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Multivariate matrix–exponential distributions
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April 28, 2008

Abstract

In this article we consider the distributions of non–negative random
vectors with a rational Laplace transform. Hence the Laplace trans-
forms are fractions between two multidimensional polynomials. These
distributions are in the univariate case known as matrix–exponential
distributions, since their densities can be written as linear combina-
tions of the elements in the exponential of a matrix. For this reason
we shall refer to multivariate distributions with rational Laplace trans-
form as multivariate matrix–exponential distributions (MVME). The
marginal distributions of an MVME are univariate matrix–exponential
distributions.

We prove a characterization which states that a distribution is an
MVME if, and only if, all positive linear combinations of the coordi-
nates have a univariate matrix–exponential distribution. This theorem
is analog to a well known characterization theorem for the multivari-
ate normal distribution, however, the proof is different and involves
theory for rational function based on continued fractions and Hankel
determinants.
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1 Introduction

In one dimension, matrix–exponential distributions are defined as distribu-
tions on R+ with a rational Laplace transform, which in turn is equivalent
to its density being a weighted sum of the elements of a matrix–exponential,
thereby their name.

In this paper we define a class of distributions which we shall refer to as
multivariate matrix–exponential distributions (MVME). They are defined in
a natural way, inspired by the definition of univariate matrix–exponential dis-
tributions, as the distributions on Rn

+ having a rational (multidimensional)
Laplace transform. A multidimensional rational function is the fraction be-
tween two multidimensional polynomials. The marginal distributions are
hence univariate matrix–exponential distributions. The corresponding ran-
dom variables are in general dependent.

The main purpose of this article is to characterize the MVME distri-
butions in terms of one–dimensional matrix–exponential distributions. The
main result states that a multivariate distribution is an MVME if and only if
any non–negative, non–null linear combination of the coordinates are again
matrix–exponentially distributed. This theorem is stated and proven in sec-
tion 4.

Much of the analysis depends on the theories of one–dimensional matrix–
exponential distributions and that of rational functions. We provide the nec-
essary background on univariate matrix–exponential distributions in Section
2 as well as a historical review of two subclasses of MVME which were defined
previously by Assaf et al. (1984) and Kulkarni (1989) respectively. We also
re–formulate Kulkarni’s definition in terms of the structure of certain projec-
tions which is more in line with our characterization theorem. In Section 3
we discuss some theory of rational functions in terms of continued fractions,
the theory of which turns out to provide a rich and powerful methodology for
the analysis of multidimensional rational functions, in which Hankel matri-
ces of certain reduced moments will play a particularly important role. The
article is concluded in Section 5.

2 Preliminaries

In this section we provide some necessary background from the theory of
one–dimensional matrix–exponential distributions. Thereafter we review two
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classes of multivariate phase–type distributions, which are special cases of the
MVME distributions.

The class proposed by Kulkarni (1989) is of particular interest, and we
provide a characterization for this subclass in terms of the structure of the
intensity matrices of certain projections.

For ease of exposition we shall only consider absolutely continuous distri-
butions.

2.1 Univariate matrix–exponential distributions

Definition 2.1 A non–negative random variable X is said to have a matrix–
exponential distribution if the Laplace transform L(s) = E [exp(−sX)] is a
rational function in s.

We explicitly state the parameterization of the Laplace transform as

L(s) = IE [exp(−sX)] =
f1s

m−1 + f2s
m−2 + ... + fm

sm + g1sm−1 + ... + gm
,

where fm = gm. The following result is standard (see e.g. Asmussen & Bladt
(1997) page 315 for a proof).

Lemma 2.1 A random variable is matrix–exponentially distributed if and
only if there exists a triple (β, D,d) such that the density f(x) of X can be
expressed as

f(x) = βeDxd .

Here, β is a row vector of dimension m, d is a column vector of the same
dimension, and D is an m×m matrix, possibly with complex elements.

The triple (β, D,d) is called a representation of the matrix exponential distri-
bution. The Laplace transform ofX can be determined from a representation
(β, D,d) as

L(s) = β (sI −D)−1
d, (1)

where I is the identity matrix of dimension m. Any matrix–exponential
distribution has infinitely many representations. The dimension ofD is called
the order of the representation. If the rational function L(s) of Equation (1)
cannot be reduced, we say that m is the minimal order or degree of the
distribution (Asmussen & Bladt (1997)).
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The non–centralized moments of a matrix–exponentially distributed ran-
dom variable are easily derived by successive differentiation in the Laplace
transform

Mi = IE(X i) = i!β (−D)−(i+1)
d i = 0, 1, ... .

We shall also need the so–called reduced moments,

µi =
Mi

i!
, i = 0, 1, ... . (2)

Define recursively,

ψ0 =
1

gm

, ψi =
i−1
∑

j=0

(−1)jψi−1−jgm−1−j

gm

.

Then the first m− 1 moments are given by

µi =
i
∑

j=0

(−1)jfm−jψi−j .

¿From the Cayley–Hamilton theorem we have

m
∑

i=0

giD
m−i = 0 ,

where D can be taken from any representation. Since D is invertible, multi-
plying the equation with D−(m+j+1) we obtain that

m
∑

i=0

gm−i(−1)m+j−i+1(−D)−(m+j−i+1) =
m
∑

i=0

gi(−1)j+i(−D)−(i+j+1) = 0.

