zeros with the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (4.44)

Clearly, this is an approximation of part of these paths.

In the case ∆ = B2 − 4AC < 0 we get an ellipse, and in the case ∆ > 0

we get a hyperbola (two branches). The case of Eq. (4.41) corresponds to an

ellipse which has a single branch, while the case of Eq. (4.42) corresponds to

a hyperbola which has two branches.

More generally, we consider the case where the zeros at t = 0 are

ζ0(0) = (4.41 + λ) + (1.66 + µ)i; ζ1(0) = 0.26 + 2.95i

ζ2(0) = (1.84− λ) + (1.90− µ)i (4.45)

In Fig. 4.15 we present the sign of ∆ as a function of λ, µ.

The toroidal structure is taken into account in deriving these values. The

case of Eq. (4.41) corresponds to the point (0, 0) (point A in the figure), and

the case of Eq. (4.42) corresponds to the point (0.05, 0.05) (point B in the

figure).
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Figure 4.14: The path of the zeros ζ0(t), ζ1(t), ζ2(t) for the system with the
Hamiltonian of Eq. (4.26). In the case of the initial zeros of Eq. (4.41), the
zeros ζ0, ζ1, ζ2 follow the same path (broken line). In the case of the slightly
different initial zeros of Eq. (4.42), the zeros ζ1, ζ2 follow the same path and
the ζ0 follows its own path (continuous lines).
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Figure 4.15: The sign of ∆ as a function of λ, µ.
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4.5 Periodic systems with paths with multi-

plicity M = 4.

We consider the Hamiltonian

H =




1 −i 0 0 0

i 1 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2




(4.46)

which has the eigenvalues 0 (with multiplicity 1) and 2 (with multiplicity 4).

The period T = π.

Let ζ0(t), ζ1(t), ζ2(t), ζ3(t), ζ4(t) be the paths of the five zeros. We assume

that at t = 0

ζ0(0) = 0.3 + 3.66i; ζ1(0) = 1.61 + 2.72i; ζ2(0) = 3.03 + 4.83i;

ζ3(0) = 4.89 + 0.81i; ζ4(0) = 4.29 + 2.11i. (4.47)

These zeros obey the constraint of Eq. (3.47) and are on a torus (i.e. they

are defined modulo (10π)1/2).

In this case, we find numerically that

ζ0(T + t) = ζ1(t); ζ1(T + t) = ζ3(t);

ζ3(T + t) = ζ4(t); ζ4(T + t) = ζ0(t). (4.48)
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Here, four of the zeros follow the same path (which by definition has multi-

plicity M = 4) and the fifth one follows a different path.

In Fig. 4.16 we present the path of these zeros.

We note that after a period

ζ0(T ) = ζ1(0); ζ1(T ) = ζ3(0);

ζ3(T ) = ζ4(0); ζ4(T ) = ζ0(0). (4.49)

During a period, the zero ζ2 follows a closed path while the other four zeros

exchange positions after a period, and then return to their original positions

after 4 periods

(ζi(4T ) = ζi(0) where i = 0, 1, 3, 4); ζ2(T ) = ζ2(0).

Another example is the Hamiltonian

H =




1 −i 0 0

i 1 0 0

0 0 2 0

0 0 0 2




(4.50)

which has the eigenvalues 0 (with multiplicity 1) and 2 (with multiplicity 3).

The period T = π.

Let ζ0(t), ζ1(t), ζ2(t), ζ3(t) be the paths of the four zeros. We assume that

at t = 0
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ζ0(0) = 0.65 + 2.61i; ζ1(0) = 2.11 + 4.30i;

ζ2(0) = 3.71 + 1.03i; ζ3(0) = 3.64 + 2.16i. (4.51)

These zeros obey the constraint of Eq. (3.47) and are on a torus (i.e. they

are defined modulo (8π)1/2).

