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Abstract 
 
This thesis deals with computer-based methodologies for designing articulated mechanisms. An 
articulated mechanism consists of several links (or bars) connected by joints and it gains all of its mobility 
from the joints. This is in contrast to a compliant mechanism which is a different type of mechanism that 
gains some or all of the mobility from the elasticity of its components. 

A truss ground-structure approach is taken for the optimization of such mechanisms. This allows for 
an efficient analysis of the properties of the mechanism and is a suitable basis for an optimization 
procedure that handles topological variations. In this thesis the technique is also extended so as to design 
the shape as well as the topology of the truss using cross-sectional areas and nodal positions as design 
variables. This leads to a technique for simultaneous type and dimensional synthesis of articulated 
mechanisms. 

A critical issue for designing articulated mechanisms is geometric non-linearity in the kinematics. 
This should be considered for the analysis of mechanisms since the displacements of mechanisms are 
intrinsically large. The consideration of geometric non-linearity, however, causes numerical difficulties 
relating to the non-convexity of the potential energy defining the equilibrium equations. It is thus 
essential to implement a numerical method that can – in a consistent way – detect a stable equilibrium 
point; the quality of the equilibrium analysis not only is important for itself but also directly affects the 
result of the associated sensitivity analysis. Another critical issue for mechanism design is the concept of 
mechanical degrees of freedom and this should be also considered for obtaining a proper articulated 
mechanism. The thesis treats this inherently discrete criterion in some detail and various ways of handling 
constraints related to mechanical degrees of freedom are suggested. 

The thesis consists of the following four parts corresponding to the four thesis papers that are the 
main material of the thesis: 

1. Graph-theoretical enumeration [Paper 1] 
2. Gradient-based local optimization [Paper 2] 
3. Branch and bound global optimization [Paper 3] 
4. Path-generation problems [Paper 4] 

In terms of the objective of the articulated mechanism design problems, the first to third papers deal with 
maximization of output displacement, while the fourth paper solves prescribed path generation problems. 
From a mathematical programming point of view, the methods proposed in the first and third papers are 
categorized as deterministic global optimization, while those of the second and fourth papers are 
categorized as gradient-based local optimization. With respect to design variables, only cross-sectional 
areas are used in the first and second papers, whereas both cross-sectional areas and nodal positions are 
simultaneously optimized in the third and fourth papers. 
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Abstrakt (in Danish) 
 
 
Denne afhandling omhandler computer-baserede metoder til at designe mekanismer, der udfører deres 
funktion alene gennem bevægelige led og uden udnyttelse af en eventuel fleksibilitet af elementerne. En 
sådan mekanisme består således af flere ikke-fleksible elementer (stænger) forbundet af led, og 
mekanismen opnår al bevægelse fra dens bevægelige led. I modsætning hertil opnår såkaldte fleksible 
mekanismer en mulig bevægelse fra elasticiteten af dens komponenter. 

I denne afhandling behandles designoptimeringproblemet gennem en beskrivelse af de mulige 
mekanismer via en gitterkonstruktion, som udgør en grundstruktur ud fra hvilken den optimale topologi 
kan findes; grundstrukturen definerer rummet af mulige mekanismer. Teknikken er i afhandlingen udvidet 
til at kunne håndtere såvel form som topologi, idet både elementernes tværsnitsarealer og 
knudepunkternes positioner benyttes som designvariable. Dette resulterer i en metodik, som tillader 
samtidig syntese af type og dimensioner for bevægelige led-mekanismer. 

Et centralt emne for design af bevægelige led-mekanismer er hensyntagen til geometrisk 
ikke-linearitet. Dette er et nødvendigt aspekt af analysen af mekanismer idet forskydningerne under 
bevægelse er store. Den geometriske ikke-linearitet er imidlertid årsag til visse numeriske vanskeligheder 
relateret til ikke-konveksitet af den potentielle energi, der bestemmer ligevægtsligningerne. Derfor er det 
essentielt at implementere en numerisk metode, som sikkert kan detektere en stabil ligevægt; kvaliteten af 
ligevægtsanalysen er ikke kun i sig selv vigtig, men er ligeledes af stor vigtighed for den associerede 
følsomhedsanalyse som er central for optimeringsprocessen. Et andet kritisk koncept for mekanismer er 
antallet af frihedsgrader og en angivelse af dette er et vigtigt element i at opnå en ren ledmekanisme. 
Afhandlingen foreslår en række muligheder for at man i optimeringsproblemet kan tage hensyn til dette 
kriterie, der i sin natur er heltalligt. 

Afhandlingen består af en oversigtsartikel og fire delafhandlinger (artikler), der behandler følgende 
emne: 

1. Grafteorisk karakterisering [Artikel 1] 
2. Gradient-baseret lokal optimering [Artikel 2] 
3. Branch og bound global optimering [Artikel 3] 
4. Kurvegenereringsproblemer [Artikel 4] 

Hvad angår objektfunktionen for mekanismedesignproblemet, omhandler den første til tredje artikel 
maximering af forskydningen ved en udgangsknude, mens den fjerde artikel behandler problemer hvor en 
given kurve er foreskrevet for en udgangsknude. Fra et matematisk programmerings synspunkt, falder 
metoderne foreslået i den første og tredje artikel i kategorien “deterministisk global optimering”, mens 
den anden og fjerde artikel benytter gradient-baseret lokal optimering. Med hensyn til designvariable 
benyttes i den første og anden artikel kun stangtværsnittets arealer, mens dette kombineres med brug af 
knudepunktspositionerne i en samtidig optimering i den tredje og fjerde artikel. 
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1 Introduction

The history of machine mechanism design probably dates back as early as the beginning of our machine
civilization; by mechanism we here mean a mechanical device that can transfer motion and/or force from a
source to an output [22]. The patenting of the Watt steam engine in 1769 is viewed as a pivotal event for
the ensuing Industrial Revolution [36]. Although James Watt [34] is sometimes incorrectly credited as the
inventor of the steam engine, by the time of his birth vast numbers of Newcomen engines* were already
pumping water from deep mines all over Great Britain. James Watt was an artisan and made miniature
models of steam engines for scientists. In 1764 he was given a model of a Newcomen engine to repair and
realized that it was hopelessly inefficient. Shortly afterward he came up with his own revolutionary design
for a steam engine. As the story goes, a good design improves our life and an innovative design may change
the world.

Design activities are creative efforts through which designers pursue higher quality and value of prod-
ucts. Therefore, the activities intrinsically involve a process of iterative improvement and adjustment,
namely optimization. Visiting an automobile museum, it is interesting to see how vehicles evolved through
history reflecting the change of the world affairs such as the oil crisis and the regulation of exhaust gas. And
it is all the more interesting to know how the designers came across the designs. In a sense the history of
our machine civilization is the history of design optimization. The optimization was carried out by individ-
uals or groups within a short period or between generations. For the nature of design activities, it seems
quite natural that computer-based optimization techniques are playing a more and more important role in
industrial design processes.

Let us shift our focus to more modern circumstances in the automobile industry. Figure 1 shows an
outline of an automobile development process from the initial product planning to the final mass production.
The development process requires collaboration among several different divisions: body styling division,
body structure division, power train division, drive train division, etc. There are typically two major design
stages, namely basic design and detailed design. In the basic design, a main layout of components is
determined according to the preceding product planning and conceptualization. For detailed design, each
component is precisely designed by the corresponding design divisions. By the end of this stage, a complete
drawing should be finished for the following experimental prototyping. The loop depicted by L1 indicates
feedback from the experimental results to the detailed design. This loop is normally repeated more than
once until the final design is settled. In the worst case, the basic design should be reviewed in the loop L2. It
is a costly loop that should essentially be precluded by maturing the initial basic design in advance because
the change of the basic design affects every relating division and may eventually delay the whole schedule.
The loop L3 is a rather new design loop for virtual prototyping due to the growth of computer simulation
technologies. Under the pressure to reduce the total development time, the number of loops L1 is reduced
or replaced by the loop L3. This trend seems to get accelerated year by year.

Commercial computer-aided design (CAD) systems such as AutoCAD © and CATIA © have been suc-
cessfully used for so long in the aerospace and automobile industries that almost all mechanical components
are designed using CAD systems. On the other hand, computer-aided engineering (often abbreviated as
CAE) is a broad term describing the use of computer technology to assist engineers in their design activi-
ties. In the narrow sense CAE indicates computer simulation technologies such as finite element analysis
and multibody system analysis. Nowadays, CAD and CAE (also CAM: computer-aided manufacturing) are
integrated into a software suite that merges many different aspects of the product life-cycle management
(PLM) including design, production planning, product testing, visualization and product documentation etc.
Several advanced CAE packages now also provide optimization tools. With reference to the current status
of optimization tools in commercial CAE packages, structural optimization using finite element formulation
is at a much more advanced stage than mechanism optimization using multibody system formulation. This
is because the finite element formulation is suitable for the analytical sensitivity analysis which is essential
for efficient implementation of optimization. In contrast, for multibody system formulations that typically
end up with differential algebraic equations (DAE) [33] it is extremely difficult to generalize the sensitivity
analysis (see, e.g., [32, 61]). In practice one must quite often rely on finite difference sensitivity analysis,
thus repeating the analysis as many times as the number of the design variables for the forward (or back-
ward) difference sensitivities and twice as many times for the central difference sensitivities. Unfortunately

*The first commercially successful steam engines manufactured for more than a hundred years: the engines were rugged and
reliable and worked day and night, but were less than one per cent efficient, used a lot of coal, and consequently were first installed in
coal-mines [35].
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Fig. 1 A automobile development process

multibody system analysis is not a cheap calculation since it involves expensive time integration. It is thus
not surprising that, compared to structural optimization, the optimization of multibody systems is rather
new. There are several inspiring pilot research papers [12, 13, 19, 29, 30, 49] on this challenging area but
the subject seems to be still open and there is much work to be done.

