

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 16, 2017

Diff-based model synchronization in an industrial MDD process

Kindler, Ekkart; Könemann, Patrick; Unland, Ludger

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kindler, E., Könemann, P., & Unland, L. (2008). Diff-based model synchronization in an industrial MDD process.
Lyngby: Technical University of Denmark, DTU Informatics, Building 321. (D T U Compute. Technical Report;
No. 2008-07).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13705629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/diffbased-model-synchronization-in-an-industrial-mdd-process(6caa2bb8-39ee-4ca4-817c-81bb8c73cc4c).html

Diff-based model synchronization in an
industrial MDD process

Ekkart Kindler
Technical University of Denmark

Patrick Könemann
Technical University of Denmark

Ludger Unland
Software Design & Management, Düsseldorf, Germany

Technical University of Denmark

IMM-TECHNICAL REPORT-2008-07

June 30, 2008

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-TECHNICAL REPORT: ISSN 1601-2321

Diff-based model synchronization in an industrial

MDD process∗

Ekkart Kindler1, and Patrick Könemann1, and Ludger Unland2

1 Technical University of Denmark, Informatics and Mathematical Modelling
[eki|pk]@imm.dtu.dk

2 Software Design & Management, Düsseldorf, Germany
ludger.unland@sdm.de

Abstract

Models play a central role in model-driven software engineering. There
are many different kinds of models during the development process, which
are related to each other and change over time. Therefore, it is difficult
to keep the different models consistent with each other. Consistency of
different models is maintained manually in many cases today. This paper
presents an approach for automated model differencing, so that the dif-
ferences between two model versions (called delta) can be extracted and
stored. It can then be re-used independently of the models it was created
from to interactively merge different model versions, and for synchroniz-
ing other types of models. The main concern was to apply our concepts to
an industrial process, so usability and performance were important issues.

Keywords. MDA, MDD, model differencing, model merging, model
transformation, model synchronization.

1 Introduction

Models play an increasingly important role in software development. Different
types of models are used, which are produced in different phases of the software
development process, with different objectives, and on different levels of abstrac-
tion. The models in the later phases of the development process can often be
used to generate large parts of the code automatically. In terms of model-driven
software development (MDD), a well-known approach is the model-driven archi-
tecture (MDA) [2], which distinguishes between a platform independent (PIM)
and a platform specific model (PSM). The platform specific model is then used
to generate at least parts of the code for the final software. Many industrial de-
velopment processes distinguish between analysis and design models; our paper
refers to such a process of sd&m [3].

There need to be tools that support models and code generation in an MDD
process. Several conceptual problems must be solved to implement those tools.
Some of them are of quite technical nature and have been long solved for textual
representations; examples are versioning of models and merging changes into dif-
ferent models. Other problems are more conceptual in nature: keeping different
models in different phases and for different purposes consistent with each other.
This is, in general, called model synchronization, and there are already many

∗Major part of this work was done at the University of Paderborn, Germany, [1].

1

[eki|pk]@imm.dtu.dk
ludger.unland@sdm.de

concepts, methods, and tools that support some kind of model synchronization
(see [4, 5, 6, 7] for examples). But up to now, there is no technology that fits
all purposes.

Analysis Model
(version 1)

Analysis Model
(version 2)

Delta
v1-2

compare

Analysis Model
(branch of version 1)

Delta
v1-2

Analysis Model
(branches merged)

merge with
version 2

Design Model
(of Analysis version 1)

Delta
v1-2

Design Model
(of Analysis version 2)

sync with
Analysis
version 2

1. Compare two model versions 2.b. Sync Design model2.a. Merge branches

Figure 1: Diff and merge to synchronize models

In this paper, we discuss differencing, merging, and synchronizing models in
the analysis and the design phase of an industrial software development process.
Figure 1 gives a brief overview of these scenarios. In step 1 the delta between
two model versions, analysis models in this case, is extracted for documentation
and later reuse. Step 2.a uses this delta to merge version 2 with another branch
of version 1. Furthermore, step 2.b uses the same delta to transfer the delta to
another model type, a design model in this case. These steps are often performed
manually today, so our goal is to automate them.

Our contribution consists of two parts: First, we describe how a delta be-
tween two model versions can be computed automatically and stored as a change
list. Second, we deal with the visualization of change lists independently of the
model versions it was created from. Third, a delta or parts of it can be trans-
ferred semi-automatically1 to another model version or another model type to
synchronize them. Our main concern is to apply these concepts to a real project
with big models. So we finally report on the experiences we made connecting
different technologies.

The rest of the paper is structured as follows: After presenting some related
work in Sect. 2, Sect. 3 explains the process and tasks that will be automated
by our approach. Sect. 4 presents the concepts, and Sect. 5 discusses imple-
mentation and performance issues. We conclude with a summary, compare our
concepts with related approaches, and give an outlook for future work.

2 Related work

This section introduces some important terms and gives an overview of related
work and tools. A comparison between our work and other approaches is given
later in Sect. 6.1. In [8], Förtsch et al. introduce some categories for diff and
merge based approaches and compare some of them. The most important cate-
gories are symmetric vs. directed delta and unique identifiers. Furthermore, we
distinguish between model-dependent and model-independent deltas.

1This step can not be fully automated since conflicts may occur during a merge.