Pre–multiplying with β and post–multiplying with d we get

m
∑

i=0

gi(−1)j+i Mi+j

(i+ j)!
= 0.

We state this result in a slightly modified form in the following lemma.

Lemma 2.2 The reduced moments of a matrix–exponential distribution sat-
isfy

µm+j =

m−1
∑

i=0

gi

gm
(−1)m+i+1µi+j for j ≥ 0.
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We notice that the rational distribution is hence characterized by m− 1 re-
duced moments together with the m coefficients g0, ..., gm−1. In turn, this
is equivalent to the distribution being characterized by 2m− 1 reduced mo-
ments.

2.2 Two classes of multivariate phase–type distribu-

tions

There exist a vast amount of definitions concerning multivariate distributions
of either exponential or gamma type in the literature (see e.g. Kotz, Bal-
akrishnan & Johnson (2000)). Such distributions either have exponentially,
or gamma distributed marginals. This has resulted in a rather extensive
amount of distributions many of which are related or only differ from each
other vaguely. A number of these distributions have a rational multidimen-
sional Laplace transform. Also, the class of phase–type distributions, which
generalize certain gamma type distributions, has been extended to a multi-
variate setting, first by Assaf et al. (1984) and later Kulkarni (1989). The
latter class, which contains the former as a special case, provides an elegant
construction of multivariate phase–type distributions in terms of a single un-
derlying Markov jump process. Furthermore, it has a natural generalization
to multivariate matrix–exponential distributions.

Assaf et al. (1984) introduced a class of multivariate phase–type dis-
tributions, denoted by MPH in the following, by considering the hitting
times to different (possibly overlapping) subsets of the state–space. More
specifically, we consider a phase–type generator (sub–intensity matrix) T of
dimension m and let {Jt}t≥0 denote the underlying Markov jump process.
Let Γi, i = 1, 2, ..., n denote absorbing subsets of the state space. Let Xi

denote the first hitting time of {Jt}t≥0 to Γi. Then the n–dimensional vector
X = (X1, ..., Xn) is said to have a phase–type distribution in the class MPH.

A rephrasing of the definition of MPH says that reward for Xk is accu-
mulated with rate 1 in states belonging to Γc

k, where Γc
k is the complement

of Γk. Based on this interpretation, Kulkarni (1989) introduced the class
MPH∗, which is a generalization of the MPH class. In the class MPH∗ re-
ward for Xi is accumulated in state j with rate Kij . There is no restriction
on the phase–type generator T . If the total sojourn time in state j before
absorption is denoted by Yj we define an n dimensional random vector X

element-wise by Xi =
∑m

j=1KijYj.
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The following theorem gives an alternative characterization in terms of
all non–negative projections and is not given explicitly in Kulkarni (1989).

Theorem 2.1 A distribution in MPH∗ can be characterized by < a,X > be-
ing phase–type distributed with representation (α, T (a)) with T (a) = ∆(Ka)−1T ,
where ∆(b) is the diagonal matrix with b in the diagonal.

Proof: Let X denote a random variable with a distribution in MPH∗. Then
the ith component Xi of X can be written as

Xi =
m
∑

j=1

Nk
∑

k=1

KijZjk .

Here Nk denotes the number of visits to the transient state k in the m+ 1-
dimensional continuous time Markov chain with m transient states and 1
absorbing state. Thus this Markov chain defines a continuous time phase–
type distribution. We denote the transient part of the generator matrix by
T . The random variables Zjk are the k’th sojourn in state j, while Kij are
non–negative real constants. Considering the distributions of the family of
projections given by < a,X > we obtain

< a,X >=

n
∑

i=1

ai

m
∑

j=1

Nk
∑

k=1

KijZjk =

m
∑

j=1

(

n
∑

i=1

Kijai

)

Zj. ,

with Zj. =
∑Nk

k=1Zjk. Before we proceed we have to introduce a technical
condition. We will assume in the following that Ka > 0. If this condition
is not true one can still proceed albeit some care is needed to get a proper
phase–type representation. See Kulkarni (1989), Section 2, for how to handle
this situation. Under the condition Ka > 0 we see that < a,X > is phase–
type distributed with generator matrix (∆(Ka))−1 T . The argument is easily
seen to apply in the reverse order as well.

�
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3 Continued fractions

By a continued fraction we understand an expression on the form

d0 +
c1

d1 +
c2

d2 +
c3

d3 + ...

.

It is convenient to use the more compact notation

d0 +
c1|
|d1

+
c2|
|d2

+
c3|
|d3

+ ... .

A continued fraction is said to be finite if the sum above contains a finite
number of terms. Of particular interest for our analysis are the C–continued
fractions, which are expressions on the form

1 +
c1s

r1|
|1 +

c2s
r2 |

|1 +
c3s

r3|
|1 + ... .

If we consider the moment generating functionM(s) of a matrix–exponentially
distributed random variable, then it has a power series expansion

M(s) = 1 + µ1s+ µ2s
2 + ...,

where µi’s are defined in (2).
Please note that µi > 0 for all i. According to Perron (1957) Satz 3.5, any

power series (Taylor series) with constant term 1 corresponds uniquely to a
C–continued fraction. If furthermore the series is a power series expansion
of a rational function, then the corresponding continued fraction is finite
(Perron (1957), Satz 3.7). Particularly tractable are the regular C–continued
fraction, where ri = 1 for all i.