In this case, we find numerically that

ζ0(T + t) = ζ1(t); ζ1(T + t) = ζ2(t);

ζ2(T + t) = ζ3(t); ζ3(T + t) = ζ0(t). (4.52)

Here, all zeros follow the same path (which by definition has multiplicity

M = 4).

In Fig. 4.17 we present the path of these zeros.

We note that after a period

ζ0(T ) = ζ1(0); ζ1(T ) = ζ2(0);

ζ2(T ) = ζ3(0); ζ3(T ) = ζ0(0). (4.53)

This shows that after a period T , each zero moves to the original position

of another zero. Therefore, within a period, a single zero does not follow a

closed path, although the four zeros together do follow this route. Each zero

returns to its original position after 4 periods

(ζi(4T ) = ζi(0) where i = 0, 1, 2, 3).



CHAPTER 4. PERIODIC FINITE QUANTUM SYSTEMS 103

0 1 2 3 4 5
0

1

2

3

4

5

Z
R

Z
I

Figure 4.16: The path of the zeros ζ0(t), ζ1(t), ζ2(t), ζ3(t), ζ4(t) for the system
with the Hamiltonian of Eq. (4.46). The zeros ζ0(t), ζ1(t), ζ3(t), ζ4(t) follow
the same path and the zero ζ2(t) follows a different path. At t = 0, the zeros
ζ0(0), ζ1(0), ζ2(0), ζ3(0) and ζ4(0) are given in Eq. (4.47) and are indicated in
the diagram. After a period T , the zeros ζ0, ζ1, ζ3 and ζ4 exchange positions
as described in Eq. (4.49), while ζ2 returns to its initial position.
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Figure 4.17: The path of the zeros ζ0(t), ζ1(t), ζ2(t), ζ3(t) for the system with
the Hamiltonian of Eq. (4.50). All zeros follow the same path. At t = 0, the
zeros ζ0(0), ζ1(0), ζ2(0) and ζ3(0) are given in Eq. (4.51) and are indicated
in the diagram. After a period T , the zeros exchange positions as described
in Eq. (4.53).
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4.5.1 Splitting of a path with multiplicity M = 4 into

two different paths with multiplicities M = 2.

In this section, we show that a small perturbation in the initial values of the

zero splits the path with multiplicity M = 4 into two paths with multiplicities

M = 2.

We consider the Hamiltonian

H =




1 −i 0 0

i 1 0 0

0 0 2 0

0 0 0 2




(4.54)

which has the eigenvalues 0 (with multiplicity 1) and 2 (with multiplicity 3).

The period T = π.

We take two cases where the zeros at t = 0 are, for the first case,

ζ0(0) = 0.65 + 2.61i; ζ1(0) = 2.11 + 4.3i;

ζ2(0) = 3.71 + 1.03i; ζ3(0) = 3.54 + 2.06i; (4.55)

and in the second case

ζ0(0) = 0.75 + 2.71i; ζ1(0) = 2.11 + 4.3i;

ζ2(0) = 3.71 + 1.03i; ζ3(0) = 3.44 + 1.96i. (4.56)

These zeros obey the constraint of Eq. (3.47) and are on a torus (i.e. they
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are defined modulo (8π)1/2).

In the case of Eq. (4.55) we get

ζ0(T + t) = ζ1(t); ζ1(T + t) = ζ2(t);

ζ2(T + t) = ζ3(t); ζ3(T + t) = ζ0(t); (4.57)

and all zeros follow the same path with multiplicity M = 4, which is shown

in Fig. 4.18 (continuous line).

In the case of Eq. (4.56) we get

ζ0(T + t) = ζ3(t); ζ3(T + t) = ζ0(t); (4.58)

and

ζ1(T + t) = ζ2(t); ζ2(T + t) = ζ1(t). (4.59)

This is shown in Fig. 4.18 (broken lines).