From a practical optimization point of view, one aspect we must keep in mind is that we have a time limit
for designing a product and that computer resources are not unlimited, however faster computers become.
Figure 2(a) shows a relationship between the complexity of analysis models in the horizontal axis and the
number of design variables for optimization in the vertical axis. In general, if we consider more details of
a phenomenon, the model complexity increases, and the analysis takes more time. Details are, of course,
important especially when we are finalizing the design in the last stage. The area A1 indicates the extreme
case. But if the analysis takes so long, we cannot use many design variables. By contrast, the area A2
indicates the other extreme case where the analysis model is very simple. If the model is so simple that
one function evaluation is almost for nothing, we can apply more aggressive optimization techniques such
as global optimization that allows for a more drastic search, possibly to global optimality. However, if it
is too simple to maintain the realistic solution, we have no effective feedback from the calculation. That is
why it is very important to find the decisive factors for obtaining a meaningful solution to the real problem.
In other words, the model should be as simple as possible but not simpler. In that sense, this issue should
be discussed from another dimension, namely effective design improvements; as shown in Figure 2(b) there
must be a trade-off for exploiting the computer resources by properly distributing the computer resources.
The area A3 indicates such an ideal situation.

This thesis specifically deals with computer-based methodologies for designing articulated mechanisms.
An articulated mechanism consists of several links (or bars) connected by joints and gains all the mobility
from its joints. This is in contrast to a compliant mechanism which is a different type of mechanism that
gains some or all of the mobility from the elasticity of its components. Figure 3 shows examples of these
two types of inverter mechanisms. Apart from the apparent difference of shapes, there is another subtle
difference between them, namely the support in the circle of the articulated inverter mechanism. Without
this support the articulated mechanism would collapse, suggesting that for obtaining a proper articulated
mechanism a crucial factor is the number of mechanical degrees of freedom (DOF). This is defined as the
number of independent inputs required to determine the position of all links of the mechanism with respect
to a global coordinate system [22]. It is, however, an insignificant feature for compliant mechanism design
as such mechanisms do not have real joints.

The targeted design phase of work of this thesis is somewhere between conceptualization and basic
design, namely before the design is completely parameterized. The use of optimization techniques in this
stage of mechanism design is very rare. However, it is clear that we have more freedom for designing
mechanisms in the earlier stages than the latter. In this early stage, furthermore, designers must sometimes
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Fig. 2 Trade-off for exploiting computer resources

Fig. 3 Articulated (left) and compliant (right) inverter mechanisms

determine important and decisive design factors which may be difficult to change later such as the basic
layout of mechanism components. But this does not mean that the optimization in the latter stage is less
important. On the contrary, it is also very important and difficult to optimize complicated detailed models
while observing many design constraints (sometimes contradictory between different components) and help
designers determine exact dimensions. Designers or engineers have to be very careful about changing
design in the latter part of the development in order not to interfere with other design requirements. Quite
often it ends up with a very conservative design change that has a surprisingly modest effect.

The central issue in the first step of mechanism design is kinematics. Many basic ideas in kinematics,
which we almost take for granted, originate in the work done by Franz Reuleaux, often called the father of
kinematics [46]. He noticed the importance of the topological aspect of mechanisms and he conceived a
way of categorizing a plethora of mechanism inventions in the 19th century. One of those inventions was
the straight line mechanism shown in Figure 4 [1]. (At that time, it was believed impossible to draw an exact
straight line using a limited number of links. But in 1864 a French engineer Charles-Nicolas Peaucellier
showed that the mechanism could transform the circular motion at the middle joint to an exact straight-line
motion at the right end joint. In the fourth thesis paper this problem is treated as an example but in slightly
different proportion.) Reuleaux was also the first to attempt to establish a mathematical framework on
kinematic synthesis of mechanism design. Before Reuleaux, mechanism design was something engineers
did by trial and error, but it was not a subject that scientists could talk about. His work was influential in

3



Fig. 4 Peaucellier straight-line mechanism (credit line: Jon Reis/www.jonreis.com)

those days and was carried on by his students and successors.
Nowadays, focusing on kinematic synthesis, a standard and systematic mechanism design procedure is

divided into the following three steps, see, e.g., [21, 22]. Firstly, an objective is set for the mechanism to
be designed. The objective may, for example, be the maximization of output displacement or generation
of a prescribed output path for a given input. The first step may correspond to the conceptualization in
Figure 1. Secondly, mechanism properties such as the number of bars and joints and their connections are
determined. This step is called type synthesis and is mainly concerned with topological questions. The
type synthesis should be done between the conceptualization and the basic design stages. An elaborate type
synthesis technique based on number synthesis is developed in [59, 60]. In that approach much effort is
devoted to generating a complete list of kinematic chains by eliminating isomorphic graphs (a significant
unsolved problem in number synthesis). Finally, the exact dimensions of all the mechanical components are
determined. This step is called dimensional synthesis and is mostly related to geometrical questions. The
dimensional synthesis typically starts in the latter part of the basic design and is repeated until the detailed
design is completed. The above mentioned multibody-system-based optimization should play a key role in
this step. Reviews on dimensional synthesis using optimization techniques are found in [28, 45]. Although
type and dimensional syntheses are normally separated in the engineering context, they are actually so
closely connected that they should preferably be treated at the same time.

The optimization of geometry and topology of a structural layout has a great impact on the performance
of a structure. In the structural optimization society, a methodology called topology optimization has been
attracting many researchers since it was shown that this can be handled numerically by a material distribu-
tion method [10]; this is a generalization of the ground-structure approach for truss topology optimization
as pioneered by, e.g., Dorn and Gomory [18], while the layout theory for continua as originally developed
by Michell [44], and extended by, e.g., Prager and Rozvany [52]. It goes without saying that the significant
feature of the technology is that, unlike other shape and sizing optimization methods, the method can opti-
mize simultaneously both the topology and geometry of a structural layout. The topology optimization has
been extended and developed into many directions. One of the most successful areas is design of compliant
mechanisms. Research on design of compliant mechanisms [3, 14, 50, 55] using topology optimization
techniques in continuum structures suggests that it should also be possible to obtain results for articulated
mechanisms by applying such techniques [25, 54] and that the techniques have good potential for devel-
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oping into a systematic method that can design articulated mechanisms combining type and dimensional
syntheses.

A common critical factor for designing both compliant and articulated mechanisms is geometric non-
linearity. This should be considered for the analysis of mechanisms since the displacements of mechanisms
are intrinsically large. The consideration of geometric non-linearity, however, causes numerical difficulties
relating to the non-convexity of the equilibrium equations. It is here essential to implement a numerical
method that can consistently detect a stable equilibrium point because the quality of the equilibrium analysis
directly affects the result of the associated sensitivity analysis. Another critical factor specific to articulated
mechanisms is the number of mechanical degrees of freedom as is already argued above.

This introductory note to the four thesis papers is organized as follows. Section 2 presents a collection
of theoretical aspects included in the accompanying thesis papers. The section consists of seven different
subjects. Among them, the first five subjects are commonly or repeatedly used throughout the thesis papers.
The sixth and seventh subjects are specific to the topics in [Paper 3] and [Paper 4], respectively. Section 3
is intended to give a perspective of the whole research work by summarizing the main results of the thesis
papers. The section contains four topics that are presented in (almost) chronological order in which the
research work developed. In order to bridge the gaps between the independent topics, some additional
results and further discussions are included. Section 4, finally, contains conclusions and possible directions
for future research in this area.

As regards the notations, I must beg your forgiveness and patience in advance about the discrepancies
between the thesis papers. In order to keep the overall coherence within this introductory note, some
notation used here might be somewhat different from the thesis papers.

2 Theoretical aspects

This section presents the following seven different theoretical subjects that constitute the basis for the mech-
anism design methods proposed in the thesis papers:

1. Truss representation

2. Ground-structure approach

3. Equilibrium analysis

4. Stability analysis

5. Degree of freedom analysis

6. Branch and bound algorithm

7. Configuration space

The first to fifth subjects are all common throughout the thesis papers. The sixth and seventh subjects
are specific to the topics in [Paper 3] and [Paper 4], respectively. The first two subjects constitute a basic
approach to the design of articulated mechanisms within the framework of truss topology design. The third
to fifth subjects deal with three different types of analysis problems that should be considered for obtaining
proper mechanism designs.

2.1 Truss representation

Kinematic diagrams (or skeleton diagrams) are the schematic drawings commonly used for conventional
mechanism designs. They are especially helpful for the understanding of complicated mechanism topolo-
gies [22]. It seems natural to represent kinematic diagrams by truss elements and pin joints as one obtains
the following advantages:

• One can directly interpret the truss topology from the kinematic diagram.

• It is possible to accommodate extremely large displacement considering geometric non-linearity with-
out any element distortion problems.

5
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• With this interpretation one can formulate the optimization problems in terms of the so-called ground-
structure approach, discussed in Section 2.2, for truss topology design [11].

Throughout the thesis, geometric non-linearity is considered using the Green-Lagrange strain measure. This
is essential for the analysis of articulated mechanisms since the displacements of an articulated mechanism
are intrinsically large. The geometric non-linear analysis problem is discussed in Section 2.3.

Normally articulated mechanisms are modeled by rigid bars and revolute joints. Nevertheless, a truss
representation is used for articulated mechanisms in the thesis papers. But, by introducing the degree of
freedom constraint discussed in Section 2.5, the articulated mechanisms are not supposed to rely on the
elasticity in the final designs. In other words, the function of the articulated mechanisms does not change
after all the truss elements are replaced by rigid bars. This is the critical difference between articulated and
compliant mechanisms.

2.2 Ground-structure approach

In order to formulate the mechanism design problem, the so-called ground-structure approach is adopted.
The idea of the truss ground-structure approach is: first, give all potential elements in the design domain;
then, eliminate unnecessary elements according to the requirements (or, equivalently, choose the necessary
elements). The ground-structure approach was originally introduced in 1960s [18, 23]. Since then, it has
been applied to numerous truss topology design problems, see, e.g., [2, 5, 7, 8, 9].