Lemma 3.1 Let M(s) be the moment generating function of a matrix–exponentially
distributed random variable. Then the power series expansion of M(s) =
1 + µ1s+ µ2s

2 + ... corresponds uniquely to a regular C–continued fraction.
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Proof: We already know from Perron (1957) that there is a unique and
finite C–continued fraction, so all we need to prove is that ri = 1 for all i.
To this end we write

B0(s) = 1 + µ1s+ µ2s
2 + ... = 1 +

c1s
r1

B1(s)
,

where

B1(s) = 1 +
c2s

r2|
|1 +

c3s
r2 |

|1 + ...+
cνs

rν |
|1 .

The first non–vanishing term of the power expansion B0(s)−1 is µ1s. Hence
r1 = 1. Thus

B1(s) =
µ1s

B0(s) − 1
=

1

1 + µ′
1s + µ′

2s
2 + ...

,

where µ′
i = µi/µ1 6= 0 for all i. Then the first non–vanishing term in the

power series expansion of B1(s) − 1 is again of first order. Continuing this
way until Bν(s) = 1 proves the result.

�

For any continued fraction we may approximate it by a lower order n,
where n < ν for the finite case,

Cn

Dn
= d0 +

c1|
|d1

+
c2|
|d2

+
c3|
|d3

+ ...+
cn|
|dn

.

The finite fraction Cn/Dn is called an approximant to the continued fraction.
The following recursion scheme holds for the approximants of different orders

Cn = dnCn−1 + cnCn−2

Dn = dnDn−1 + cnDn−2 ,

with the boundary conditions C−1 = 1, C0 = d0 and D−1 = 0, D0 = 1. If we
apply these recursive equation to regular C–continued fractions we get that
the polynomials Cn(s) and Dn(s) (in the variable s) satisfy

Cn(s) = 1 +

n
∑

j=1

sj





∑

0≤i1<i2<...<ij<n−j

ci1+1ci2+2 · · · cij+j





Dn(s) = 1 +
n
∑

j=1

sj





∑

1≤i1<i2<...<ij<n−j

ci1+1ci2+2 · · · cij+j



 ,
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where we assume the sums over empty sets are zero. Thus we may write

C2n(s) = 1 + αn,1s+ αn,2s
2 + · · ·+ αn,ns

n

D2n(s) = 1 + βn,1s+ βn,2s
2 + · · ·+ βn,ns

n

C2n−1(s) = 1 + γn,1s+ γn,2s
2 + · · ·+ γn,ns

n

D2n−1(s) = 1 + δn,1s+ δn,2s
2 + · · ·+ δn,n−1s

n−1.

In particular, we have that βn,n = c2c4 · · · c2n and γn,n = c1c3 · · · c2n−1 which
shall turn out to be useful expressions.

We now consider the moment generating function M(s) and its power
series expansion in terms of the reduced moments. The power expansion of
the k’th order approximant is Ck(s)/Dk(s). Then the first k terms of both
power expansions coincide (see Perron (1957), Satz 3.2). Hence we may write

Ck(s)

Dk(s)
= 1 + µ1s + µ2s

2 + ... + µks
k + µ̃k+1s

k+1 + ...,

where µ̃i are some constants. Now inserting the above expression for Ck(s)
and Dk(s) with k = 2n and k = 2n− 1 we get that

1 + αn,1s+ · · ·αn,ns
n

1 + βn,1s+ · · ·βn,nsn
= 1 + µ1s+ · · ·+ µ2ns

2n + ˜̃µ2n+1s
2n+1 + ...(3)

1 + γn,1s+ · · · γn,ns
n

1 + δn,1s+ · · · δn,n−1sn−1
= 1 + µ1s+ · · ·+ µ2n−1s

2n−1 + ˜̃µ′
2ns

2n + ....

We can now solve for the constants αn,i, βn,i, γn,i and δn,j, i = 1, ..., n, j =
1, ..., n − 1 by multiplying the numerators of the fractions onto their right
hand sides and equating the coefficient to the terms si, i = n+1, n+2, ..., 2n.
We get the following system of equations

0 = µn+1 + µ1βn,n + µ2βn,n−1 + ...+ µnβn,1

0 = µn+2 + µ2βn,n + µ3βn,n−1 + ...+ µn+1βn,1

... = ...

0 = µ2n + µnβn,n + µn+1βn,n−1 + ...+ µ2n−1βn,1.

This is the same as

−µn+1 = µ1βn,n + µ2βn,n−1 + ... + µnβn,1

−µn+2 = µ2βn,n + µ3βn,n−1 + ... + µn+1βn,1

... = ...
−µ2n = µnβn,n + µn+1βn,n−1 + ... + µ2n−1βn,1.
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By Cramérs rule,

βn,i =

∣

∣

∣

∣

∣

∣

∣

∣

µ1 ... −µn+1 ... µn

µ2 ... −µn+2 ... µn+1

... ... ... ... ...
µn ... −µ2n ... µ2n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ1 µ2 ... µn

µ2 µ3 ... µn+1

... ... ... ...
µn µn+1 ... µ2n−1

∣

∣

∣

∣

∣

∣

∣

∣

.