It is evident that a small perturbation in the initial values of the zero

splits the path with multiplicity M = 4 into two paths with multiplicities

M = 2.
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Figure 4.18: The path of the zeros ζ0(t), ζ1(t), ζ2(t), ζ3(t) for the system with
the Hamiltonian of Eq. (4.54). In the case of the initial zeros of Eq. (4.55),
the zeros ζ0(t), ζ1(t), ζ2(t), ζ3(t)) follow the same path (continuous line). In
the case of the slightly different initial zeros of Eq. (4.56), the zeros ζ0(t), ζ3(t)
follow the same path and the zeros ζ1(t), ζ2(t) follow another path (broken
lines).
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4.6 Periodic systems with paths with multi-

plicity M = 5.

We consider the Hamiltonian of Eq. (4.46)

Let ζ0(t), ζ1(t), ζ2(t), ζ3(t), ζ4(t) be the paths of the five zeros. We assume

that at t = 0

ζ0(0) = 0.3 + 3.66i; ζ1(0) = 1.61 + 2.72i; ζ2(0) = 3.5 + 2.9i;

ζ3(0) = 3.83 + 4.03i; ζ4(0) = 4.89 + 0.81i. (4.60)

These zeros obey the constraint of Eq. (3.47) and are on a torus (i.e. they

are defined modulo (10π)1/2).

In this case, we find numerically that

ζ0(T + t) = ζ1(t); ζ1(T + t) = ζ4(t); ζ4(T + t) = ζ2(t);

ζ2(T + t) = ζ3(t); ζ3(T + t) = ζ0(t). (4.61)

Here, all zeros follow the same path (which by definition has multiplicity

M = 5).

In Fig. 4.19 we present the path of these zeros.
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We note that after a period

ζ0(T ) = ζ1(0); ζ1(T ) = ζ4(0); ζ4(T ) = ζ2(0);

ζ2(T ) = ζ3(0); ζ3(T ) = ζ0(0). (4.62)

This shows that after a period T , each zero moves to the original position

of another zero. Therefore, within a period, a single zero does not follow a

closed path, although the five zeros together do follow this route. Each zero

returns to its original position after 5 periods

(ζi(5T ) = ζi(0) where i = 0, 1, 2, 3, 4).

Another example is the Hamiltonian

H =




1 −i 0 0 0

i 1 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 4




(4.63)

which has the eigenvalues 0 (with multiplicity 1), 2 (with multiplicity 3) and

4 (with multiplicity 1). The period T = π.

Let ζ0(t), ζ1(t), ζ2(t), ζ3(t), ζ4(t) be the paths of the five zeros.

We assume that at t = 0

ζ0(0) = 0.3 + 3.66i; ζ1(0) = 1.61 + 2.72i; ζ2(0) = 3.03 + 4.83i;

ζ3(0) = 4.89 + 0.81i; ζ4(0) = 4.29 + 2.11i. (4.64)
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These zeros obey the constraint of Eq. (3.47) and are on a torus (i.e. they

are defined modulo (10π)1/2).

In this case, we find numerically that

ζ0(T + t) = ζ1(t); ζ1(T + t) = ζ3(t); ζ3(T + t) = ζ4(t);

ζ4(T + t) = ζ2(t); ζ2(T + t) = ζ0(t). (4.65)

Here, all zeros follow the same path (which by definition has multiplicity

M = 5).