Figure 5 shows a truss ground-structure for a benchmark example which is intensively used for the
development of the mechanism design methods throughout the thesis papers. The truss ground-structure
contains possible nodes and connections, boundary conditions, external loads, and dimensions. The ground-
structure consists of N = 12 nodes and n = 66 potential bars. The design domain is depicted by the grey unit
square area. The external load denoted by p is applied at node 1 and 3 simultaneously. The nodes at which
the external load is applied are called the input ports. The node at which the desired output should take place
is named the output port; in this example it corresponds to node 11. The direction of the desired output is
denoted by c. The springs and forces at the input ports model strain based actuators (e.g. shape memory
alloys or piezoelectric devices) and the output spring simulates resistance of movement. This approach was
originally introduced in [55].

The benchmark mechanism design problem is the maximization of the output displacement c�u for the
given input forces p by picking eight bars out of the n = 66 possible connections, so that the resulting
mechanism has exactly one mechanical degree of freedom (discussed later in Section 2.5) and is symmetric
with respect to the horizontal line between nodes 2 and 11. The displacement vector u is a solution to the
non-linear equilibrium equations discussed in Section 2.3. For the sake of some insight into this mechanism
design problem, six different candidate mechanisms with eight bars and one mechanical degree of freedom
are displayed in Figure 6. The curved lines in Figure 6(f) represent overlapping bars.
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(a) Unstable (0.118) (b) Stable (0.118) (c) Stable (0.118)

(d) Stable (0.791) (e) Unstable (0.820 or −0.05) (f) Stable (0.778)

Fig. 6 Some candidate mechanism designs for the benchmark example

A very important concept in the mechanism design problem is elastic stability. In the benchmark exam-
ple instability can be characterized by buckling of sub-structures. This is a global phenomenon in contrast
to the local Euler buckling of long thin bars. See, for example, the two left-most vertical bars in Figure 6(a).
If a small force is applied as indicated in the ground-structure, these two bars will be compressed. In this
situation their common node, labeled 2 in Figure 5, will initially not move. As the applied force is in-
creased, the node will suddenly move (or snap) either to the right or left; the direction is unpredictable since
it depends on imperfections in the design.

In Figure 6 there are indications of “stable” or “unstable” for each mechanism together with its potential
output displacement. The mechanism shown in Figure 6(e) is the other unstable mechanism since the two
right-most vertical bars must buckle before movement of the output port is possible; in this case, the output
displacement becomes either positive (0.820) or negative (−0.05). This situation is undesirable because we
want the designed mechanism to function with certainty. The condition on the truss stability can be modeled
by a matrix inequality discussed in Section 2.4.

Even though six different topologies with completely different behavior under loading are depicted in
Figure 6, the connectivity of the mechanisms shown in Figure 6(a) - 6(c) and Figure 6(d) - 6(f) respectively
are very similar. In fact, if the nodal positions of the three active nodes where no springs are attached are
allowed to change, the topologies in Figure 6(a) - 6(c) (and 6(d) - 6(f) respectively) can be made exactly the
same (they are topologically equivalent). This feature is fully utilized in the graph-theoretical enumeration
summarized in Section 3.1 that enables us to work out all possible symmetric mechanisms consisting of
eight bars with one degree of freedom.
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2.3 Equilibrium analysis

For the analysis of mechanisms, geometric non-linearity should be taken into account since the displace-
ments of mechanisms are intrinsically large. When considering geometric non-linearity, however, it be-
comes a non-trivial task to obtain a reasonable equilibrium point due to the non-convexity of the equilibrium
equations. It is essential to implement a numerical method that can consistently detect a stable equilibrium
point because the quality of the equilibrium analysis directly affects the result of the associated sensitivity
analysis.

We begin with an energy form in order to obtain a stable equilibrium point. In the articulated mechanism
design problems, the truss topology is expressed by a binary truss connectivity vector which is defined as
a collection of normalized cross-sectional areas a ∈ Bn, where n is the number of potential bars in the
ground-structure. (In this thesis Bn denotes the set of n-dimensional binary vectors, namely {0, 1}n.) The
nodal positions are denoted by x ∈ R2N , where N is the number of nodes (frictionless joints) in the ground-
structure. Furthermore, the state variables in the model are collected in the vector u ∈ Rd containing the
nodal displacements of the design under the external load. The dimension of the displacement vector d
is the number of degrees of freedom (in the finite element method sense) of the structure which for a two-
dimensional truss d = 2N−df , where df is the number of prescribed fixed displacements. The total potential
energy Π(a, u, x) of a truss subjected to the external static nodal force vector p ∈ Rd is given by

Π(a, u, x) =
1
2

u�K0u +
1
2

n∑
j=1

E jl j(x)a jε j(u, x)2 − p�u, (1)

where K0 ∈ Rd×d is the constant stiffness matrix due to linear springs attached to some of the nodes in the
truss, E j > 0 is the Young’s modulus in the j-th bar, l j(x) is the undeformed length, and ε j(u, x) is the strain
(defined below) of the j-th bar, respectively.

For a given topology a ∈ Bn and geometry x ∈ R2N , the displacement vector u ∈ Rd should be a
minimizer of the potential energy. In order to find a stable equilibrium, we need to find a local minimizer
or at least a stationary point of Π(a, u, x) such that the Hessian of the potential energy with respect to u
is positive semidefinite. The problem of finding such a u is called the analysis problem. The first order
optimality conditions for this problem are given in the residual form of equilibrium equations:

∇uΠ(a, u, x) = 0, (2)

while the second order conditions, in the following called the stability conditions, are given by

∇2
uuΠ(a, u, x) � 0. (3)

Note that Π(a, u, x) in general is a non-convex functional which may have no such stationary points. Alter-
natively, there may exist several displacement vectors u satisfying both (2) and (3) for given (a, x)�.

In order to consider geometric non-linearity, the following assumptions are made in the mechanical
modeling:

1. Large displacements are allowed but the strains are assumed to be small.

2. The strain is given by the Green-Lagrange strain measure.

3. The material is linearly elastic and the material properties remain constant.

The Green-Lagrange strain measure ε j(u, x) is defined as

ε j(u, x) =
l̂2j (u, x) − l2j (x)

2l2j (x)
, (4)

where l̂ j(u, x) is the deformed length of the j-th bar (see, e.g., [17]). In order to rewrite this strain measure,
we first introduce a symmetric positive semidefinite matrix Bj ∈ R2N×2N which is defined such that the
undeformed length of the j-th bar is given by l j(x) = (x�Bjx)1/2. The non-zero part of Bj is given by (in
local coordinates corresponding to the position of the end nodes of the considered bar):

Bj =


1 0 −1 0
0 1 0 −1
−1 0 1 0

0 −1 0 1

 .
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The matrix B̃ j is the symmetric positive semidefinite d × d matrix that remains after removing the rows and
columns corresponding to the fixed degrees of freedom from Bj. The matrix B̂ j is the d × 2N matrix which
remains after removing the rows corresponding to the fixed degrees of freedom from Bj

The Green-Lagrange strain in the j-th bar may now be reformulated as

ε j(u, x) =
1

l2j (x)
b�j (x)u +

1

2l2j (x)
u�B̃ ju, (5)

where bj(x) = B̂ jx ∈ Rd. Then the vector bj(x)/l j(x) contains the direction cosines of the j-th bar,
b�j (x)u/l j(x) is the linearized elongation of the bar, and b�j (x)u/l2j (x) is the linear (small deformation) strain.
The potential energy can, using the Green-Lagrange strain (5), be written as

Π(a, u, x) =
1
2

u� (K(a, x) +G(a, u, x) + H(a, u, x)) u − p�u,

where the positive semidefinite matrix K(a, x) ∈ Rd×d is given by

K(a, x) = K0 +

n∑
j=1

a jE j

l3j (x)
b j(x)b�j (x)

and the matrix G(a, u, x) ∈ Rd×d is given by

G(a, u, x) =
n∑

j=1

a jE j

l3j (x)
b�j (x)uB̃ j =

n∑
j=1

s j(x)

l j(x)
B̃ j.

We denote the small deformation axial forces by s j(x) = a jE jb�j (x)u/l2j (x). The higher order terms are

collected in the positive semidefinite matrix H(a, u, x) ∈ Rd×d given by

H(a, u, x) =
1
4

n∑
j=1

a jE j

l3j (x)
(B̃ ju)(B̃ ju)�.

The matrices K(a, x) and G(a, u, x) are normally called the linear stiffness matrix and the geometry matrix of
the truss, respectively. These matrices play a key role in the stability analysis described in the next section.

2.4 Stability analysis

Of major importance in mechanism design, as well as in traditional truss topology design in linear elasticity,
is the possibility of obtaining an optimal design which is unstable. For structures, such as bridges, insuffi-
cient elastic stability may cause the structure to fail under loading even if the stresses in the material are not
significant. For mechanisms, insufficient elastic stability may hinder the mechanism to function properly.
For example, consider the mechanism in Figure 6(e). This mechanism cannot move unless buckling occurs.
For this mechanism, the direction of movement is also uncertain and determined by imperfections in the
design.

Since we want the optimal design to be able to perform its task repeatedly and with certainty, the elastic
stability of the mechanism must be assured. To meet this requirement, we include constraints on the global
stability of the mechanism in the problem formulation. The derivation of the stability conditions in this
section follows, to a large extent, the derivations in [6, 42].

Intuitively, a structure or mechanism is stable for small external loads, but as the force increases and
reaches a certain limit, the mechanism may become unstable. The problem of truss stability is to find a
critical load for which the structure becomes unstable. A commonly used model for the stability analysis of
trusses is the linear buckling model (see, e.g., [4]), which is based on the following assumptions.