In particular, for βn,n we get that

βn,n = (−1)nψn+1

φn
,

where ψn and φ are the Hankel determinants defined by

φn =

∣

∣

∣

∣

∣

∣

∣

∣

µ1 µ2 ... µn

µ2 µ3 ... µn+1

... ... ... ...
µn µn+1 ... µ2n−1

∣

∣

∣

∣

∣

∣

∣

∣

and ψn =

∣

∣

∣

∣

∣

∣

∣

∣

µ2 µ3 ... µn

µ3 µ4 ... µn+1

... ... ... ...
µn µn+1 ... µ2n−2

∣

∣

∣

∣

∣

∣

∣

∣

(4)

for all n = 1, 2, 3... for φn and for n = 2, 3, ... for ψn. Thus

βn,nφn = (−1)n−1ψn+1.

Similarly, equating for C2n−1(s)
D2n−1(s)

. we get that

γn,nψn = (−1)n−1φn , n = 1, 2, , ....

with ψ1 = 1.
Inserting the expression βn,n = c2c4 · · · c2n and γn,n = c1c3 · · · c2n−1 we get

that

c2c4 · · · c2nφn = (−1)nψn+1

c1c3 · · · c2n−1ψn = (−1)n−1φn.

We can extract the following information from these equations. If the mo-
ment generating function is an n’th order rational function, then the corre-
sponding continued fraction has at most 2n non–zero terms c0 = 1, c1, c2, ..., c2n
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and cν = 0 for ν > 2n. Then φn+1 = 0 by the second equation and conse-
quently ψn+2 = 0 by the first. Hence all higher order Hankel determinants
φν = 0 for ν > n and ψν = 0 for ν > n+1. Furthermore, we can retrieve the
constants c1, c2, ..., in terms of the Hankel matrices by defining φ0 = 1 and

c1 = φ1, c2n = −
ψn+1φn−1

ψnφn
, c2n+1 = −

φn+1ψn

ψn+1φn

whenever the coefficients are non–zero.
The term αn,n can similarly be calculated by considering the same equa-

tions as earlier but equating the terms of si, i = n, n + 2, ..., 2n− 1 instead
of si, i = n+ 1, n+ 2, ..., 2n. Thus we get that

αn,n =

∣

∣

∣

∣

∣

∣

∣

∣

1 µ1 µ2 ... µn

µ1 µ2 µ3 ... µn+1

... ... ... ... ...
µn µn+1 µn+2 ... µ2n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ2 µ3 ... µn

µ3 µ4 ... µn+1

... ... ... ...
µn µn+1 ... µ2n−1

∣

∣

∣

∣

∣

∣

∣

∣

.

If the moment generating function is a rational function of order n, then αn,n

is the coefficient to sn in the numerator and must be zero. Hence we have
also proved that the Hankel determinant

Hn =

∣

∣

∣

∣

∣

∣

∣

∣

1 µ1 µ2 ... µn

µ1 µ2 µ3 ... µn+1

... ... ... ... ...
µn µn+1 µn+2 ... µ2n−1

∣

∣

∣

∣

∣

∣

∣

∣

is 0 when n is the order of the rational function. The rank of the matrix
corresponding to Hn is n−1 since the lower right sub–determinant is different
from zero according to the analysis above. Hence Hn−1 6= 0 and by a similar
argument we conclude that all Hm 6= 0 when m < n. Thus the order of the
matrix–exponential distribution can be checked through the verification of
the determinants to be the first time they are different from zero.

We collect these results in the following theorem, which shall turn out to
play an important role in the proof for our main characterization theorem.
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Theorem 3.1 Consider a matrix–exponential distributed random variable X
with reduced moments µi = IE(X i)/i!. Then the rational moment generating
function of X can be written as a finite and regular C–continued fraction

1 +
c1s|
|1 +

c2s|
|1 + ... +

c2n|
|1 .

The coefficients ci can be calculated in terms of the Hankel determinants (4)
as follows:

c1 = φ1, c2n = −
ψn+1φn−1

ψnφn

, c2n+1 = −
φn+1ψn

ψn+1φn

,

where φ0 = 1. The Hankel determinants φm = 0 for m > n and ψm = 0 for
m > n + 1.

Example 3.1 Consider a distribution of a random variable X having a ra-
tional moment generating function M(s) given by

M(s) =
f1s+ g2

s2 + g1s+ g2
.

The moment generating function has a power series expansion

M(s) = 1 +

∞
∑

i=1

µis
i.

We now consider the continued fraction corresponding to the power expan-
sion. Since it is a power expansion of a rational function, the corresponding
continued fraction is finite. In the case of a regular C–continued fraction,
where all non–trivial terms are of the form ais, we need i = 4 terms in order
to express the given rational function in terms of a continued fraction.

By the remark above, we obtain the coefficients ai, i = 1, ..., 4 as follows:

a1 = φ1 = µ1

a2 = −ψ2φ0

ψ1φ1
= −µ2

µ1

a3 = −φ2ψ1

ψ2φ1

= −µ1µ3 − µ2
2

µ1µ2

a4 = −ψ3φ1

φ2ψ2
= −µ1(µ2µ4 − µ2

3)

(µ1µ3 − µ2
2)µ2

12



Then

M(s) = 1 +
a1s|
|1 +

a2s|
|1 +

a3s|
|1 +

a4s|
|1 = 1 +

a1s

1 +
a2s

1 +
a3s

1 + a4s

.

Substituting the expressions for µi into the ai we get after a little algebra,
that

M(s) =
f ∗

0 s
2 + f ∗

1 s+ g∗2
g∗0s

2 + g∗1s+ g∗2
,

where

f ∗
0 = µ2µ4 − µ2

3 − µ2
1µ4 + 2µ1µ2µ3 − µ3

2

f ∗
1 = −µ1µ4 + µ3µ2 + µ2

1µ3 − µ1µ
2
2

g∗2 = µ1µ3 − µ2
2

g∗0 = µ2µ4 − µ2
3

g∗1 = −µ1µ4 + µ3µ2.