In Fig. 4.20 we present the path of these zeros. We note that after a

period

ζ0(T ) = ζ1(0); ζ1(T ) = ζ3(0); ζ3(T ) = ζ4(0);

ζ4(T ) = ζ2(0); ζ2(T ) = ζ0(0). (4.66)

This shows that after a period T , each zero moves to the original position

of another zero. Therefore, within a period, a single zero does not follow a

closed path, although the five zeros together do follow this route. Each zero

returns to its original position after 5 periods

(ζi(5T ) = ζi(0) where i = 0, 1, 2, 3, 4).
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Figure 4.19: The path of the zeros ζ0(t), ζ1(t), ζ2(t), ζ3(t), ζ4(t) for the system
with the Hamiltonian of Eq. (4.46). All zeros follow the same path. At t = 0,
the zeros ζ0(0), ζ1(0), ζ2(0), ζ3(0) and ζ4(0) are given in Eq. (4.60) and are
indicated in the diagram. After a period T , the zeros exchange positions as
described in Eq. (4.62).
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Figure 4.20: The path of the zeros ζ0(t), ζ1(t), ζ2(t), ζ3(t), ζ4(t) for the system
with the Hamiltonian of Eq. (4.63). All zeros follow the same path. At t = 0,
the zeros ζ0(0), ζ1(0), ζ2(0), ζ3(0) and ζ4(0) are given in Eq. (4.64) and are
indicated in the diagram. After a period T , the zeros exchange positions as
described in Eq. (4.66).
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4.6.1 Splitting of a path with multiplicity M = 5 into

two different paths with multiplicities M = 4 and

M = 1.

In this section, we show that a small perturbation in the initial values of the

zero splits the path with multiplicity M = 5 into two paths with multiplicities

M = 4 and M = 1.

We consider the Hamiltonian

H =




1 −i 0 0 0

i 1 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2




(4.67)

which has the eigenvalues 0 (with multiplicity 1) and 2 (with multiplicity 4).

The period T = π.

We take two cases where the zeros at t = 0 are, for the first case,

ζ0(0) = 0.3 + 3.66i; ζ1(0) = 1.26 + 2.37i; ζ2(0) = 3.5 + 2.9i;

ζ3(0) = 3.83 + 4.03i; ζ4(0) = 5.1 + 1.02i; (4.68)

and in the second case

ζ0(0) = 0.3 + 3.66i; ζ1(0) = 1.06 + 2.17i; ζ2(0) = 3.5 + 2.9i;

ζ3(0) = 3.83 + 4.03i; ζ4(0) = 5.3 + 1.22i. (4.69)
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These zeros obey the constraint of Eq. (3.47) and are on a torus (i.e. they

are defined modulo (10π)1/2).

In the case of Eq. (4.68) we get

ζ0(T + t) = ζ1(t); ζ1(T + t) = ζ4(t); ζ4(T + t) = ζ2(t);

ζ2(T + t) = ζ3(t); ζ3(T + t) = ζ0(t). (4.70)

and all zeros follow the same path with multiplicity M = 5, which is shown

in Fig. 4.21 (broken line).

In the case of Eq.(4.69) we get

ζ0(T + t) = ζ1(t); ζ1(T + t) = ζ4(t);

ζ4(T + t) = ζ3(t); ζ3(T + t) = ζ0(t). (4.71)

and the zero ζ2 follows its own path (continuous lines in Fig. 4.21).

It is established that a small perturbation in the initial values of the zero

splits the path with multiplicity M = 5 into two paths with multiplicities

M = 4 and M = 1.
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Figure 4.21: The path of the zeros ζ0(t), ζ1(t), ζ2(t), ζ3(t), ζ4(t) for the system
with the Hamiltonian of Eq. (4.67). In the case of the initial zeros of Eq.
(4.68), the zeros ζ0(t), ζ1(t), ζ2(t), ζ3(t), ζ4(t) follow the same path (broken
line). In the case of the slightly different initial zeros of Eq. (4.69), the zeros
ζ0(t), ζ1(t), ζ3(t), ζ4(t) follow the same path and the ζ2 follows its own path
(continuous lines).
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4.7 summary