2

A symmetric delta between two model versions contains all differences be-
tween them such that it can be used to construct either version out of the delta
and the other version. In contrast, a directed delta can only be used to construct
one version from the other, i.e. not the other way round. A model-independent
delta can be applied to another model without having the models available it
was created from, and to view and even modify it independently of a model.
If unique identifiers are used, each model element has a unique id, which does
not change over the life-time of the element. Non-id-based approaches exploit
similarities in the structure of a model to guess which elements of two different
versions actually are the same. This has a big influence on the algorithms, since
heuristics are less efficient than matching elements by their ids. In contrast,
algorithms which use identifiers are called exact. Our approach is id-based and
uses a model-independent symmetric delta.

Traditionally, two text files are merged by analyzing them line-by-line (two-
way merge). However, this may lead to unprecise results if conflicts occur (see
[9] for details). It is much more precise to use the common ancestor to identify
conflicts between the two evolved versions, since the changes made in each of
the versions are calculated prior to the actual merge. This merging technique
is called three-way merge.

The EMF Compare Project [10] recently started and is not yet finished. It
provides a meta-model-independent and a meta-model-specific part to compare
and merge different models, even a three-way merge will be supported. It does
not rely on unique identifiers but rather uses a distance relation to match the
same elements. The delta is symmetric and model-dependent. This approach is
applicable to arbitrary EMF models, but presumably less efficient than id-based
approaches as mentioned above.

Difference and Union of models [11] is id-based and stores changes model-
independently in a set of commands. A command describes a change of a
model; “del(‘id1’,Class)”, for instance, removes the class with the id ‘id1’. The
idea is that the list of commands applied to the original version gives the second
version—so the delta is model-independend and directed.

UMLDiff [12] is based on object-oriented programming code (they used
Java) and looks for differences in two versions. It is non-id-based and uses a
distance relation that considers structure and names.

A Metamodel Independent Approach for Difference Representation [6] offers
a generic way to compare different model versions, to create deltas and to apply
them. It transforms the meta model of the compared model into an extended
meta model that contains three additional subclasses for each original class (one
for an added, a removed, and a changed element). A delta is described using
this extended meta model. A QVT transformation can then be performed to
apply a delta to another target model.

The Rational Software Architect also supports model differencing and merg-
ing, even in a graphical way. It relies on unique identifiers and only performs
in-memory merges; that means that a delta cannot be stored and reused. How-
ever, the difference presentation is nicely done in a graphical way as well as a
tree, similar to EMF Compare.

3

«entity,entity »
K_Addressbook

K_Contact

+ «P0» name: T_String

K_Group

+ size: T_Integer

+ getSummary() : T_String

«pstr»
K_Person

+ birthday: T_Date
+ fax: T_String
+ «P1» first_name: T_String
+ phone_private: T_String

T_String

«pstr»
K_Address

+ city: T_String
+ country: T_String
+ «K0.2» street: T_String
+ «K0.1» zip: T_String

T_Integer T_Date

business

0..1

private

0..1

+group 0..1

+subcontacts

0..*

+contacts

0..*1

Figure 2: The analysis model for the example address book application

3 The reference process

The concepts will be integrated into the process described in this section. It was
set up in the company sd&m about six years ago [3]. It uses UML class diagrams
for two types of models, the analysis model, which shows the application or its
underlying concepts from customer’s point of view, and the design model. The
latter is closer to the implementation and used by a proprietary code generator.
Our concepts are based on but not limited to this process.

3.1 The models

Our example model is artificial to keep it small and simple, because the real
models would be too big and too complex. However, the characteristics and
modeling techniques of the real project are adopted in our simplified example.
Figure 2 shows the analysis model for a simple address book application. It
shows contacts, which can either be persons or groups; a person may have two
addresses, a private and a business address. The prefix K describes a class in
the analysis, the prefix T a datatype. Except for some extra information, which
will be discussed below, this is a standard UML class diagram.

Figure 3 is a design delta that shows how the design model extends the
analysis model. The design classes are named without a K or T prefix. Their
relation to analysis classes is indicated by a UML dependency with the stereo-
type A2D, which stands for analysis to design. It expresses that design classes
have all the attributes and associations of the corresponding analysis classes,
unless stated otherwise. However, design classes can add or refine attributes or
associations.

The main reason for sd&m to make the design model an extension of the
analysis model rather than having two separate models is the following: There
is less redundancy in these models since every concept is, in principle, stored
only once. This way, it is easier to maintain the relation between the analysis
and the design model. This presentation makes it easy to keep them manually
consistent, since the models are maintained by hand.

But this choice has also some disadvantages. The design delta in Fig. 3 has
almost twice as many classes as the explicit design model would have. Moreover,
software engineers need to build the actual design model from the delta in their
mind. To work on the design, it would be much easier to have an explicit
diagram of the design. As we will see in Sect. 3.3, we can split up the analysis
and the design model without loosing the advantages of the current approach.