Here we recognize in special

f ∗
0 =

∣

∣

∣

∣

∣

∣

1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

∣

∣

∣

∣

∣

∣

, g∗2 =

∣

∣

∣

∣

µ1 µ2

µ2 µ3

∣

∣

∣

∣

, g∗0 =

∣

∣

∣

∣

µ2 µ3

µ3 µ4

∣

∣

∣

∣

.

Thus, ifX has two–dimensional rational function as moment generating func-
tion (or equivalently as Laplace transform), then f ∗

0 = 0.

4 Multivariate matrix–exponential distribu-

tions

We define multivariate matrix–exponential distributions as a natural exten-
sion of the univariate case.

Definition 4.1 A non–negative random vector X = (X1, ..., Xn) of dimen-
sion n is said to have multivariate matrix–exponential distribution if the joint
Laplace transform L(s) = E [exp(− < s,X >)] is a multi–dimensional ratio-
nal function, that is, a fraction between two multi–dimensional polynomials.
Here < ·, · > denotes the inner product in R

n and s = (s1, . . . , sn). This
class of distributions is denoted MVME.
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Our main theorem characterizes the class of MVME.

Theorem 4.1 A vector X = (X1, . . . , Xn) follows a multivariate matrix–
exponential distribution if and only if < a,X >=

∑n
i=1 aiXi has a univariate

matrix–exponential distribution for all non–negative vectors a 6= 0.

Proof: Suppose that X has multivariate matrix–exponential distribution.
Then using

IE [exp(−s < a,X >)] = IE [exp(− < sa,X >)]

we conclude that the left hand side is a rational function of s since the right
hand side is, by definition, rational in sa.

Now suppose that < a,X > has a rational Laplace transform , and hence
also moment generating function, for all non–negative a 6= 0. The dimen-
sions of the representations for < a,X > are bounded by some m. Assume
the contrary. The dimension of any distribution will be unaffected by nor-
malizing a by ae. Since a is non–negative we can restrict the attention to the
compact set (simplex) {a ≥ 0 : ae = 1}. If the dimension is unbounded, then
there exists a sequence an → a0 in the simplex such that the corresponding
dimension goes to infinity, contradicting the assumption that < a0,X > has
a rational Laplace transform. In what follows we shall assume that the di-
mensions of the representations are always of order m, though they may not
be minimal.

Let µi(a) = IE(< a,X >i)/i! denote the reduced moments of < a,X >
as a function of a. Then µi(a) is a sum of i–dimensional (multidimensional)
monomials in a. ¿From Theorem 3.1 we get that the moment generating
function of < a,X > can be written as a finite regular C–continued fraction
of order at most 2m. The Hankel determinants are again sums of monomi-
als in a, so the coefficients in the continued fraction are rational functions
in a. Hence, collapsing the continued fraction to a rational function, we
conclude that the moment generating function, and hence its Laplace trans-
form, is indeed a rational function in a. The Hankel determinant φn(a) may
vanish, but at most on a set of measure zero. The continuity of the multi-
dimensional Laplace transform ensures that the coefficients of the univariate
Laplace transform on the null set is obtained as a limit of the coefficients of
the univariate Laplace transform outside this set.

It follows, that the functions fi(a) and gi(a) are also rational functions
in a.

14



�

Corollary 4.1 Let X = (X1, ..., Xn) have a MVME distribution and let A

be a non–negative m × n matrix. Then Y = AX has a MVME distribu-
tion. In particular, all marginal distributions are again matrix–exponentially
distributed.

Proof: According to Theorem 4.1, Y is MVME if and only if < b,Y >
has a matrix–exponential distribution for all non–negative b 6= 0. Now
< b,AX >=< bA,X > and hence has a matrix–exponential distribution.

�

Theorem 4.2 Let X = (X1, . . . , Xn) follow a multivariate matrix–exponential
distribution Then we may write its moment generating function for < a,X >
as

f̃1(a)sm−1 + f̃2(a)sm−2 + ... + f̃m−1(a)s+ 1

g̃0(a)sm + g̃1(a)sm−1 + ....+ g̃m−1(a)s+ 1
,

where the terms f̃i(a) and g̃i(a) are sums of monomials in a of order m− i.

Proof: ¿From Theorem 4.1 we know that the moment generating function
of < a,X > can be written as

f ∗
1 (a)sm−1 + f ∗

2 (a)sm−2 + ...+ f ∗
m−1(a)s+ f ∗

m(a)

g∗0(a)sm + g∗1(a)sm−1 + ... + g∗m−1(a)s+ g∗m(a)
,

where f ∗
i (a) and g∗i (a) are sums of monomials of order m(m + 1) − i. To

see this, we notice that the order of the monomials in g∗0(a) is given by the
sum of the indices of the diagonal elements of ψm+1 in (4) which amounts
to m(m + 1). Here f ∗

m(a) = g∗m(a) are of order m(m + 1) −m = m2. The
assertion of the theorem is equivalent to divisibility of all coefficients f ∗

i (a)
and g∗i (a) by f ∗

m(a).
In order to prove the divisibility we proceed as follows. Dividing through

the numerator and denominator by f ∗
m(a) we obtain an expression

f̃1(a)sm−1 + f̃2(a)sm−2 + ...+ f̃m−1(a)s+ 1

g̃0(a)sm + g̃1(a)sm−1 + ....+ g̃m−1(a)s+ 1
= 1+µ1(a)s+µ2(a)s2 + ..., (5)