In this chapter we studied periodic finite quantum systems, in which the d

paths of the zeros ζn(t) are in general closed curves on the torus. We have

seen that, in some cases, the M of the d zeros follow the same path, in

which case we can say that this path has multiplicity M. We also consid-

ered a few examples which showed that after a period the zeros exchange

their positions. Furthermore, we demonstrated that the zeros obey relations

like (4.12), (4.34),(4.48) and (4.61), and, after a period, they exchange their

positions (Eqs(4.13), (4.35)), (4.49) and (4.62). We discussed how a pertur-

bation of the initial values of the zeros splits a path with multiplicity M into

M different paths. In addition, we highlighted that a small perturbation in

the initial values of the zero splits the path with multiplicity M = 2 into

two paths, while a small perturbation in the initial values of the zero splits

the path with multiplicity M = 3 into two paths with multiplicities M = 2

and M = 1. In addition, we approximated the paths of the zeros with the

quadratic equation near the point where the splitting occurs.



Chapter 5
Symplectic transformations and Zeros

In chapter 3, we have studied the analytic function of Eq. (3.29) on a torus,

which has exactly d zeros and obeys the constraint of Eq. (3.47). We have

seen that, as the system evolves in time, the d zeros follow d paths on the

torus, which define the Hamiltonian.

In chapter 4, we studied periodic finite quantum systems. We have seen

that, in some cases, the M of the d zeros follow the same path. We have con-

sidered a few examples which showed that after a period the zeros exchange

their positions.

In this chapter, we give a brief introduction to Symplectic transformations

into the Zd × Zd phase space of a finite quantum system [20, 66]. We then

move on to study the effect of Symplectic transformations of the basis on the

zeros.

117
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5.1 Introduction

The unitary transformation is a one-to-one function between two Hilbert

spaces. Let A be a Hermitian matrix, and let U be a unitary transformation.

It is well known that the matrix UAU † is a Hermitian and has the same

eigenvalues as A.

A unitary transformation is equivalent to a change of basis that trans-

forms one basis into another.

In this chapter, we study the effect of a change in the basis on the ze-

ros. As an example we consider the Symplectic transformations of a finite

quantum system, which we back up with d = 3, 5 examples.

5.2 Symplectic transformations

We now introduce Symplectic transformations into the Zd × Zd phase space

of a finite quantum system.

As such, we consider the unitary transformations

X
′
= SXS† = XκZλω(2−1κλ) = D(λ, κ);

Z
′
= SZS† = XµZνω(2−1µν) = D(ν, µ); (5.1)

where λ, κ, µ, ν are integers in Zd and obey the relation

κν − λµ = 1(mod(d)), (5.2)

and ω(α) = exp(i2πα/d).
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To calculate the operator S(κ, λ, µ), we calculate the (normalised) eigen-

vectors of the matrix

〈X; m|Z ′|X; n〉 = ω(2−1/2νµ + nν)δ(m,n + µ). (5.3)

These eigenvectors are the states |X ′
; m〉(up to phase factors). Now we

calculate the phases by starting with the eigenvector |X ′
; 0〉, for which we

can choose any phase.

We use the equation

(X
′
)m|X ′

; 0〉 = |X ′
; m〉, (5.4)

where

〈X; m|X ′|X; n〉 = ω(2−1/2κλ + nλ)δ(m,n + κ).

The |X ′
; m〉 calculated in Eq. (5.4) should differ from the |X ′

; m〉 calcu-

lated as eigenvectors of the matrix 〈X; m|Z ′|X; n〉 only by a phase factor.

The operator S is given in a matrix

S(n,m) = 〈X; m|S|X; n〉.

We can now present examples with d = 3, 5.