4

h

«entity,entity »
Addressbook::K_Addressbook

«pstr»
Addressbook::K_Address

+ city: T_String
+ country: T_String
+ «K0.2» street: T_String
+ «K0.1» zip: T_String

Addressbook::K_Group

+ size: T_Integer

+ getSummary() : T_String

Addressbook::K_Contact

+ «P0» name: T_String

«pstr»
Addressbook::K_Person

+ birthday: T_Date
+ fax: T_String
+ «P1» first_name: T_String
+ phone_private: T_String

PDAConnector

- ip: int
- user: String

Address

- code: int

Person

- uid: int

Group

- gid: int

Addressbook

+addressbook 1

+pdaConnections 0..*

«A2D»

«A2D»«A2D»
«A2D»

business

0..1

private

0..1

+group
0..1

+subcontacts
0..*

+contacts

0..*1

Figure 3: The design model for the example the address book application

Release
Analysis model

UC3, UC4
Design model

UC3, UC4

Analysis model

Analysis model
UC3

Design model

Analysis model
UC3, UC6

Analysis model
UC3, UC4, UC6

Analysis model
UC4

UC3

UC6

UC4

Design model
UC4

UC4

UC3UC3

merge UC4

Legend:
use case
realization

merge

consistency
analysis/design

redundant
operation

Figure 4: Extract of a development process

3.2 Scenarios: Working with these models

Next, we will briefly discuss the way these different models are used during the
development process to identify some typical synchronization scenarios. The
process is incremental and iterative, which means that individual features of
the application are developed more or less independently of each other. Fea-
tures correspond to use cases (UC for short) that are specified in requirement
documents earlier in the process. Please keep in mind that we deal with indus-
trial models which may be very big, e.g. more than 1000 classes.

Figure 4 shows an excerpt of the real development process for some features,
called UC3, UC4, and UC6. At the beginning, which is shown at the top in
the diagram, the analysis and the design correspond to each other, i.e. they are
synchronized. Then, two teams start working on the analysis model indepen-
dently of each other to develop UC3 and UC4 respectively. This gives rise to
a branch of the analysis model (we indicate the covered use cases of a model
version in the lower part of a box). Later a team works on UC6 integrating
it into the analysis model covering UC3. After UC4 was integrated into the
analysis model, the process also requires its realization in the design. Many of

5

the changes that are made in the design were already made in the analysis (i.e.
extentions and modifications). The realization in the design needs to be done
for all use cases.

In the end, there are two different versions of the analysis model, one covering
UC3 and UC6, the other covering UC4 only. Both versions need to be merged.
Another common scenario is the creation of a release that covers only parts of
the final application. A reason might be that the customer explicitley requested
such a release while some other use cases (e.g. UC6) are not yet realized. In
order to create a release, an analysis and a design model are needed that cover
the requested use cases, UC3 and UC4 in our example.

Many of the previously described operations were already performed in the
same or a slightly different way and may be automated—so they are marked
with a ‘smiley’ in Fig. 4. The redundant operations within the analysis seem
to be straightforward, but conflicts need to considered similar to commonly
known text-based merges. The redundant operations on the design model are
more complicated because the structure of the design slightly differs. All these
operations were performed manually by the developers until now. The models
are of course stored without much redundancy, as we have seen in Sect. 3.1.
Nevertheless the design has to be updated for each change. Since all these
operations are performed and documented by hand they are error-prone.

Our intention is to improve and automate the redundant operations in this
process in order to simplify it and to make it less error-prone. The following
steps are schematically shown in Fig. 1. The key for our approach is the change
list format. In step 1 we compare two model versions and store the diff fully
automatically in a change list; e.g. a change list is created that contains all
(and only) changes made for UC4. Then we use that change list later to merge
UC4 into the analysis version UC3,UC6 (step 2.a). This step can obviously not
be automized completly because conflicts may occur and need to be resolved.
Furthermore, we can use the same change list to transfer the changes to the
design in order to synchronize it with the analysis (step 2.b); e.g. the design
model including UC4 can semi-automatically be produced.

The same steps enables us to produce the requested Release containing UC3
and UC4. A change list for UC3 can be produced from the original analysis
model version and the one containing UC3. That list can then be used to
replace the redundant operations in Fig. 4 creating analysis and design model
versions covering UC3 and UC4.

3.3 Improvements

We now summarize some problems with the current development process, and
show how we improve the situation by using model synchronization.

Up to now, the consistency among different versions of the models and the
consistency between the analysis and the design models were maintained man-
ully. Every change made in a model was recorded manually in a list. When
some changes needed to be transfered into another model, some engineer went
through this list and made all the necessary changes in the other models man-
ually.

Our tool is able to identify all changes between two models fully automat-
ically and compile these changes into a change list. So changes between two
models can be documented fully automatically. Furthermore, that list is in-

6

Correspondence
model EA meta model Change list

model

Correspondence
instance

EA model
(analysis/design model)

Change list
instance

references

conformsconforms conforms

references

references

references

Correspondence
model EA meta model Change list

model

Ecore
(EMOF compliant)

Correspondence
instance

EA model
(analysis/design model)

Change list
instance

uses

conforms

conformsconforms conforms

uses

uses

uses

conforms conforms

Instances of
running system

conforms

Figure 5: The meta levels for change lists and correspondences

dependent from the model versions it was created from – i.e. it can be reused
without having the original model versions available. It can then be applied
to other models semi-automatically, where the degree of necessary interaction
depends on the scenario.

Moreover, we will make the analysis and the design model explicit, instead
of working with the design delta only. This, of course, can easily result in
inconsistencies between the two models. To this end, we create a first version of
the design model as a copy of the analysis model, and store the relation between
the two models as separate correspondences. These correspondences enable us
to transfer changes to other models to keep them consistent.