1. The displacements depend linearly on the applied load when it is less than the critical buckling load.

2. The vector of these linear displacements is orthogonal to the vector of buckling displacements.

3. The bar axial forces s j = a jE jb�j (x)u/l2j (x) remain constant during the deformation caused by buck-
ling.
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Assuming that the fourth order terms in Π(a, u, x) are negligible for small loads we wish to determine the
largest multiplier λ such that the parameterized potential energy

Π(a, u, x, λ) =
1
2

u�(K(a, x) +G(a, u, x))u − λp�u

has a stationary point with a positive semidefinite Hessian. Using the third part of the linear buckling
assumptions, the equilibrium equations associated with Π(a, u, x, λ) become

(K(a, x) +G(a, u, x))u = λp. (6)

The value on λ for which the mechanism becomes unstable is called the critical buckling parameter and the
corresponding load λp is called the critical buckling load. For small loads, the non-linear term G(a, u, x)u
is assumed to be negligible and in this situation u solves

K(a, x)u = p.

Denote this solution by u0 and replace G(a, u, x) by G(a, u0, x) and the equilibrium equations (6) by the
linearization

(K(a, x) + λG(a, u0, x))u = λp.

This equation is solvable whenever

det(K(a, x) + λG(a, u0, x)) � 0.

Furthermore, it is required that the Hessian of the potential energy is positive semidefinite, i.e.

K(a, x) + λG(a, u0, x) � 0.

The largest such λ is the minimal positive eigenvalue λ̄ of the generalized eigenvalue problem

(K(a, x) + λG(a, u0, x))z = 0.

Since the external load p is given, 0 < λ̄ < 1 means that the mechanism is unstable under the given load
p, while λ̄ ≥ 1 indicate stability of the mechanism. Since the linear stiffness matrix K(a, x) is positive
semi-definite, the condition on the truss stability can be stated as the matrix inequality

K(a, x) +G(a, u0, x) � 0 (7)

where u0 is a solution to the small-deformation equilibrium equations

K(a, x)u0 = p. (8)

Since the stability conditions (7) and (8) are intended for stiff structures rather than mechanisms, the dis-
placement vector u0 that solves (8) may violate the small displacement assumptions. Therefore, the external
load p in the small-deformation equilibrium equations (8) is replaced by γp, where γ is a given scalar sat-
isfying 0 < γ < 1. In the numerical examples, γ = 0.5 is used.

The global stability conditions (7) guarantee that the mechanism is stable in the initial configuration,
while the conditions (3) guarantee that the mechanism is stable in the final configuration. These conditions,
however, do not guarantee that the mechanism is stable for the entire load path; it is typically checked that
this holds for the entire path after performing optimization.

2.5 Degree of freedom analysis

When designing a mechanism, the first thing that one should pay attention to is the mechanical degrees
of freedom of the mechanical linkage. It should be noted that this is a different notion from the degrees
of freedom in the sense of finite element analysis. The mechanical degrees of freedom is defined as the
number of independent inputs required to determine the position of all links of the mechanism with respect
to a global coordinate system [22]. The investigation of the mechanical degrees of freedom is called a
degree of freedom analysis.
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Fig. 7 Connectivity circle for the benchmark example (β = 0).

There are two standard counting relationships that can be applied to investigate this number, namely
Maxwell’s rule and the mobility criterion (or Grübler equation). The former attributes degrees of freedom
to nodal points and views links as constraints. On the other hand, the latter attributes degrees of freedom
to mechanical components and views joints as constraints. They are seemingly different but essentially the
same; they consider the same property but from a different view point. The former is popular in structural
analysis, while the latter is preferred in the multibody system analysis.

In the thesis Maxwell’s rule is chosen since the truss representation is adopted. James Clerk Maxwell
originally considered the mechanical performance of structures composed of straight bars connected at their
ends by frictionless joints. He concluded that a simply stiff (statically determinate) structure should have
(3#nodes − 6) bars in the three-dimensional space [43]. Maxwell’s rule has been enhanced to cover so-
called tensegrity structures [15] (already conjectured by Maxwell) and has been converted into a computer
friendly matrix form [51]. Also, it has been extended to treat symmetry to a full extent based on group
theory [24].

The rest of this section presents a degree of freedom analysis based on Maxwell’s rule. It is independent
of the geometry of the mechanism and correctly accounts for the possibility that some bars are overlapping.
Assuming for now that a mechanism has no redundant elements, the number of mechanical degrees of
freedom dm of the mechanism can be calculated by the following equation based on the two-dimensional
version of Maxwell’s rule:

dm = 2#nodes − #bars − #supports. (9)

The formula (9) is used in this thesis to define necessary conditions on the topology variables so that the
mechanism has, for instance, exactly one degree of freedom. In order to count the number of active nodes,
additional binary variables, called node activity variables, vk ∈ {0, 1} for k = 1, . . . ,N are introduced. The
number of active nodes, i.e. nodes for which vk = 1, can easily be determined by summing the node activity
variables.

Since the ground-structure allows connections (bars) between each pair of nodes, it intrinsically con-
tains redundant bars. Therefore, the number of bars cannot be counted in a straightforward way in the
mechanical degree of freedom analysis. The counting method applied here works by detecting the number
of independent bars m(a) in the ground-structure. The number of independent bars is given by the rank of
the so-called linear equilibrium matrix C(a, x) ∈ R2N×n [15]. The j-th column in the matrix C is given by

C j(a, x) = a jBjx/l j(x), j = 1, . . . , n.

Due to the regularity of the nodal positions in the original ground-structure, the above method fails to
detect overlapping elements as independent. This is unfortunate since overlapping bars are often useful for
large displacement mechanisms, as in Figure 6(f). In order to distinguish overlapping bars as independent,
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the nodal positions are rearranged within the degree of freedom analysis. One approach is to create what is
called a connectivity circle, shown in Figure 7 for the benchmark example, by relocating all the nodes onto
a unit circle with the positions

(x̃2k−1, x̃2k) = (cos θk, sin θk),

where the angles θk are given by

θk =
2π
N

(
(k − 1) + β2−2k

)
, k = 1, . . . ,N.

The coefficient β is an optional parameter for avoiding parallel edges in the circle (see Appendix in [Paper 1]
for further details). In the numerical examples we use β = 1. The number of independent bars is then defined
as

m(a) = rank
(
C(a, x̃)

)
.

Finally, the degree of freedom analysis writes

dm(a, v) = 2
N∑

k=1

vk − m(a) − s(v), (10)

where s(v) is the number of active supports, namely the supports which support active nodes. Especially
when the boundary condition itself is not a main concern, the number is often treated as s(v) = 3 regardless
of the node activities; the number ‘3’ indicates the case where the mechanism is supported in a statically
determinate manner.

When only cross-sectional areas are used as design variables, the node activity variables are expressed
as functions vk(a) which give vk(a) = 1 if

∑
j∈Ak

a j ≥ 1 otherwise vk(a) = 0, where Ak is an index set of the
bars incident to the k-th node. In this case the degree of freedom analysis(10) is rewritten as

dm(a) = 2
N∑

k=1

vk(a) − m(a) − s(v(a)). (11)

Due to the definition of the m(a) and the sum of the node activity variables that appear in the analysis
(10) and (11), the number of mechanical degrees of freedom is only well-defined for (a, v)� ∈ Bn × BN . A
differentiable relaxation of the DOF equation (11) is essential for the gradient-based optimization summa-
rized in Section 3.2 (see also [Paper 2] for the detail).

2.6 Branch and bound algorithm

This section is intended to give a short introduction to a branch and bound algorithm for those who are not
familiar with the terms such as branching, bounding and convex relaxations since the algorithm has not
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Fig. 8 Minimization of a non-convex univariate function
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Fig. 9 Illustrative example and its convex relaxation

been so popular yet in the structural optimization society. For further information about the algorithm and
deterministic global optimization, see, e.g., [37, 38].

The branch and bound algorithm is, in a word, a divide-and-conquer type implicit enumeration scheme.
In order to give a big picture of the algorithm, a minimization problem of a non-convex univariate function
is shown in Figure 8. First of all, we need a convex relaxation R to the original problem P. The convex
relaxation R, depicted by the dashed line, can be easily solved using gradient-based optimization since it is
convex and smooth. The solution to the relaxation gives the lower bound (or underestimation) to the original
problem P. On the other hand, the upper bound is given by any feasible solutions. Let us assume that a
feasible solution U is found by a gradient-based local search from an arbitrarily chosen initial point x0.
Secondly we divide, as shown in Figure 8(b), its domain [xmin, xmax] into two sections by the mean value,
i.e. (xmin + xmax)/2. This operation is called a bisection. The divided domains create two sub-problems R1
and R2 with typically better convex approximations. Solutions to the left and right relaxations give their
lower bounds L1 and L2, respectively. But we have already known a feasible solution U that is better than
the lower bound of the left sub-problem L1. We have no reason to keep this domain for further conquering.
In the search tree, the node is said to be pruned by bound. We continue to subdivide the active node until
convergence.

In reality it is very rare to deal with a univariate function. The next example illustrates a more realistic
branch and bound method that contains the very essence of the method applied to the mechanism design
problem in [Paper 3]. The illustrative problem shown in Figure 9(a) is stated as

z = max{3x + 2y : (x, y) ∈ S}, (12)

where S = {(x, y) : xy ≤ 4, x2 ≤ 3y} ∩ B; B = [0, 6] × [0, 4].
Branch and bound itself is not a formal algorithmic specification, so the following issues must be clearly

spelled out for implementation:

1. Relaxation technique

2. Branching strategy

3. Node selection rule

Firstly, as to the relaxation technique for the problem at hand:

• Leave linear and convex non-linear constraints.

• Reduce the order of non-linearity by introducing additional variables.
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Fig. 10 Step-by-step branch and bound operations

• Replace the bilinear term xy by its convex and concave envelopes:

xy ≥ maximize

〈
xmaxy + xymax − xmaxymax

xminy + xymin − xminymin

〉
,

xy ≤ minimize

〈
xmaxy + xymin − xmaxymin

xminy + xymax − xminymax

〉
.

By applying the above relaxation technique, we obtain the following convex relaxation:

zU = max{3x + 2y : (x, y) ∈ R}, (13)

where R = {(x, y) : 4x + 6y ≤ 28, x2 ≤ 3y} ∩ B; B = [0, 6] × [0, 4]. The convex relaxation is shown in
Figure 9(b). This relaxation technique is frequently used in [Paper 3] since most of non-linear terms can
be reduced into bilinear terms by introducing auxiliary variables. Secondly, for the branching strategy we
adopt a bisection scheme on the largest interval. Finally, we take a best-bound-first node selection rule for
the problem (12).