• We consider a three-dimensional Hilbert space (d = 3) and S(κ, λ, µ) =

S(1,−1,−1) which leads (by Eqs. (5.1) to the transformations

X
′
= SXS† = XZ−1ω(−1

2
);

Z
′
= SZS† = X−1Z2ω(−1). (5.5)
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We calculate the matrix

〈X; m|Z ′|X; n〉 =




0 −0.5 + 0.8660i 0

0 0 1

−0.5− 0.8660i 0 0




(5.6)

The (normalised) eigenvectors of the matrix in the Eq. (5.6) are




0.5774 0.5774 0.5774

−0.2887− 0.5i −0.2887 + 0.5i 0.5774

−0.2887− 0.5i 0.5774 −0.2887 + 0.5i




(5.7)

We now calculate the matrix

〈X; m|X ′|X; n〉 =




0 0 0.5 + 0.8660i

0.5− 0.8660i 0 0

0 −1 0




(5.8)
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Then we calculate the phases by starting with the eigenvector |X ′
; 0〉, for

which we choose

|X ′; 0〉 =




0.5774

−0.2887 + 0.5i

0.5774




(5.9)

We use the matrix X
′
in Eq. (5.8) to calculate

(X ′)m|X ′; 0〉 = |X ′; m〉; m = 1, 2.

The operator S is given in a matrix S(n,m). The matrix elements S(n,m)

are given in Table 5.1.

m = 0 m = 1 m = 2

n = 0 z1 −z∗2 z1

n = 1 z2 −z2 z1

n = 2 z1 −z2 z2

Table 5.1: The coefficients S(n,m) for the transformations of Eq. (5.5). Here
z1 = 0.5774; z2 = −0.2887 + 0.5i = z1ω(1); ω(1) = exp(i2π/3).

• We consider a five-dimensional Hilbert space (d = 5) and S(1, 2, 3),

which leads (by Eqs. (5.1)) to the transformations

X ′ = SXS† = XZ2ω(1);

Z ′ = SZS† = X3Z2ω(3). (5.10)

We calculate the matrix
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〈X; m|Z ′|X; n〉 =




0 0 −0.8090 + 0.5878i 0 0

0 0 0 0.3090− 0.9511i 0

0 0 0 0 0.3090 + 0.9511i

−0.8090− 0.5878i 0 0 0 0

0 1 0 0 0




(5.11)

The (normalised) eigenvectors of the matrix in the Eq. (5.11) are




0.4472 0.1382− 0.4253i 0.1382 + 0.4253i 0.1382 + 0.4253i −0.3618− 0.2629i

0.1382 + 0.4253i −0.3618− 0.2629i .4472 0.1382 + 0.4253i 0.4472

0.1382 + 0.4253i 0.1382− 0.4253i −0.3618− 0.2629i .4472 0.1382 + 0.4253i

0.4472 0.4472 0.4472 −0.3618− 0.2629i 0.1382 + 0.4253i

−0.3618− 0.2629i .4472 0.1382 + 0.4253i 0.4472 0.4472




(5.12)

We Now calculate the matrix

〈X; m|X ′|X; n〉 =
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


0 0 0 0 0.3090− 0.9511i

0.3090 + 0.9511i 0 0 0 0

0 −0.8090− 0.5878i 0 0 0

0 0 1 0 0

0 0 0 −0.8090 + 0.5878i 0




(5.13)

Then we calculate the phases by starting with the eigenvector |X ′
; 0〉, for

which we choose

|X ′; 0〉 = ω2




0.1382 + 0.4253i

0.4472

−0.3618− 0.2629i

0.4472

0.1382 + 0.4253i




=




−0.3618− 0.2628i

−0.3618 + 0.2629i

0.4472

−0.3618 + 0.2629i

−0.3618− 0.2628i




; (5.14)

We use the matrix X
′
in Eq. (5.13) to calculate (X ′)m |X ′; 0〉 = |X ′; m〉; m =

1, 2, 3, 4.