4 Concepts

This section explains the concepts of change lists and their usage for model
synchronization. Some issues concerning the implementation of the tool as well
as its performance will be discussed later in Sect. 5.

sd&m uses the modelling tool Enterprise Architect (EA) in the process.
Fig. 5 gives an overview of how a change list relates to EA models. The center
column shows the EA meta model and instances, the actual EA models. Since
change lists (instances) refer to EA models, the model for change lists refers to
the EA meta model. The relation between correspondences and EA models is
similar and will be discussed later in Sect. 4.4.

Every element of a diagram within the EA has a Global Unique IDentifier
(GUID) [14] that is contained in the common superclass EANamedElement in
the EA meta model. The GUID does not change over the lifetime of an object,
so we can exploit this GUID for our concepts: we use it to identify changes of an
element as well as to maintain the relation between the analysis and the design
model.

4.1 Change lists

As already indicated in Sect. 3.3, the change list is at the core of our approach.
It is for models what the result of a diff operation is for texts. The change list
exactly describes all changes between two models. It serves different purposes:

1. It should be possible to reproduce the changed model from the original
model and the change list; and vice versa, it should be possible to repro-
duce the original model from the changed one and the change list.

7

x

Change

+ author: String
+ date: datetime
+ name: String
+ note: String

CompositeChange

AtomicChange

+ feature: String
+ type: ChangeType

ChangeList

+ source: String
+ target: String

ChangeValue

+ value: Object

«enumeration»
ChangeType

 «enum» add
 «enum» change
 «enum» move
 «enum» remove

«interface»
ReferenceToEA

+ guid: String

EA::
EANamedElement

+ guid: String
+ name: String

+dependants
*

+dependsOn
*

+eaElement 0..1

0..1

+targetValue

0..1

0..1

+sourceValue

0..1

+subChanges *

+container
0..1

+changes

*

+list

0..1

Figure 6: A model for change lists

2. It should be possible to easily merge two change lists2.

3. It should be used for documentation and visualization of changes.

Figure 6 shows the model for change lists. This model, among other pur-
poses, helps to easily access and manipulate change lists by other tools. With
respect to documentation purposes, it should be possible to structure a change
list. Therefore, the model distinguishes between CompositeChanges and Atom-
icChanges. Every Change has a name, an author, a date, and a note.

In the context of this paper, the most interesting issue are the atomic
changes. There are four types of atomic changes: add, change, move, remove,
which are defined in the ChangeType. Note that most other approaches have
only three types; a move is then either represented as a change or as a remove
and an add [12, 6, 11, 15]. But a move of a whole package, for instance, is
exactly one modification in the model; a representation with remove/add would
be a whole bunch of changes in the list! Furthermore, moves are required to
preserve the GUIDs which are used later for incremental code generation [3].
The attribute type of an AtomicChange indicates its type. The attribute feature
refers to the element that was changed; the sourceValue and the targetValue de-
fine the values before resp. after the change, if applicable for the type of change.
We also need dependencies between changes to selectively transfer changes to
other models (see Sect. 4.3 for details). They are stored using the association
dependsOn - dependencies.

Note that the atomic change as well as the ChangeValue actually refer to an
element of the EA model, which is why they are derived from ReferenceToEA.
But this reference to a model element is symbolic; it refers to a GUID only. The
reason for that is, that we do not want to attach a change list to a concrete EA
model since it should be possible to use the change list on different models and
different versions of a model. For the very same reason, the reference to the
source and the target of the complete ChangeList is symbolic only.

4.2 Creating a change list

Next, we present the algorithm for creating a change list from a source and a
target model, where the target model is a changed version of the source model.

2This feature is planned for the future, but not implemented yet in our tool.

8

Figure 7: Left part: extract of a change list; right part: validation result of that
list with one conflict

The algorithm is id-based, exact (id-based algorithms are usually not heuristic),
model-independant, and it creates a symmetric delta3:

1. Preload all GUIDs of both models for fast access.

2. Iterate over all elements of the target model version. Look for GUIDs
that did not occur in the source model; this indicates a change of type
add. Moreover, compare elements that exists also on the source model
and check for changes; this indicates a change of type change or move.

3. Iterate over all elements of the source model and check whether their
GUID does not occur in the target model; this indicates a change of type
remove.

4. Calculate the dependencies between the identified changes. See tab. 1 for
details.

This simple algorithm identifies and stores all differences between two model
versions. The left part of Fig. 7 shows the most important columns of a change
list, the type, the changed feature, a description, and the old and new value (if
they exist). A change of type add, for instance, does not contain a String as a
new value; instead it contains a copy of the newly created element (cf. reference
eaElement in Fig. 6), which is not visible in the table view. The right part of
the figure is discussed in the next section.

The dependencies are most important in the calculation; they are later used
for validation and change application order. A change may depedent on elements
as shown in Tab. 1. A dependency between two changes is defined as follows:
Change CA depends on change CB if CA depends on an element that is changed
by CB and CB is of type add or remove. Figure 7 shows an example: A new
package ’Datatypes’ was added (row 4), and some classes are moved to that
package (rows 7-9). So all these changes of type move depend on the change in
row 4. For validation later on, if (for any reason) the change describing the new
package is invalid, then the changes describing the moved classes are also invalid.
When the changes are applied to another model, the order of application is
important—of course, the classes cannot be moved until the package is created.

3See [8] for more information about categories for diff algorithms.