Figure 10 illustrates the branch and bound operations step by step. In the first step, by solving the
relaxation, the upper bound zU = 14.12 is obtained, while the lower bound is set as zL = −∞ since no
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feasible solution is found yet. The global upper and lower bounds are always stated at the upper and lower
right corners of the root node, respectively. In the second step, we take the domain x ∈ [0, 6] since it has
the largest interval, and branch the domain into two sub-domains x ∈ [0, 3] and x ∈ [3, 6]. The divided
sub-domains produce two active nodes in the branch and bound tree (or search tree). In the left sub-domain
x ∈ [0, 3] the quality of the relaxation is improved by the tighter bounds, while in the right sub-domain
x ∈ [3, 6] there is no feasible region. The upper and lower bounds of the left sub-domain are given by
(zU

1 , z
L
1 ) = (11.49,−∞), while zU

2 = −∞ for the right sub-domain since S2 is empty. We have no reason to
keep the empty region, so it is immediately pruned by infeasibility in the third step. Also, in this step the
global upper bound zU is updated from 14.12 to 11.49 according to

zU = minimize
i∈I

zU
i , (14)

zL = maximize
i∈I

zL
i , (15)

where I denotes the index set for the active nodes in the branch and bound tree. The global lower bound
stays in the same value zL = −∞ since no feasible solution is found so far. In the fourth step, we take the
domain y ∈ [0, 4] and divide the domain by the mean value into two sub-domains y ∈ [0, 2] and y ∈ [2, 4].
Similarly, we evaluate the upper and lower bounds of the two sub-problems corresponding to the regions
S11 and S12. In the sub-problem for S11, we obtain (zU

11, z
L
11) = (10.53,−∞), while (zU

12, z
L
12) = (11, 11) in the

sub-problem for S12. Note that the solution zU
12 is also a feasible solution to the original problem. In the fifth

step, we update the global upper and lower bounds as (zU , zL) = (11, 11). In the final step, the node of S11

is pruned by bound since the local upper bound zU
12 = 10.53 is governed by the global lower bound zL = 11.

Also, the node of S12 is pruned by optimality since the local upper and lower bounds have collapsed as
zU

12 = zL
12 = 11.

2.7 Configuration space

For the analysis part of the path-generating mechanism design problem in [Paper 4], we have to deal with
a fundamental problem pertaining to the geometry of the configuration space [20, 31]. Let us consider the
two-bar link mechanism shown in Figure 11 (see also Appendix 2 in [Paper 4]). Node 3 is connected to
an invisible link driven by a motor that is rotating clockwise at a constant angular velocity ω around the
center of the grey circle of radius r = 0.0999. As the two-bar link cannot be completely stretched out during
the motion, the mechanism should stay in the elbow-up configuration while node 3 is moving on the input
circle.

Throughout the path-generation problem we only analyze the kinematics of the mechanism and we do
not take account of dynamics at all; also, there is no time integration for the calculation of the displacements.
The displaced mechanism configuration at each step is obtained by solving static (but geometric non-linear)
equilibrium equations for the given input point. This is analogous to the standard kinematic analysis [48]
in which constraint equations are solved to determine the mechanism configuration.

Here, in order to simulate the movement by quasi-static analysis, namely kinematic analysis (see, e.g.,
[48]), we divide the grey input circle into 9 equally sized segments, making 9 input points; the equally
distributed input points then correspond to equally discretized time steps.

We first apply an ordinary Newton-Raphson method to the analysis. In the analysis, the Young’s mod-
ulus is set as E = 10 and all the cross-sectional areas are set as ai = 1 for i = 1, 2. The result is shown in
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Fig. 11 Two-bar mechanism problem
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Fig. 12 Path-following analysis of a two-bar mechanism
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Fig. 13 Two stable points in total potential field

Figure 12(a), in which the corresponding input-output steps are numbered parallel in italics. This solution
is wrong because the analysis has failed to keep the elbow-up configuration and a configuration transition
occurred in the sixth step.

As an alternative, the Levenberg-Marquardt method [47] can also be applied to the same analysis. This
method requires an expression for the total potential energy (1), in which the geometric non-linearity is
considered using the Green-Lagrange strain measure (4). The basic computational steps of the Levenberg-
Marquardt method are then as follows for fixed design (a, x)�:

Step 1: solve
(∇uuΠ(a, u, x) + µI

)
∆u = −∇uΠ(a, u, x) for ∆u (µ > 0)

Step 2: update µ

Step 3: if u + ∆u is acceptable, then u := u + ∆u

Here Step 1 expresses that the Levenberg-Marquardt step ∆u is a linear combination of the Newton step
and the steepest descent step. The update scheme for µ in Step 2 is a heuristic: increase µ if ∇uu(u) is
not significantly positive definite, otherwise decrease µ. (See Appendix 1 in [Paper 4] for the detail of the
algorithm.) Finally, Step 3 ensures that the Levenberg-Marquardt iterations always decrease the potential
function. The combination of these three steps give the Levenberg-Marquardt method the nature of a trust
region method as known in mathematical programming [16]. Figure 12(b) shows the result for the two-bar
mechanism; the corresponding input-output steps are also here numbered parallel in italics. The analysis is
successful since it has kept the elbow-up configuration in all the steps.

In order to investigate why the Newton-Raphson method fails in the analysis, we need to check the
iterations in the sixth step. Figure 13 plots the potential field in the sixth step and all the iterations of both
the Newton-Raphson method and the Levenberg-Marquardt method. It is notable that the Newton-Raphson
method takes the first step across the far basin and converges to the bottom of this basin. In contrast, the
Levenberg-Marquardt method takes a very conservative step in the steepest descent direction (due to the
term µI in Step 1) and converges to the bottom of the near basin; this corresponds to the physically realistic
configuration.
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3 Summary of main results

The thesis consists of the following four papers presented in the order in which the research work developed.
The purpose of this section is to give a perspective of the whole research work by summarizing the main
results of these papers. In order to bridge the gaps between the independent papers, some additional results
and further discussions are also included. As regards the notations, I must beg your forgiveness and patience
in advance about the discrepancies between the papers. In order to keep the overall coherence within the
section, some notation used here might be somewhat different from the original papers.

Throughout the papers, geometric non-linearity is considered using the Green-Lagrange strain measure,
which is essential for the analysis of articulated mechanisms. In terms of the objective of the articulated
mechanism design problems, the first to third papers deal with maximization of output displacement, while
the fourth paper solves path-generating problems. From the mathematical programming point of view, the
methods proposed in the first and third papers are categorized as deterministic global optimization, while
those of the second and fourth papers as gradient-based local optimization. With respect to design variables,
only cross-sectional areas are used in the first and second papers, whereas both cross-sectional areas and
nodal positions are simultaneously optimized in the third and fourth papers.

3.1 Graph-theoretical enumeration [Paper 1]

It is convenient to work with a benchmark problem for which a solution is known when one develops a
new optimization method. This paper is an attempt to provide such a benchmark problem and its global
optimum solution. This will be useful for further developments of more general and systematic methods
in the following research. The benchmark problem has already been loosely introduced in Section 2.2
together with the ground-structure shown in Figure 5. The ground-structure contains all possible nodes and
connections, as well as all necessary boundary conditions, load cases and other related parameters. The
benchmark mechanism design problem is, here stated again, the maximization of the output displacement
c�u(a) for the given input forces p by picking Vn truss elements out of the n possible connections, so that
the resulting mechanism has dm(a) = 1 degree of freedom (DOF) when supported in a statically determinate
manner, and that it is symmetric with respect to the horizontal line between nodes 2 and 11. This problem
can be formulated as the following binary integer optimization problem for the truss connectivity vector a:

maximize c�u(a)
subject to dm(a) = 1,

e�a = Vn,
a ∈ {0, 1}n,
symmetric,

(16)

where the displacement vector u(a) is a solution to the equation (2) that expresses the residual version of the
equilibrium equations. This style is often called a nested formulation. Geometric non-linearity should be
taken into account, so a force incremental method with Newton-Raphson equilibrium iterations is adopted.
The condition of a stable equilibrium point expressed in (3) is not explicitly treated, but, by making the
force incremental steps sufficiently small, we typically obtain a stable equilibrium point in practice.

In the case of Vn = 8 elements, by applying the proposed graph theoretical enumeration method, an
exhaustive analysis of all possible topologies can be performed for the above benchmark problem; one can
thus identify the global optimum solution for this case. The basic concept of the graph-theoretical enumer-
ation is first to generate a complete set of topological graphs (mechanism connectivities) and then embed
(give actual dimensions and positions) them into the ground-structure in all possible ways. Figure 14(a)
shows the five relevant topological graphs and Figure 14(b) shows the best mechanisms created from the
five topological graphs. Note that the best mechanisms (III)-1 and (III)-2 in Figure 14(b) are the same as
the mechanisms of Figure 6(b) and Figure 6(d), respectively, and that the candidate mechanisms shown
in Figure 6(a) - 6(c) and Figure 6(d) - 6(f) are categorized as the topological graphs (III)-1 and (III)-2,
respectively.

The conditions of a stable initial motion expressed by the equations (7) and (8) are not directly con-
sidered in the analysis model. Nevertheless, we have eventually obtained no such unstable mechanisms in
the resulting best mechanisms in Figure 14(b). The mechanism of Figure 6(b) produces an output of less
than 0.118 due to the lock between the left-most bars and thus fails to survive. Similarly, the mechanism of
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Fig. 14 Graph-theoretical enumeration
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Fig. 15 Comparison of the performance

Figure 6(e) produces only the negative output displacement −0.05 in the analysis and is thus inferior to the
mechanism of Figure 6(d).