The operator S is given in a matrix S(n,m). The matrix elements S(n,m)

are given in Table 5.2.

m= 0 m= 1 m=2 m=3 m=4

n= 0 z3 z∗3 z3 z∗2 z∗2
n= 1 z∗3 z2 z3 z2 z∗3
n=2 z1 z1 z∗3 z∗2 z∗3
n=3 z∗3 z1 z1 z∗3 z∗2
n=4 z3 z2 z∗3 z∗3 z2

Table 5.2: The coefficients S(n,m) for the transformations of Eq. (5.10).
Here z1 = 0.4472; z2 = 0.1382 − 0.4253i = z1ω(−1); z3 = −0.3618 −
0.2629i = z1ω(−2); ω(1) = exp(i2π/5).
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5.3 The effect of a change in the basis on the

zeros: Example with Symplectic trans-

formations

The transformation with operator S on the analytic function f(z)

f(z) = π−1/4

d−1∑
m=0

Fm ϑ3

[
πmd−1 − zπ1/2(2d)−1/2; id−1

]
(5.15)

can be expressed as

Sf(z) −→ π−1/4

d−1∑
m=0

SmlFl ϑ3

[
πmd−1 − zπ1/2(2d)−1/2; id−1

]
. (5.16)

We denote as ζn the zeros of function f(z) and we denote as ηn the zeros of

function

g(z) = π−1/4

d−1∑
m=0

SmlFl ϑ3

[
πmd−1 − zπ1/2(2d)−1/2; id−1

]
. (5.17)

In order to provide some examples, we demonstrate the distributions of

zeros for three different cases

•We consider a three-dimensional Hilbert space (d = 3) and The operator

S in Table 5.1.

We assume that the initial zeros of f(z) are

ζ0(0) = 1.5 + 2.5i; ζ1(0) = 2.5 + 3i; ζ2(0) = 2.51 + 1.01i. (5.18)
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Then the initial zeros of g(z) are

η0(0) = 1.15 + 0.93i; η1(0) = 1.95 + 3.71i; η2(0) = 3.46 + 1.93i. (5.19)

In Fig. 5.1 we present the zero of f(z) (circles) and the zeros of g(z)

(triangles).

• We consider a five-dimensional Hilbert space (d = 5) and The operator

S in Table 5.2.

We assume that the initial zeros of f(z) are

ζ0(0) = 0.66 + 1.64i; ζ1(0) = 1.68 + 4.39i; ζ2(0) = 3.52 + 1.07i;

ζ3(0) = 2.91 + 2.99i; ζ4(0) = 5.36 + 4.04i. (5.20)

Then the initial zeros of g(z) are

η0(0) = 0.71 + 2.22i; η1(0) = 2.65 + 2.32i; η2(0) = 1.99 + 4.88i;

η3(0) = 4.13 + 3.87i; η4(0) = 4.66 + 0.84i. .(5.21)

In Fig. 5.2 we present the zero of f(z) (circles) and the zeros of g(z) (trian-

gles).

• We consider a five-dimensional Hilbert space (d = 5) and The operator

S in Table 5.2.

We assume that the initial zeros of f(z) are

ζ0(0) = ζ1(0) = ζ2(0) = ζ3(0) = ζ4(0) = 2.8025 + 2.8025i. (5.22)
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Then the initial zeros of g(z) are

η0(0) = 0.46 + 2.43i; η1(0) = 1.72 + 5.04i; η2(0) = 2.97 + 2.11i;

η3(0) = 3.61 + 0.57i; η4(0) = 5.36 + 3.97i. .(5.23)

In Fig. 5.3 we present the zero of f(z) (circle) and the zeros of g(z) (triangles).
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Figure 5.1: The zero of f(z)(circles). At t = 0, the zeros ζ0(0), ζ1(0) and
ζ2(0) are given in Eq. (5.18). The zeros of g(z)(triangles). At t = 0, the
zeros η0(0), η1(0) and η2(0) are given in Eq. (5.19).
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Figure 5.2: The zero of f(z)(circles). At t = 0, the zeros ζ0(0), ζ1(0) , ζ2(0)
,ζ3(0) and ζ4(0) are given in Eq. (5.20). The zeros of g(z)(triangles). At
t = 0, the zeros η0(0), η1(0) , η2(0) ,η3(0) and η4(0) are given in Eq. (5.21).
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Figure 5.3: The zero of f(z)(circle). At t = 0, the zeros ζ0(0), ζ1(0) , ζ2(0)
,ζ3(0) and ζ4(0) are given in Eq. (5.22). The zeros of g(z)(triangles). At
t = 0, the zeros η0(0), η1(0) , η2(0) ,η3(0) and η4(0) are given in Eq. (5.23).
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5.4 summary