9

Change type Change depends on elements

change none (besides the changed element)

add The parent of the added element

remove The parent of the removed element

move The old and the new parent of the moved element

Table 1: Description of the dependent elements against change types

4.3 Applying a change list to another model version

In this section, we describe the way change lists can be used to merge changes
into another version, e.g. for merging two branches (cf. Fig. 4 on page 5). The
challenge is how to deal with conflicts: (1) All changes are validated against the
target model version. (2) Suggestions are made how to handle each change and
presented to the user. (3) Users may either accept the suggestions and apply
the changes, in case no conflicts occurred. But if the users wants to change the
suggestions or if conflicts occurred, they have to change some status flags and
continue with step (1).

We use the flag Valid to express whether a conflict exists or not. The flag
Apply expresses the suggestions and may be modified by the user.

We consider two causes for conflicts: Either elements on which some changes
were made according to the change list might not exist any more, or these
elements might have changed differently. In the first case, the change cannot be
applied at all and must be ignored. In the second case, the conflict must either
be resolved explicitely or the change must be ignored. The validation (conflict
detection and suggestion making) is performed in the following way:

• If the change depends on an invalid change, this change is also invalid:
valid = “false”, and apply = “failure” (may be changed to “ignore” by
the user).

• If the state before the change is found in the model, the change is valid
and applicable: valid = “true”, and apply = “apply” (may be changed to
“ignore” by the user).

• If the state after the change is found in the model, the change is valid
was already applied: valid = “true”, and apply = “applied” (cannot be
changed by the user).

• In all other cases, in particular when the element on which the change
applies is not found, a conflict is found: valid = “false”, and apply =
“failure” (may be changed to “ignore” by the user).

Users have different choices to solve a conflict: Either they decide to ignore
the change (and possibly modify the resulting model manually afterwards) or to
make some modifications on the model or the change list first so that the change
can be applied. A change list can be applied only if all conflicts are solved, i.e.
all changes are either valid or ignored.

Disregarding technical details, applying valid changes is straightforward.

10

Analysis
model

Design
model

«A2D»

«A2D»

«A2D»

Analysis
model Correspondences Design

model

Generated with Triple Graph Grammars

Figure 8: Left part: old relation between analysis and design; right part: corre-
spondences maintain the relation between analysis and design

Example

The right part of Fig. 7 shows a sample validation result of the previously dis-
cussed change list. Column Apply indicates that one change is already applied,
and one conflict was found; all other changes are ready to apply. A brief descrip-
tion of the conflict is given in column Details. The result is not set until change
list application. Next, the user has to resolve the conflict. This can either be
done by ignoring the invalid change (as shown in the figure), or by adjusting
either the model to match the old value or by adjusting the changelist’s old
value to match the model. In any case, a revalidation is required.

4.4 Applying a change list to a design model

As discussed in Sect. 3.3, the development process requires that changes made
in an analysis model must also be transferred to a corresponding design model.
The actual transfer is very similar to a merge of two versions of the analysis
model, once it is clear how the elements of the analysis model correspond to the
elements of the design model. In the previous section, elements were matched
using their GUIDs—that works because just a different version of the same
model is used. The design model is another model with new GUIDs4, so we
need another strategy to match design elements to the corresponding analysis
elements.

Correspondences

Until now, the relation between the analysis and the design was maintained with
stereotyped UML dependencies, as indicated in the left-hand side of Fig. 8. From
now on, we would like to have the design model independent from the analysis
model; the relation between both models will be maintained in a separate data
structure: in correspondences. We use Triple Graph Grammars (TGG) [16, 17]
to build correspondences and the new design model. This model transformation
and its rules are described in [1].

A correspondence element usually points to an analysis element and a design
element to express the relation between them. Figure 9 shows three correspon-
dences, represented as a chain segment. The first one describes such a relation.
The second one points only to a class from the analysis model meaning that
there is no corresponding design element. The last one expresses that there

4EA creates its own readonly GUIDs for all elements, they cannot be changed.

11

«entity»
Analysis::K_Addressbook Design::Addressbook

«entity»
Analysis::K_Contact

Design::PDAConnector

Figure 9: A correspondence element points to one analysis element and to two
design elements

EA2EA

+ sourceGuid: String
+ targetGuid: String

EA::EANamedElement

+ guid: String
+ name: String

+target

0..1

+source

0..1

Figure 10: The correspondence model

is no corresponding analysis element for the design element. Thus, correspon-
dences store whether an element does or does not have a corresponding element
in the other model.

The correspondence model is shown in Fig. 10; it describes the general struc-
ture of correspondence elements (called EA2EA), that are represented as chain
segments in Fig. 9. The reference source points to an element from the analysis,
the reference target to an element from the design. In addition, the GUIDs of
all elements are stored as a symbolic reference.

Applying the change list

The algorithm for applying a change list is very similar to the one in Sect. 4.3.
But instead of using GUIDs stored in the change list to match elements in the
design model, we need correspondences to look up the design elements.

In addition to the conflicts that are already described in Sect. 4.3, the cor-
respondences need to be considered as well. Therefore, we use two flags for the
status of a change: transfer specifies (changeable by the user) the scheduled
action (similar to apply in Sect. 4.3), correspondence indicates (not changeable)
the update of the correspondences. Furthermore, the valid flag is determined
the same way as before.