Figure 15 compares the performance among the best mechanisms from the five different graphs. The
mechanism (III)-2 is significantly better than the rest of the mechanisms, which all have a similar per-
formance that is significantly lower than that of the optimal mechanism. This result underlines the great
importance of choosing good topologies when designing mechanisms – bad topologies cannot be improved
significantly by changing the shape.

Moreover, note that the optimal mechanism produces a scissors-like motion as shown in Figure 16.
This is the reason for its outstanding performance. Also, note that this kind of mechanism cannot be ob-
tained by the continuum-based topology optimization technique that has been very successful for compliant
mechanism design.

3.2 Gradient-based local optimization [Paper 2]

Following the result of the first paper, a more systematic method is proposed by relaxing the original integer
problem (16). The key strategy of the relaxation is to permit the design variable a to take on intermediate
values between 0 and 1 as continuous cross-sectional areas and then reintroduce the relating constraints in
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suitable relaxed forms. Furthermore, in order to recover the 0–1 values of a, the intermediate values are
penalized by the so-called power law. Since we have a constraint on the total element number of bars, the
penalization makes the intermediate values less efficient, thus typically forcing the variables a to go to the
extremums for optimized designs. This is a typical technique used in continuum based topology optimiza-
tion problems (see, e.g., [11] for the detail of power law approach). The relaxed mechanism problem is then
formulated as follows:

maximize c�u(a)
subject to d̃m(a) ≤ 1,

e�a ≤ Vn + α,
a ∈ [ε, 1]n,
symmetric,

(17)

where ε is a positive lower bound of the design variables. This is introduced in order to avoid numerical
difficulties such as a singular stiffness matrix and an insensitivity of the objective function to changes in
the design variables around zero values. The extra term α compensates the effect of ε on satisfying the
bound Vn (i.e., α = (n − Vn)ε). d̃m(a) denotes a relaxed and differentiable version of DOF constraint based
on Maxwell’s rule (see, e.g., [15, 24, 51]). Specifically for the DOF calculation, a method for detecting
independent bars (or equivalently neglecting redundant bars) in the ground-structure has been devised by
introducing the connectivity circle as described in Section 2.5. In connection with the relaxation of the
DOF equation, the differentiability of the weighted sum of all the involved eigenvalues is proven, for both
the cases of simple and multiple eigenvalues. This plays a key role for the stable implementation of the
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Fig. 17 Inverter mechanism problem
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Fig. 18 Ten-bar mechanism problem

proposed method.
The test example in the first paper serves the basis for the development so as to compare the proposed

method with three other alternative approaches. All the programs are implemented in MATLAB © 6.5 us-
ing the method of moving asymptotes (MMA) [57]. MMA requires that one provides subroutines that can
calculate the objective function as well as its first derivative. The first derivative can be calculated by the
adjoint technique described in [50]. The numerical experiments show the advantage of applying the relaxed
DOF constraint. Also, an inverter problem shown in Figure 17(a) is treated where a continuation method is
required in order to direct the optimization algorithm towards an integer solution. The proposed continua-
tion method is implemented by introducing an explicit separation function as an additional constraint and
has given an integer solution of Figure 17(b). The output displacement is given in the parenthesis.

Even though the proposed method seems promising for these two examples, there exists a critical lim-
itation due to the non-convexity of the problem. The following is a good example to show the difficulty.
Figure 18(a) shows a variation of the benchmark example with an extra support and an extra input at node 2.
For the setting we seek also a symmetric mechanism but with ten bars. Figure 18(b) shows a ten-bar mech-
anism design obtained by the above proposed method. This design is a feasible solution to the original
integer problem (16) but it is not so impressive that the two bars incident to the node 2 are actually redun-
dant. (It is true that they contribute to the output by supporting the two bars incident to the output node
but the effect is marginal.) This design is actually a local optimum. However, it is not surprising that one
can end up with this kind of design using gradient-based local optimization techniques since the problem
is intrinsically non-convex. This experience naturally leads one to consider the possibility to apply some
global optimization techniques.

3.3 Branch and bound global optimization [Paper 3]

Global optimality is the main issue in this paper, so the formulation is totally revised from the global
optimization point of view in mind. Some part of the formulation might look uncommon compared with
the conventions in mechanics. This is because the number of complicating (non-linear and non-convex)
terms and the degree of non-linearity in the expressions are the most decisive factors in the construction of
convex relaxations; the fewer the number of the complicating terms and the less non-linear, the better.

The same problems in Figures 5, 17(a) and 18(a) are treated as basic topology optimization problems,
and later the problems are extended to include the nodal positions as design variables, namely simultaneous
topology and geometry optimization problems.

For the sake of simple and practical implementation of global optimization techniques, a simultaneous
design and analysis approach is adopted in the sense that the necessary conditions derived from the analysis
problem are explicitly stated in the design problem. The basic topology optimization problem is formulated
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as the following non-convex mixed integer problem in the variables (a, u, u0, v)� ∈ Bn × Rd × Rd × BN :

maximize c�u
subject to ∇uΠ(a, u) = 0,∇2

uuΠ(a, u) � 0,
K(a)u0 = p,K(a) +G(a, u0) � 0,
σmin

j ≤ E jε j(u) ≤ σmax
j , ∀ j : a j = 1,

dm(a, v) = 1,
e�v = VN , e

�a = Vn,∑
j∈Ak

a j ≥ 2vk, k = 1, . . . ,N,

a j ≤ vk, k = 1, . . . ,N, j ∈ Ak,

umin ≤ u, u0 ≤ umax,

a ∈ {0, 1}n, v ∈ {0, 1}N ,
symmetric,

(18)

where Ak is an index set of the bars incident to the k-th node. The primal design variables are truss con-
nectivity variables a and node activity variables v. Also, displacement variables u, u0 associated with the
analysis part are included in the design problem; they are the essential state variables for the problem. The
displacement bounds umin and umax make the feasible set of the mechanism design problem bounded, which
is an essential property for constructing convex relaxations of the problem.

The formulation (18) looks lengthy but each line has an essential role. The first constraint ensures a sta-
ble equilibrium, while the second constraint precludes unwanted buckling modes in the initial movement.
In other words, the first and second constraints are the stability conditions in the initial and final configura-
tions, respectively. These conditions are explicitly modeled by non-linear matrix inequalities in the above
formulation, while implicitly treated by the force incremental method in the nested approach adopted in the
previous sections. The third constraint enforces the small strain assumption within the existing bars by pos-
ing stress limits σmin

j < 0 and σmax
j > 0 in compression and tension, respectively. Without this constraint,

the optimization would utilize artificial self-stressed situations to produce larger output displacement. The
sixth and seventh constrains are derived from valid graph-theoretical conditions based on the fact that, in
order to obtain a practical mechanism that can transfer energy or work from the input ports to the output
port, at least two bars must be incident to k-th node if the node is active, and that inactive nodes (vk = 0)
must have no incident bars.

A convergent branch and bound method is developed based on convex continuous relaxations to solve
the mechanism design problem (18) to global optimality. In many aspects the suggested method has much
in common with the branch and reduce approach described in [53] and the branch and contract algorithm
described in [63]. The technique used in the relaxation is quite standard:

1. Drop matrix inequalities and DOF constraint (treated in feasibility and pruning tests).

2. Relax binary variables (treated by branching).

3. Reduce non-linearity and remove design dependency by introducing auxiliary variables.

4. Approximate bilinear terms by their convex and concave envelopes.

5. Keep quadratic convex constraints.

The best-bound-first node selection rule is adopted since this node selection rule is, by definition, bound
improving. The following branching strategy is employed:

1. Binary variables before continuous variables.

2. Maximum integer infeasibility criterion and dichotomy branching on binary variables.

3. Choose one of the most responsible (continuous) variables for approximation errors and branch the
variable by the actual value.

4. Bisection is performed when all the approximation errors are not significantly large.
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Specifically for the branching order, the hierarchical structure of the variables is highly utilized. Fig-
ure 19 shows the variables dependency in which the node activity variables v are placed on the top of the
tree, suggesting that the branching should be begun with one of the variables. Figure 20 illustrates a virtual
branching step in which the node activity variable v2 is chosen to be deactivated; this propagates the lower
hierarchy as deactivating all the incident bars (a1, a4, a5) and making all the bounds of the dependent con-
tinuous variables collapse. In order to improve the quality of the relaxations, valid inequalities are added
to the feasible set and bound contraction sub-problems are solved. Besides, pruning tests are enforced to
determine if a certain region of the feasible set may be excluded from further investigation due to the con-
cerned constraints. A fine tuning of these techniques is especially beneficial to practical convergence and
computational efficiency. A heuristic method is also used to find feasible solutions that give upper bounds
(in the minimization setting) to the design problem (18). The proposed heuristic method is based on a
rounding technique for the integer variables and subsequent local optimization techniques with the fixed
integer values.

As regards the implementation aspect, the whole program code is implemented in MATLAB © 6.5. The
MATLAB code controls the overall branch and bound procedure and calls the following packages through
interfaces:

1. CPLEX © 9.0 solves all linear programs (simplex solver) and all small-scale convex quadratic pro-
grams (barrier solver) prior to relaxations.

2. SNOPTTM 6.2 [26, 27] (sequential quadratic programming package) solves all convex quadratic pro-
grams of relaxations.

3. SeDuMi 1.05 [56] solves all linear semidefinite programs in the pruning tests on the stability issues.

The proposed method is a hybrid of several types of mathematical programming. Every single element mat-
ters in the implementation and a small improvement of each component may improve the total performance
drastically.