In this chapter we studied the Symplectic transformations into the Zd ×
Zd phase space of a finite quantum system. In addition, to highlight some

examples, we calculated the operator S(κ, λ, µ) for the cases d = 3 and d = 5.

Furthermore, we considered the effect of Symplectic transformations of

the basis on the zeros. A unitary transformation is equivalent to a change

of basis that transforms one basis into another. various examples have been

given. We note here that further work is required, on the effect of a change

in the basis on the paths of the zeros.



Chapter 6
Conclusion

In the present work we considered quantum systems with positions and mo-

menta in Zd. Extensive work was carried out on the zeros of analytic repre-

sentation of finite quantum systems in terms of Theta functions on a torus.

Quantum states were represented with the analytic function of Eq. (3.29)

on a torus. This analytic function, which has exactly d zeros, obeyed the

constraint of Eq. (3.47). These zeros define uniquely the quantum state. We

stress here that the zeros in analytic representations in systems with an infi-

nite dimensional Hilbert space (e.g. in the Bargmann representation) do not

define uniquely the quantum state. The d paths ζn(t) of the zeros, however,

define completely the finite quantum system. We gave several examples of

the distributions of zeros of analytic functions, and studied the time evo-

lution of the system and the motion of the d zeros on the torus. As the

system evolves in time, the d zeros follow d paths on the torus, which define

the Hamiltonian. We gave various examples of the paths ζn(t) of the zeros,

for various Hamiltonians. We also considered the inverse problem, where

131
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the paths ζn(t) of the d − 1 zeros were given (the path of the last zero is

determined by the constraint of eq. (3.47)), and we calculated the Hamil-

tonian. The work shows that the paths of the zeros provide an alternative

description for standard quantum formalism for finite quantum systems. In

periodic systems, the d paths of the zeros ζn(t) are in general closed curves

on the torus. Furthermore, we considered the case where M of the zeros

follow the same path. We say that this path has multiplicity M. We also

considered the case of paths with multiplicity M, and presented examples

with M = 1, 2, 3, 4, 5. It was established that the zeros satisfy relations like

(4.12), (4.34),(4.48) and (4.61). Moreover, after a period the zeros exchange

their positions (Eqs. (4.13), (4.35), (4.49) and (4.62)). We also discussed

how a perturbation of the initial values of the zeros splits a path with multi-

plicity M into M different paths. It was evidenced that a small perturbation

in the initial values of the zero splits the path with multiplicity M = 2 into

two paths and a small perturbation in the initial values of the zero splits the

path with multiplicity M = 3 into two paths with multiplicities M = 2 and

M = 1. Furthermore, we highlighted that a small perturbation in the initial

values of the zero splits the path with multiplicity M = 4 into two paths with

multiplicities M = 2 and a small perturbation in the initial values of the zero

splits the path with multiplicity M = 5 into two paths with multiplicities

M = 4 and M = 1. In addition, we approximated the paths of the zeros

with the quadratic equation near the point where the splitting occurs.

Finally, we briefly introduced the Symplectic transformations into the

Zd × Zd phase space of a finite quantum system. We also studied the effect

of Symplectic transformations of the the basis on the zeros.
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6.1 Further Work

The work may be extended to study the effect of a change in the basis on

the paths of the zeros using Symplectic transformations. The work may be

also be extended to study the effect of a change in the basis on the paths of

the zeros using various unitary transformations.
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