The transfer flag can take one of the following values:

transfer: The change will be transferred to the design

transferred: The change is already transferred (the new value already prevails)

transfer not: The change shall not be transferred to the design

ignore: Ignore this change

The status transfer not and ignore seem to be similar but there is an impor-
tant difference between them. If a change has the status transfer not it will not

12

add remove change move

transfer create remove synchronize synchronize

transfer not create remove synchronize synchronize
design only

transferred create remove synchronize synchronize
analysis only design only

Table 2: The correspondence flag depends on the change type (columns) and the
transfer flag (rows)

Figure 11: Transfer changes from a change list to a design model

be transferred to the design, but a correspondence element will be created that
stores this decision (cf. the middle correspondence in Fig. 9). So if the change
list is validated again, this particular change will not be scheduled for transfer
again. But if you have choosen ignore before, the correspondences will be kept
untouched and the particular change will be scheduled for transfer again.

The correspondence flag depends on the transfer flag as shown in table 2; it
can take one of the following values:

create: A new correspondence element needs to be created

remove: The correspondence element needs to be removed

design only: The correspondence element only points to a design element

analysis only: The correspondence element only points to an analysis element

synchronize: The correspondence element does not need to be changed

This time changes from a change list will be transferred to a design model.
Figure 11 shows the same change list as before, the right-hand side shows the
flags for the synchronization. The first four changes are newly created elements,
with different synchronization intentions: The first one is scheduled for transfer,
the second two will not be transferred (a correspondence element only points to
the analysis elements), the next one does already exist in the design (a corre-
spondence element will be created for future synchronizations). The remaining
transfer status are self-explanatory. Note again that there is no analysis model
needed to transfer the changes—only the design model, the correspondences and
the change list itself are required.

4.5 Summary

In this section, we have seen how two different model versions can be compared,
and how differences may be identified and stored in a change list. This change

13

list can then be used to view and to transfer changes to other models—even
without having the two models from which the change list was created available.
Furthermore, a change list in combination with a correspondence model can be
used to synchronize with another kind of model, a design model in our case.
The key to this flexible model synchronization are the different status flags and,
for practice, the flexible tool for viewing and manipulating change lists and
their validation results. The main challenge was the presentation of changes
and conflicts to the user. See [1] for details, and http://paphko.de/ea for our
tool and additional documentation.

5 Implementation

In this section, we discuss the implementation of the tool which supports our
approach. As already mentioned, sd&m uses the CASE tool Enterprise Architect
(EA) for creating and maintaining different models of a process. We decided
to implement our tool as an Eclipse plugin for two reasons: First, many tools
for model transformation and model synchronization are available in Java, in
particular on the Eclipse platform [18, 5, 19]. Second, the EA does not support
Java plugins. However, it provides a Java API that allows connecting to the
EA via its Automation Interface [14].

This section describes the access to EA models from Eclipse via our adapter
as well as the GUI for change lists. In the end, we discuss the performance of
our approach.

5.1 Adapter to access EA models with EMF

The model transformation engine [5] we used for transforming the design model
works natively on models of the Eclipse Modeling Framework (EMF). The EA
provides a Java interface for accessing its models. We extended the EA meta
model from [4], adjusted the EMF code generation templates, and generated
most parts for a transparent adapter. To be more precise, EA models can now
be opened, viewn, and modified from Eclipse as if they were pure EMF models.
Fig. 12 illustrates this architecture. The DLL-JAR bridge includes access to the
Automation Interface. The actual models in Eclipse are instances of our meta
model and use the adapter code to wrap access to all features of the real models
in the EA project.

There are already some adapters for accessing EA models from Java, but they
do not meet our requirements [4, 19]: The process described in Sect. 3 uses EA
specific features (tagged values and the note property [14]) that are not covered
in other adapters. A round trip with those tools may even unintentionally
destroy some of these information. Furthermore, our wrapper models can be
parameterized in different ways. For instance, only specific sub-packages of the
model may be visible or some parts of the model are hidden in order to make
the access more efficient.

Figure 13 shows this adapter in action. The left-hand side shows the EA
with an analysis model. On the left-hand side, the standard tree editor for
EMF models in Eclipse shows the same EA model; Changes on either side will
be visible in the other editor.

14

Design
Example – Goals – Concept – Demo

Design – Demo – Evaluation – Conclusiong

Enterprise
Architect

Metamodel
(eamodel.ecore)

EAModel

DLL ‐ JAR

EMF‐EAP

Adapter
generate

Architect

Access

«instance of»

«instance of»

EA‐Project
(Analysis‐ &

Analysis‐
Model

(analysis ea)

Design‐
Model

(design ea)
Design‐Model)

(analysis.ea) (design.ea)

18

Figure 12: Accessing EA models with EMF

Figure 13: The adapter in action

5.2 User Interface for change list validation

The user interface for the process described in Sect. 3 consists of the EA for
editing the models, and a new GUI for working with change lists. So the adapter
GUI as shown on the right-hand side of Fig. 13 is not needed in the process,
even though it can be used for other purposes5. On the Eclipse side, we have a
graphical user interface for creating, presenting, and applying change lists. This
GUI allows us to select two files which contain subsequent versions of the same
EA model (an analysis model, for example). The change list is then created
fully automatically, and will be saved in a file in the end. Fig. 14 shows the
two different ways a change list can be presented: The left-hand side shows a
table containing several changes, the right-hand side shows a tree in which all
changes are hierarchically organized. Different kinds of filters and sorting as
well as direct editing support are available in these views.