15



where f̃i(a) and g̃i(a) are now rational functions in a. This equation is similar
to (3) with αm,m = 0, αm,i = f̃m−i(a) and βm,i = g̃m−i(a) which is solved by
considering (4).1

Write g̃i(a) = Pm−i(a)+Em−i(a) where Pm−i(a) is a sum of all, if any, m−
i’th order monomials appearing in the expression for g̃i(a) while Em−i(a) =
g̃i(a)−Pm−i(a). Let µm(a) = (µm+1(a), ...., µ2m(a))′, φn = φn(a) the Hankel
matrix (4) now depending of a, Pm(a) = (Pm(a), ..., P1(a)) and Em(a) =
(Em(a), ..., E1(a)). Then

−µm(a) = φm(a)Pm(a) + φm(a)Em(a).

Consider the j’th equation. Here µm+j(a) is a sum of monomials of order
m+ j as are the corresponding terms of φm(a)Pm(a). Since φm(a)Em(a) is
rational in a and do not contain monomial terms of order m+ j, we conclude
by coefficient matching that

φm(a)Em(a) = 0.

Since φm(a) is non–singular we get that Em(a) = 0 and hence all g̃i(a)
are sums of monomials. From (5) we also see that the f̃i(a) are sums of
monomials by multiplying both sides of the equation with the numerator
and matching coefficients.

�

Corollary 4.2 The number of free (reduced) moments for m,n = 2 is at
most 7 (out of 9 potential).

Proof: Define reduced cross–moments, κi,j = IE(X i
1X

j
2)/(i!j!). In partic-

ular, κi,0 andκ0,i are the usual i’th order reduced moments of X1 and X2

respectively. Then

µi =
i
∑

j=0

aj
1a

i−j
2 κj,i−j.

¿From Theorem 4.2 we know that µ2 − µ2
1 divides µ3 − µ1µ2 and µ3µ1 − µ2

2

respectively. Thus there are constants ci,j, such that

µ3 − µ1µ2 = (c1,0a1 + c0,1a2)
(

µ2 − µ2
1

)

(6)

µ3µ1 − µ2
2 =

(

c2,0a
2
1 + c1,1a1a2 + c0,2a

2
2

) (

µ2 − µ2
1

)

. (7)

1Bo:check

16



By coefficient matching in (6) we get

κ3,0 − κ1,0κ2,0 = c1,0

(

κ2,0 − κ2
1,0

)

κ2,1 − κ1,0κ1,1 − κ0,1κ2,0 = c0,1

(

κ2,0 − κ2
1,0

)

+ c1,0 (κ1,1 − κ1,0κ0,1)

κ0,3 − κ0,1κ0,2 = c0,1

(

κ0,2 − κ2
0,1

)

κ1,2 − κ0,1κ1,1 − κ1,0κ0,2 = c1,0

(

κ0,2 − κ2
0,1

)

+ c0,1 (κ1,1 − κ0,1κ1,0) .

When κ2,0 6= κ2
1,0 and κ0,2 6= κ2

0,1 we see that κ1,2 and κ2,1 are uniquely given
in terms of the other κ’s . Equation (7) establishes a connection between κ1,2

and κ2,1, which is compatible with the restrictions of (6).
Now, κ2,0 = κ2

1,0 ⇒ κ3,0 = κ3
1,0 and κ0,2 = κ2

0,1 ⇒ κ0,3 = κ3
0,1, which

completes the proof.

�

Inspired by Theorem 4.1 we propose the following definition of a multi-
variate phase–type distribution.

Definition 4.2 A vector X = (X1, ..., Xn) has a multivariate phase–type
distribution (MVPH) if < a,X > has a (univariate) phase–type distribution
for all non–negative a 6= 0.

The following definition is a natural extension of the MPH∗ structure to
matrix–exponential distributions.

Definition 4.3 Let MME∗ be the subclass of MVME, where < a,X > has
representation

(

γ, (∆(Ka))−1 T, t
)

, where γ, K and T are constant vector

and matrices, and t = − (∆(Ka))−1 Te. We say that the triple (γ, T,K) is
a MME∗ representation of the multivariate distribution.

It is an open problem whether MME∗ is a strict subset or equals the class of
MVME. However,

Theorem 4.3 There exists MVME distributions where the MVME order is
strictly less than the MME∗ order.

Proof: The proof is based on the non–existence of a three dimensional
MME∗ representation of Krishnamoorthy and Parthasarathy’s Multivariate
Exponential for n = 3. For a discussion of this distribution see section 48.3.3
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in Kotz, Balakrishnan & Johnson (2000) (with α = 1). The distribution is
defined through it’s joint Laplace transform

|I +R∆(s)|−1 ,

where R is a correlation matrix. To find a representation for m = 3 in
MME∗(3) we first parameterize

R =





1 ρ τ
ρ 1 η
τ η 1



 .

Then

g̃0 = a1a2a3(1 + 2ρτη − ρ2 − τ 2 − η2)

g̃1 = (a1a2(1 − ρ2) + a1a3(1 − τ 2) + a2a3(1 − η2))

g̃2 = (a1 + a2 + a3)

f̃1 = 0

f̃2 = 0

and the Laplace transform of < X, a > is given by

1

s3g̃0 + s2g̃1 + sg̃2 + 1
.