The same problems in Figures 5, 17(a) and 18(a) are solved. For the first benchmark problem in Fig-
ures 5, the global optimum solution has been already known since the first paper, and the same design shown
in Figure 16 is obtained again as expected. But, for the other two problems in Figures 17(a) and 18(a) the
global optimum solutions have been newly obtained as the optimal inverter mechanism in Figure 21(a) and
the optimal ten-bar mechanism in Figure 21(b), respectively. The output displacements are written in the
parentheses.
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(a) Inverter mechanism (0.137) (b) Ten-bar mechanism (0.895)

Fig. 21 Global optimum solutions to the basic topology optimization problems

A natural extension of the basic topology design problem (18) is to include also the nodal positions as
design variables, i.e. to perform simultaneous topology and geometry optimization. One advantage of this
extension is that the ground-structure need not be very dense; thus the problem size can be kept moderate.
Nevertheless, the possibility to change the nodal positions greatly increase the degree of non-linearity in the
problem. The simultaneous topology and geometry optimization problem is formulated as the following
non-convex mixed integer optimization problem:

maximize c�u
subject to ∇uΠ(a, u, x) = 0,∇2

uuΠ(a, u, x) � 0,
K(a, x)u0 = p,K(a, x) +G(a, u0, x) � 0,
σmin

j ≤ E jε j(u, x) ≤ σmax
j , ∀ j : a j = 1,

dm(a) = 1,
e�v = VN , e

�a = Vn,∑
j∈Ak

a j ≥ 2vk, k = 1, . . . ,N,

a j ≤ vk, k = 1, . . . ,N, j ∈ Ak,

umin ≤ u, u0 ≤ umax,

xmin ≤ x ≤ xmax,

a ∈ {0, 1}n, v ∈ {0, 1}N ,
symmetric,

(19)

where the variables are (a, u, u0, x, v)� ∈ Bn × Rd × Rd × R2N × BN ; xmin ∈ R2N and xmax ∈ R2N are given
limits on the nodal positions.

The branch and bound implementation is modified according to the extension and is applied to solve the
three problems shown in Figures 22(a), 23(a) and 24(a). The solid boxes in the ground-structures indicate
the bounds on the nodal positions involved. The resulting global optimum designs are depicted in black
lines and the grey lines depict the connectivities with the original nodal positions; in the first problem, for
instance, the bars depicted in grey lines have been chosen to create the mechanism configuration depicted in
black lines with the varied nodal positions which have made some bars overlapped by positioning the central
node 5 on the intersection of the two long bars. The output displacements are stated in the parentheses. In
the second problem, a coarser (3 × 3)-node ground-structure is used since this can cover both the results in
Figures 17(b) and 21(a).

Figure 25 shows the optimization histories of the upper and lower bounds (in the minimization setting)
for the third problem. During the optimization several alternative mechanism designs are typically obtained
in a single attempt to solve the problem. For the case, only three of them are presented along the upper
bound history; one can see how the mechanism design evolves in the optimization process following the
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Fig. 22 The benchmark example problem with geometry variations

1 4 7

2 5 8

3 6 9

cp

(a) Ground-structure. (b) Optimal design (0.168)

Fig. 23 The inverter mechanism problem with geometry variations

upper bound history. The first design is not good enough because two middle bars incident to the input ports
are redundant. The second one is essentially the same as the mechanism in Figure 22(b) from the functional
point of view; without two bars on the very left side, the mechanism would work similarly. The extra input
force at the node 2 has yet to be utilized. And the final design is the one that can make the best use of
available bars and input forces. With reference to the lower bound history, if the implementation were not
good enough, for instance, the branching routine were not effective or the quality of relaxation were very
poor, the lower bound history might have stalled on the way. It should be noted that the lower bound has
been accelerated to converge in the last stage of the optimization because of the synergistic effect between
the tight upper bound and the improved quality of relaxations with the tighter bounds on variables.

The numerical examples suggest that the proposed branch and bound method can reliably solve mech-
anism design problems of realistic size to global optimality. The encouraging computational results would
never depreciate other gradient-based optimization methods; to the contrary, the proposed method should
benefit by the results from other optimization methods. For the sake of fair evaluation of the implemented
methods, the mechanism designs already obtained by the gradient-based method in the second paper have
not been used deliberately in the test run of the program; but it is apparent that a good initial design would
contribute to reduce the search tree in the branch and bound by providing a tighter upper bound.
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Fig. 24 The ten-bar mechanism problem with geometry variations
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Fig. 25 Optimization history of ten-bar mechanism with geometry variations

3.4 Path-generation problems [Paper 4]

In the 19th century it was expected that kinematics would embody mathematical operations [46]. Alfred
Bray Kempe tried to draw an arbitrary polynomial curve on the plane by combining four predefined func-
tional linkages: reversor, multiplicator, additor and translator [40]. Recently his idea has been translated
into modern mathematics and used to prove that any polynomial curve can be realized by a functional link-
age if sufficient number of bars and constraints are provided [39, 41]. The mathematical proof has nothing
to do with optimization but at least assures that it is not an outrageous attempt to design a path-generating
mechanism using optimization.

Path-generation problems are still difficult to tackle using global optimization since the problem size is
multiplied by the number of precision points and load cases. In this paper, we thus go back to gradient-
based optimization again. The paper proposes a simultaneous shape and topology design method for path-
generation in the non-linear truss representation using cross-sectional areas and nodal positions as design
variables. This leads to a technique for simultaneous type and dimensional synthesis. For the analysis
part it is essential to control the mechanism configuration so that the mechanism remains within a given
configuration space, thus stabilizing the optimization process and resulting in a realistic solution. This can
be achieved by using the Levenberg-Marquardt method, as described in Section 2.7.
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Fig. 26 Ground-structure for path-generation

Figure 26 shows a truss ground-structure for a benchmark example of a path-generation problem in
which we are seeking to create a mechanism that can trace a prescribed target path. The target path is
depicted by the black ellipse at the output node 8 and this path should be the resulting motion for the given
input path depicted by the black circle at the input node 2. The input circular path is discretized into the
eight equally distributed input points uin, and then the corresponding target points utar are also located as
indicated in the figure; the corresponding input-output steps are numbered parallel in italics. The input
motion can be realized by introducing an extra link that is driven by a rotating motor around the center of
the input circle at some constant angular velocity.

We will seek to generate a mechanism by picking Vn = 6 bars and simultaneously relocate the nodes
within the bounds depicted by the solid boxes in Figure 26. We require that the resulting mechanism should
be symmetric across the horizontal mid-axis. Also, in order to ensure the stability and certainty of the
resulting motion, the resulting mechanism should have dm(a) = 2 DOF. In the current case, each step of the
kinematic analysis implies that the input port is clamped by removing 2 DOF; this results in a both statically
and kinematically determinate structure. Thus, for the final design to be able to move along the input path
and to have unique output behavior, we must ensure that dm(a) = 2.

The problem can be formulated as a mixed integer optimization problem given below. As design vari-
ables the problem has the truss connectivity vector a ∈ Bn as well as the nodal position vector x ∈ R2N .
The problem is formulated so as to minimize the infinity norm of a gap vector g(a, x) = (g1, g2, . . . , gS )�
which is defined as gi = ||uout

i (a, x) − utar
i ||2 between the target points utar

i ∈ R2 and the actual output points
uout

i (a, x) ∈ R2 for i = 1, 2, . . . , S :

minimize ||g(a, x)||∞
subject to dm(a) = 2,

e�a = Vn,
a ∈ {0, 1}n,
xmin ≤ x ≤ xmax,
symmetric,

(20)

where the variables are (a, x)� ∈ Bn × R2N ; xmin ∈ R2N and xmax ∈ R2N are given limits on the nodal
positions.

In order to solve the problem by using continuous gradient-based optimization techniques such as
MMA, the problem is relaxed by permitting the binary variable a to take on intermediate values between
0 and 1. Moreover, by utilizing the fact that the mechanism to be designed forms a both statically and
kinematically determinate structure with the input port fixed at the given input points, the DOF constraint
dm(a) = 2 is replaced by conditions relating to the behavior with respect to the application of two additional
very small load cases at the output node 8, one horizontal p1 and one vertical p2. These load cases simu-
late conditions in which the mechanisms are perturbed by some disturbances and the resulting mechanism
should be stable enough against the disturbances when the input port is clamped. The two additional loads
are applied separately, so the gap vectors become functions of these forces as g(a, x, pj) where j = 0 for
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Fig. 27 Benchmark example of path-generation problem

no load; j = 1 for horizontal load; j = 2 for vertical load. Finally, the objective is replaced by a weighted
gap vector

∑2
j=0 wjg(a, x, pj) for w0 = 0.98 and w1 = w2 = 0.01. Note that, thus, the two additional load

cases do not contradict the original objective, namely path-generation under the unloaded condition. The
gap vectors g(a, x, pj) = (g1 j, g2 j, . . . , gS j)� are defined as gi j = ||uout

i (a, x, pj) − utar
i ||2 between the target

points utar
i ∈ R2 and the actual output points uout

i (a, x, p j) ∈ R2 for i = 1, 2, . . . , S .
Finally the relaxed problem writes:

minimize ||
2∑

j=0

wjg(a, x, pj)||∞
subject to e�a ≤ Vn + α,

a ∈ [ε, 1]n,

xmin ≤ x ≤ xmax,
symmetric,

(21)

where the design variables are (a, x)� ∈ Rn × R2N ; xmin ∈ R2N and xmax ∈ R2N are given limits on the nodal
positions. ε is a positive lower bound introduced in order to prevent numerical difficulties such as a singular
stiffness matrix and an insensitivity of the objective function to changes in the design variables around zero
values. The extra term α compensates the effect of ε on satisfying the bound Vn (i.e., α = (n − Vn)ε).