To apply a change list, the target model needs to be selected as shown at
the bottom of Fig. 14. The panel provides functions for change list validation

5For instance, we used it to quickly collect statistics of some models.

15

Figure 14: A change list: presented as a list and as a tree

against the target model. In this example, the target model is located in package
Views.Logical View.Analyse in the file sample3.eamodel. After validation, each
change gets a valid and an apply status, as discussed in Sect. 4.2. The result of
the validation is already shown in Fig. 7 on page 9.

5.3 Performance

One of the main questions of our project was, whether existing or new model
transformation and synchronization technologies would be usable in industrial
practice from a performance point of view. In contrast to toy examples, the
industrial analysis models contained about 11.000 elements6, and the design
model even some more. Table 3 shows the times the different algorithms took
with these models on a fast machine (3 GHz and 3 GB RAM). All times are
divided into initialization time (loading GUIDs and building the object tree) and
the actual time the algorithm needs. The bottleneck is definitely the connection
between our adapter and the EA—in particular, the Automation Interface of
the EA, which is very slow but stable and easy to use. For instance, we reduced
the access to the Automation Interface by caching the model on the java side.
That yields an immense speed-up for our algorithms which perform their work
quite fast as soon as the initialization is completed.

Some of these delays, especially those with user interaction, are too high to
integrate the according operations into the process. But most time-consuming
operations can be performed offline without user interaction. For example, the
change list creation can automatically be triggered every time a new model
version is committed in the versioning system. Moreover, when applying a
change list, the initialization takes most of the time. But once the initialization
is done, the validation, conflict resolution, and change list application take only
a few minutes. Altogether, the processing times can be distributed in a way, that
the concepts can smoothly be integrated into the development process—though
better performance is desirable.

6Elements are packages, classes and interfaces, attributes, associations, methods and tagged
values (EA specific).

16

Operation Time

Change list creation of two versions of the analysis model 66min
(Initialization / model comparison) (2x 26min / 14min)

Applying a change list (1521 changes) to another version 30min
(Initialization / applying the list) (26min / 4min)

Initial TGG Transformation of analysis model 69min
(Initialization / transformation) (27min / 42min)

Table 3: Performance of different operations

6 Conclusion

The main contribution of this paper is a model synchronization concept using
change lists, as well as experiences with industrial sized models. The proposed
process has different scenarios that are time-consuming and error-prone due to
redundant manual work. So we introduced change lists which describe differ-
ences between two model versions. They are created automatically and can
then be used for model difference representation, branch merging, and model
synchronization. A change list is model-independent, i.e. it can be used without
having the models available it was created from.

We have developed an adapter to access models of the CASE tool Enterprise
Architect (EA) from the Eclipse Modeling Framework (EMF). This made it
easy to extend and use tools for model synchronization from academia, which
are often based on EMF, in the industrial setting. The adapter can also be used
for other purposes since it provides a generic access to models from the EA. The
adapter and the tools can be obtained from http://paphko.de/ea/.

Next, we compare our approach to related work, evaluate the performance,
and discuss future work.

6.1 Comparison to other approaches

None of the other approaches fits our needs to store the delta symmetric and
model-independent, and are able to work with EA models. Especially the trans-
fer of changes to another model type is unique, although [6] has a similar ap-
proach. Next, we discuss the differences to our ideas.

The EMF Compare project [10] plans to use three-way merging to identify
conflicts more precisely. The validation of change lists is similar to three-way
merging, because the states borfore the changes can be seen as the common
ancestor. But there are some differences between merging with change lists
and three-way merging: Firstly, three-way merging always needs three models7,
whereas a change list stores all necessary information with no need to have the
other two models (the change list was created from) available. Secondly, change
lists were designed to also transfer changes to other model types. This is not
possible (not even intended) with either two- or three-way merging.

[11] distinguishes three different change types: add, remove and change. A
moved element will be represented as by a delete and created command. But
as a set of commands, this format of differences is not feasible for the use with
change lists.

7For instance versions 1 and 2 and the branch of version 2 in Fig. 1 on page 2, so Version
1 is the common ancestor of the other two versions.

17

The meta model of [12] for representing differences between models is similar
to our approach, unfortunately it works on code and not on models. Experi-
ments with a lot of code showed a bad performance (e.g. creating a change list for
an example model with about 800 classes took—depending on the differences—
between 30 and 50 minutes).

Indeed, [6] covers most of our criteria, but unlike our approach, it cannot
transfer changes selectively. The reason is that they do not maintain depen-
dencies between changes. Furthermore, the visualization of changes is not clear
arranged for big models and does not support filtering.

The rational architect [20] can only compare two versions and merge changes
from the one version into the other. It relies on unique identifiers, so the algo-
rithm for model comparisons is straight forward. Conflicts are highlighted nicely
as a tree or in a small diagram excerpt. But it is not possible to store deltas
for later reuse or to synchronize other models. Furthermore, it does neither
support model-to-model transformation nor model synchronization—however,
it supports synchronization of code with a corresponding UML model.

6.2 Performance

The experiments with industrial models show that there is some need for im-
proving the efficiency of the tools. The bottleneck is the Automation Interface of
the EA, which makes model access easy at the cost of speed. At least we found
a way to integrate our concepts into the process with accaptable delays, for
instance by automatically scheduled change list creation. In addition, we have
some ideas on how to improve the performance—but this is future research. Of
course, it would be much nicer to integrate our tool into EA, but Java is not
supported by EA yet. However, the API is mostly the same, so there will not
be a remarkable increase of performance.