Suppose now that we have a MME∗ representation (γ, T,K) for this distri-
bution in MME∗. It is immediately clear that we must have K = I. From
equality of the Laplace transforms we must have

|T | =
−1

1 + 2ρτη − ρ2 − τ 2 − η2

∣

∣

∣

∣

T11 T12

T21 T22

∣

∣

∣

∣

=
1

1 + 2ρτη − ρ2 − τ 2 − η2

∣

∣

∣

∣

T11 T13

T31 T33

∣

∣

∣

∣

=
1

1 + 2ρτη − ρ2 − τ 2 − η2

∣

∣

∣

∣

T22 T23

T32 T33

∣

∣

∣

∣

=
1

1 + 2ρτη − ρ2 − τ 2 − η2
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T11 = − 1 − η2

1 + 2ρτη − ρ2 − τ 2 − η2

T22 = − 1 − τ 2

1 + 2ρτη − ρ2 − τ 2 − η2

T33 = − 1 − ρ2

1 + 2ρτη − ρ2 − τ 2 − η2

(γ1 + γ2)

∣

∣

∣

∣

T11 T12

T21 T22

∣

∣

∣

∣

− γ1

∣

∣

∣

∣

T12 T13

T22 T23

∣

∣

∣

∣

+ γ2

∣

∣

∣

∣

T11 T13

T21 T23

∣

∣

∣

∣

= 0 (8)

(γ1 + γ3)

∣

∣

∣

∣

T11 T13

T31 T33

∣

∣

∣

∣

+ γ1

∣

∣

∣

∣

T12 T13

T32 T33

∣

∣

∣

∣

+ γ3

∣

∣

∣

∣

T11 T12

T31 T32

∣

∣

∣

∣

= 0

(γ2 + γ3)

∣

∣

∣

∣

T22 T23

T32 T33

∣

∣

∣

∣

+ γ2

∣

∣

∣

∣

T21 T23

T31 T33

∣

∣

∣

∣

− γ3

∣

∣

∣

∣

T21 T22

T31 T32

∣

∣

∣

∣

= 0

γ1(T11 + T12 + T13) = 0

γ2(T21 + T22 + T23) = 0

γ3(T31 + T32 + T33) = 0 .

We must have at least one γi 6= 0. Due to the symmetry we can without loss
of generality take γ1 6= 0. We then have T11 +T12 +T13 = 0. Now denote the
coefficients of γj in the i’th equation of (8) by Cij. We get

C11 = T11T22 − T12T21 − T12T23 + T13T22

C12 = T11T22 − T12T21 + T11T23 − T13T21

C21 = T11T33 − T13T31 + T12T33 − T13T32

C23 = T11T33 − T13T31 + T11T32 − T12T31

C32 = T22T33 − T23T32 + T21T33 − T23T31

C33 = T22T33 − T23T32 − T21T32 + T22T31 .

By insertion of T11 = −T12 − T13 in the first four equations we get

C11 = −T12(T21 + T22 + T23)

C12 = −(T12 + T13)(T21 + T22 + T23)

C21 = −T13(T31 + T23 + T33)

C23 = −(T12 + T13)(T31 + T32 + T33)
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As γ2C12 = γ3C23 = 0 we must have

γ1C11 = γ1T12(T21 + T22 + T23) = 0

γ1C21 = γ1T13(T31 + T32 + T33) = 0 .

We cannot have both T12 and T13 equal to zero as we cannot have both
T21 +T22 +T23 = 0 and T31 +T32 +T33 = 0. Now again due to the symmetry
we can assume without loss of generality that T13 = 0 and T21 +T22 +T23 = 0
while T12 6= 0 and T31 + T32 + T33 6= 0 to give

C32 = −T23(T31 + T32 + T33)

C33 = −(T21 + T23)(T31 + T32 + T33) .

Since T21 + T22 + T23 = 0 we have γ3 = 0, and as we cannot have both T13

and T23 equal to zero we conclude that γ2 = 0. Now finally we must have

T11T33 =
T11

1 − η2
=

T33

1 − ρ2
=

1

1 + 2ρτη − ρ2 − τ 2 − η2
,

which is only fulfilled when τ = ρη. Examination of this case reveals that for
this special parameter setting we can find a representation in MPH∗ with

T =







− 1
1−ρ2

1
1−ρ2 0

ρ2

1−ρ2 − 1−η2ρ2

(1−ρ2)(1−η2)
1

1−η2

0 η2

1−η2 − 1
1−η2






.

It should be clear that it is possible to get a representation in MME∗ whenever
one of the three equations τ = ρη, ρ = τη, or η = ρτ is true as the previous
choice of γ1 = 1 over γ2 = 1 or γ3 = 1 was arbitrary.

�

Example 4.1 (Marshall and Olkin’s Bivariate Exponential)
The bivariate Marshall Olkin distribution Marshall & Olkin (1967) and Kotz,
Balakrishnan & Johnson (2000) pp.362-369 is already in Assaf et al. (1984)
as Example 5.1 p.699. The joint density for x1 6= x2 is given by

f(x1, x2) =

{

λ2(λ1 + λ12)e
−(λ1+λ12)x1−λ2)x2 for 0 ≤ x2 < x1

λ1(λ2 + λ12)e
−λ1x1−(λ2+λ12)x2 for 0 ≤ x1 < x2

.
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There is a singularity on the line x1 = x2

f(x, x) = λ12e
−λ12x .

The joint density has Laplace transform

(λ1 + λ2 + λ12 + s1 + s2)(λ1 + λ12)(λ2 + λ12) + s1s2λ12

(λ1 + λ2 + λ12 + s1 + s2)(λ1 + λ12 + s1)(λ2 + λ12 + s2)
,

with MPH∗(3) representation


(1, 0, 0),





−(λ1 + λ2 + λ12) λ2 λ1

0 −(λ1 + λ12) 0
0 0 −(λ2 + λ12)



 ,





1 1
1 0
0 1







 .

�

Example 4.2 (Kibbles’s Bivariate Exponential)
This distribution is originally due to Kibble (1941) and is described in Kotz,
Balakrishnan & Johnson (2000) p.350 and pp.350-377 as Moran and Down-
ton’s Bivariate Exponential. It was used in O’Cinneide (1990) to demonstrate
that the order statistics of the components of an MPH∗ distributed vector
X do not necessarily have a rational Laplace transform. The distribution
belongs to a more general system of mixtures, where the components are
ME or MVME distributed and the mixing is due to a discrete multivariate
distribution of ME type. The density is given by

f(x1, x2) = λ1λ2(1 − p)e−(λ1x1+λ2x2)

∞
∑

i=1

(λ1x1λ2px2)
i−1

((i− 1)!)2
.

We can express f(x1, x2) more compactly as f(x1, x2) = λ1λ2I0
(

2
√
λ1x1λ2px2

)

by using the modified Bessel function of the first kind I0(z) =
∑∞

j=0

(

z
2j!

)2j

.

The parameterization in Kotz, Balakrishnan & Johnson (2000) page 371 is
obtained with ρ = p, θ1 = λ1p, and θ2 = λ2p.

The Laplace transform of < a,X > is

pλ1λ2

a1a2s2 + (a2λ1 + a1λ2)s+ pλ1λ2
.

The MME∗ representation of this distribution is
(

(1, 0)

[

−λ1 λ1

λ2(1 − p) −λ2

]

,

[

1 0
0 1

])

.

�
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Finally we show how the multivariate matrix–exponential distribution
may naturally arise in applications such as renewal theory.

Lemma 4.1 Let At and Rt be the age and residual life time respectively in
a stationary renewal process with inter-arrival time density f(x). The joint

distribution of At and Rt is given by f(x+y)
R

∞

0
xf(x)dx

.

Proof: The joint distribution of (At, Rt) in a renewal process is given by

P (Rt ≥ x,At < y) =

∫ t

t−y

(1 − F (t+ x− u))dU(u) ,

see e.g. Yanushkevichius (1995). We obtain the result, inserting 1/IEX as
the stationary renewal density and differentiating.

�

Theorem 4.4 In a stationary renewal process with matrix–exponentially dis-
tributed inter–arrival times with representation (α, C), the joint distribution
of age and residual life is a MME∗ with representation

((

α (−C)−1

µ1
, 0

)

,

[

C −C
0 C

]

,

[

e 0

0 e

]

)

, (9)

where m is the dimension of C.

Proof: We denote the density of the ME distribution with representation
(α, C) by f(x). The corresponding mean is denoted by µ1. Using Theo-
rem 4.1 we see that for a1 > 0 and a2 > 0, the random variable Z =< a,X >,
has density g(z) given by

g(z) =
1

µ1

∫ z
a1

0

α exp

(

C

(

x1 +
z − a1x1

a2

))

cdx1
1

a2

.

For a1 6= a2 we get

g(z) =
1

µ1
αC−1 1

1 − a1

a2

[

exp

(

C
z

a1

)

exp

(

−C z

a2

)

− I

]

exp

(

C
z

a2

)

c

a2

=
1

µ1

1

a2 − a1

(

F

(

z

a1

)

− F

(

z

a2

))

,
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which is also the density of the ME distribution with the representation given
by (9). This can be seen by direct evaluation of the latter. For a1 = a2 we

get g(z) = zf(z/a)
aµ1

. Again, by direct verification, we also obtain this density

by evaluating (9) for a1 = a2.

�

5 Conclusions

In this article we have analyzed the general class of multivariate matrix–
exponential distributions (MVME) defined as distributions with a rational
multi–dimensional Laplace transform. This class of distributions generalizes
several classes of multivariate exponential and Gamma distributions, which
we shall treat in more detail in a forthcoming paper.

A main characterization theorem proves that distributions of MVME
type are those which projections in any direction are univariate matrix–
exponential distributions. An intimate connection to the theory of Hankel
matrices, continued fractions, and the moment problem is used in the proof
of this main theorem. Based on the theory of continued fractions we prove
an important result concerning the order of matrix–exponential distributions
and the vanishing of the Hankel determinant of the reduced moments. This
result has previously been pointed out by van de Liefvoort (1990), however,
we have not been able to pinpoint a proof in the literature.

Multivariate distributions may appear in a variety of situations, and since
particularly phase–type distributions and matrix–exponential distributions,
have turned out to be useful in the modeling of complex stochastic models,
it is natural to consider such distributions in a broader generality. A trivial
example where an MVME appears naturally is the joint distribution of the
age and residual lifetime in a stationary renewal process.
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