6.3 Furture work

We achieved most of our goals, except for the following. Change lists cannot be
concatenated easily, because the dependencies between changes are consistent
within one change list only. If other changes are added to a change list, they
might conflict with existing changes. So to support change list concatenations,
the resulting change list must be checked for conflicts and the dependencies need
to be re-calculated.

Our work gives also rise to interesting conceptual questions: The tool allows
us to identify differences between an analysis and a design model in an MDD
process. Conceptually, these changes are—or at least document—the design
decisions taken in the project. These changes are currently maintained on a
very low technical level so that they are not of much help for documenting the
design decisions. But we believe that from this low-level information, the design
decisions on a higher level can be generated automatically, and presented to the
developer. This, however, is subject to future research.

Acknowledgement. We would like to thank sd&m for the insight into their pro-

cesses and the support we got from them. Many thanks to Johannes Jakob and

Alexander Königs for their Enterprise Architect meta model [4].

18

References

[1] Könemann, P.: Verbesserung eines modellbasierten Softwareentwick-
lungsprozesses mit Hilfe von Modellsynchronisation. University of Pader-
born, Software Engineering Group, Germany, Master thesis (2007)

[2] Object Management Group: MDA Guide v1.0.1. http://www.omg.org/
cgi-bin/doc?omg/03-06-01 (2003)

[3] Unland, L., George, T.: MDA richtig einsetzen: Klassische und innovative
Rezepte. OBJEKTspektrum 6 (2005) 41–44

[4] Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A
Standard-Compliant Metamodeling Framework with Graph Transforma-
tions. In Rensink, A., Warmer, J., eds.: Model Driven Architecture –
Foundations and Applications: Second European Conference. LNCS 4066,
Springer, (2006) 361–375

[5] Greenyer, J.: A study of model transformation technologies: Reconciling
TGGs with QVT. University of Paderborn, Software Engineering Group,
Germany, Master thesis (2006)

[6] Cicchetti, A., Ruscio, D.D., Pierantonio, A.: A Metamodel Independent
Approach to Difference Representation. Journal of Object Technology 6
(2007) 165–185

[7] SmartQVT http://smartqvt.elibel.tm.fr/ (2008)

[8] Förtsch, S., Westfechtel, B.: Differencing and Merging of Software Di-
agrams – State of the Art and Challenges. In Filipe, J., Helfert, M.,
Shishkov, B., eds.: International Conference on Software and Data Tech-
nologies (ICSOFT), Setubal (Portugal). Volume 2., Institute for Systems
and Technologies for Information, Control and Communication (2007)

[9] Mens, T.: A state-of-the-art survey on software merging. IEEE Transac-
tions on Software Engineering 28 (2002) 449–462

[10] Toulmé, A.: Presentation of EMF compare utility. In: EclipseCon. (2007)

[11] Alanen, M., Porres, I.: Difference and union of models. In Stevens, P.,
Whittle, J., Booch, G., eds.: UML 2003 – The Unified Modeling Language.
LNCS 2863, Springer (2003) 1–17

[12] Xing, Z., Stroulia, E.: UMLDiff: An algorithm for object-oriented de-
sign differencing. In Redmiles, D.F., Ellman, T., Zisman, A., eds.: 20th
IEEE/ACM International Conference on Automated Software Engineering
(ASE 2005), Long Beach, CA, USA, ACM (2005) 54–65

[13] Greenyer, J., Kindler, E.: Reconciling TGGs with QVT. In Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F., eds.: Model Driven Engineering
Languages and Systems, 10th International Conference, MoDELS 2007,
Nashville, USA, September 30 - October 5, 2007, Proceedings. Volume
4735 of Lecture Notes in Computer Science., Springer (2007) 16–30

[14] Sparx Systems Pty Ltd Victoria, Australia: EA User Guide (2008)

19

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://smartqvt.elibel.tm.fr/

[15] Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML
diagrams. In: ESEC/FSE-11: Proceedings of the 9th European software
engineering conference held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering, New York, NY, USA,
ACM Press (2003) 227–236

[16] Schürr, A.: Specification of Graph Translators with Triple Graph Gram-
mars. In Tinhofer, G., ed.: WG’94 20th Int. Workshop on Graph-Theoretic
Concepts in Computer Science. LNCS 903, Springer (1994) 151–163

[17] Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, extensions,
implementations, and application scenarios. Technical Report tr-ri-07-284,
Department of Computer Science, University of Paderborn (2007)

[18] ATLAS Transformation Language http://www.eclipse.org/m2m/atl/
(2008)

[19] openarchitectureware.org http://www.openarchitectureware.org/
(2008)

[20] IBM: Rational Software Architect http://www-306.ibm.com/software/
awdtools/architect/swarchitect/ (2008)

20

http://www.eclipse.org/m2m/atl/
http://www.openarchitectureware.org/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/

	Introduction
	Related work
	The reference process
	The models
	Scenarios: Working with these models
	Improvements

	Concepts
	Change lists
	Creating a change list
	Applying a change list to another model version
	Applying a change list to a design model
	Summary

	Implementation
	Adapter to access EA models with EMF
	User Interface for change list validation
	Performance

	Conclusion
	Comparison to other approaches
	Performance
	Furture work