Furthermore, in order to promote the 0–1 values of a, the intermediate values are penalized by the
power law. Since we have a constraint on the total element number of bars, the penalization makes the
intermediate values less efficient, thus the variables a are typically forced to go to the extremums, i.e. ε or 1
as the structure else would be too compliant under the load perturbations. This problem can also be solved
by using MMA [57, 58] in a min-max formulation. The first derivative required for MMA can be calculated
via the sensitivity analysis with an adjoint technique described in, e.g., [50]. Solving the problem by using
both the truss connectivity vector a and the nodal position vector x simultaneously can give a result as
illustrated in Figure 27(a). Here the resultant mechanism can follow the target path fairly well. In contrast,
however, if one solves the problem for fixed nodal positions, a mechanism as shown in Figure 27(b) can be
achieved. Due to the limitation of the choice of dimensions the mechanism cannot fully follow the target
path. Note that both solutions are feasible in the original problem (20); substituting

∑N
k=1 vk = 6 (active

nodes), m = 6 (bars) and s = 4 (active supports), the DOF analysis (11) gives dm = 2.
Another example problem treated with the same formulation is shown in Figure 28(a); note that the input

and target paths and the boundary condition have been changed. We here seek to create a six-bar mechanism
that can transform the arc (depicted by the thick black arc) at the input node 5 into the straight line segment
(depicted by the thick black line) at the output node 8. The input circular motion can be realized by adding
an extra link that connects the input node 5 and a ground point located at the focal point of the arc. The
input arc is discretized into the eight equally distributed input points, and the corresponding target points
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Fig. 28 Straight-line mechanism design problem

are located along the straight line as indicated in Figure 28(b); the corresponding input-output steps are
numbered parallel in italics. Figure 28(b) also shows the resultant mechanism – the initial configuration
is depicted in black and the displaced configuration in grey. Notice that in the final design the nodes 4
and 6 have moved to the right by 0.25. The DOF of the mechanism can also be calculated by the DOF
analysis (11); substituting

∑N
k=1 vk = 5 (active nodes), m = 6 (bars) and s = 2 (active supports), the

DOF is obtained as dm = 2, and this ensures the mechanism is feasible in the original problem (20).
The resulting mechanism is the straight-line mechanism [62] invented in 1864 by the French engineer
Charles-Nicolas Peaucellier [46]. Here this classical design has been created by a computer algorithm for
mechanism synthesis.

4 Concluding remarks

Based on the truss ground-structure representation, the articulated mechanism design problem has been
tackled using optimization techniques.

For the problems of maximizing output displacement, both a gradient-based optimization approach and
a deterministic global optimization approach have been taken. In the gradient-based optimization approach,
a method for detecting independent bars in the ground-structure has been devised; also, a relaxed version
of the degree of freedom equation has been implemented. The proposed method has shown both its ability
and limitation in terms of the non-convexity of the problem. This experience has lead investigations into the
use of deterministic global optimization. In the deterministic global optimization approach, a convergent
branch and bound method has been implemented. The method has shown the capability of finding global
optimum solutions which have not been previously obtained by the gradient-based optimization. However
the computational results show that it requires a more powerful method for finding good feasible solutions
that may speed up the branch and bound method remarkably.

It should also be noted that the graph-theoretical enumeration method in the first paper has played an
important role for providing the benchmark example and its global optimum solution. It is not clear if the
approach can be generalized to more complicated settings – it is the identification of the topological graphs
that is a cornerstone of the method and here number synthesis, as described in for example [59, 60], may
provide a viable path ahead.

For the problems of generating a prescribed path, only a gradient-based optimization approach has been
taken. This problem is still difficult to tackle using global optimization since the problem size is multiplied
by the number of precision points and load cases. Specifically for the analysis part, it is essential to control
the mechanism configuration so that the mechanism remains within the same configuration space, thus
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stabilizing the optimization process and resulting in a realistic solution. This has been achieved by using the
Levenberg-Marquardt method. It seems that the proposed method is promising for the presented examples,
but one should not forget that the problem is non-convex and that the method has its critical limitation. One
possible way to deal with the non-convexity is to apply a branch and bound with non-convex relaxations
instead of convex relaxations. To what degree we should leave the non-convexity is unpredictable and this
will be future work.

Other directions of future research will be an extension to dynamic problems, in which it is essential
to develop, in terms of mathematical programming, a proper method for handling the dynamic analysis
together with an associated sensitivity analysis. An extension to spatial mechanism, in which it will be
needed to develop conditions to prevent that some members of the mechanism obstruct the displacement
path of other members, is another important issue to address.
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[42] M. Kočvara. On the modelling and solving of the truss design problem with global stability constraints.
Structural and Multidisciplinary Optimization, 23:189–203, 2002.

[43] J.C. Maxwell. On the calculation of the equilibrium and stiffness of frames. Philosophical Magazine,
pages 294–299, 1864.

[44] A.G.M. Michell. The limit of economy of material in frame structures. Philosophical Magazine,
8(6):589–597, 1904.

[45] R.J. Minnaar, D.A. Tortorelli, and J.A. Snyman. On nonassembly in the optimal dimensional synthesis
of planar mechanisms. Structural and Multidisciplinary Optimization, 21(5):345–354, 2001.

[46] F.C. Moon. Franz Reuleaux: Contributions to 19th c. kinematics and theory of machines. Applied
Mechanics Reviews, 56(2):261–285, 2003.

[47] H.B. Nielsen. Damping parameter in Marquardt’s method. Technical Report IMM-REP-1999-05,
Department of Infomatics and Mathematical Modelling, Technical University of Denmark, 1999.
http://www.imm.dtu.dk/˜hbn/publ/.

[48] P. E. Nikravesh. Computer-Aided Analysis of Mechanical Systems. Prentice Hall, 1988.

[49] J.M. Pagalday, I. Aranburu, A. Avello, and J. Garcı́a de Jalón. Multibody dynamics optimization by
direct differentiation methods using object oriented programming. In D. Bestle and W. Schiehlen, edi-
tors, IUTAM Symposium on Optimization of Mechanical Systems, pages 213–220. Kluwer, Dordrecht,
1995.

[50] C.B.W. Pedersen, T. Buhl, and O. Sigmund. Topology synthesis of large-displacement compliant
mechanisms. International Journal for Numerical Methods in Engineering, 50:2683–2705, 2001.

[51] S. Pellegrino and C.R. Calladine. Matrix analysis of statically and kinematically indeterminate frame-
works. International Journal of Solids and Structures, 22:409–428, 1986.

[52] W. Prager and G.I.N. Rozvany. Optimal layout of grillages. JOURNAL OF STRUCTURAL MECHAN-
ICS, 5(1):1–18, 1977.

[53] H.S. Ryoo and N.V. Sahinidis. A branch-and-reduce approach to global optimization. Journal of
Global Optimization, 8:107–138, 1996.

[54] O. Sigmund. Some inverse problems in topology design of materials and mechanisms. Mechanics of
Structures and Machines, pages 277–284, 1996.

[55] O. Sigmund. On the design of compliant mechanisms using topology optimization. Mechanics of
Structures and Machines, 25:493–524, 1997.

31



[56] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Opti-
mization Methods and Software, 11–12:625–653, 1999.
Version 1.05 is available from http://fewcal.kub.nl/sturm.

[57] K. Svanberg. The method of moving asymptotes – a new method for structural optimization. Interna-
tional Journal for Numerical Methods in Engineering, 24(2):359–373, 1987.

[58] K. Svanberg. A class of globally convergent optimization methods based on conservative convex
separable approximation. SIAM Journal on Optimization, 12(2):555–573, 2002.

[59] C.R. Tischler, A.E. Samuel, and K.H. Hunt. Kinematic chains for robot hands–I. Orderly number-
synthesis. Mechanism and Machine Theory, 30:1193–1215, 1995.

[60] C.R. Tischler, A.E. Samuel, and K.H. Hunt. Kinematic chains for robot hands–II. Kinematic con-
straints, classification, connectivity, and actuation. Mechanism and Machine Theory, 30:1217–1239,
1995.

[61] D.A. Tortorelli. Design sensitivity analysis: Overview and review. Inverse problems in Engineering,
1:71–105, 1994.

[62] W. Wunderlich. Ebene Kinematik. Bibliographisches Institut Mannheim/Wien/Zürich, 1968.
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Planar articulated mechanism design by graph theoretical
enumeration

A. Kawamoto, M.P. Bendsøe and O. Sigmund

Abstract This paper deals with design of articulated
mechanisms using a truss-based ground-structure repre-
sentation. By applying a graph theoretical enumeration
approach we can perform an exhaustive analysis of all
possible topologies for a test example for which we seek
a symmetric mechanism. This guarantees that one can
identify the global optimum solution. The result under-
lines the importance of mechanism topology and gives
insight into the issues specific to articulated mechanism
designs compared to compliant mechanism designs.

Key words mechanism design, topology optimization,
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1
Introduction

Research on the design of compliant mechanisms (e.g.,
Sigmund (1997), Pedersen (2001), Bruns (2001) and
Ananthasuresh (1994)) using topology optimization tech-
niques in continuum structures suggests that it should
also be possible to obtain results for articulated mechan-
isms by applying such techniques (Sigmund 1996; Frecker
1997).
In this paper we examine exhaustively all possible

topologies of one test example by a graph theoretical enu-
meration approach. This allows for identifying the global
optimum solution when we assume that the resultant
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mechanism is symmetric. We view the present work as
a first step in devising optimization techniques for design
of an articulated mechanism, with the achieved global
optimum solution providing a rigorous comparison de-
sign with which solutions obtained by methods currently
under development can be matched.

2
Definition of test example

The test example we examine in detail is shown in Fig. 1.
The figure shows the truss ground structure of possible
nodes and connections, as well as all necessary bound-
ary conditions, load cases and other related parameters.
One relevant mechanism design problem is the maximiza-
tion of the output displacement Dout for the given input
forces Fin by pickingM

∗ truss elements out of theM pos-
sible connections, so that the resultant mechanism has
f = 1 degree of freedom (DOF) and is symmetric with
respect to the horizontal line between nodes 2 and 11.
This problem can be formulated as the following binary
integer optimization problem for the truss connectivity
vector χ= (χ1, . . . , χM ):

max
χ∈{0,1}M

Dout s.t.
M∑

e=1

χe =M
∗ ; f = 1 ; symmetric.
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Here Dout is given via the displacement vector U which
is a solution to an equation R(U) = 0 that expresses
the residual version of the equilibrium equations. Ge-
ometrical non-linearity should be taken into account,
so we adopt a force incremental method with Newton–
Raphson equilibrium iterations for evaluation of the dis-
placementDout.

3
Graph theoretical enumeration approach

There are 66 potential elements in the ground struc-
ture of Fig. 1. When the number of bars in the mech-
anism is set at M∗ = 8, the complexity of the problem
is 66C8(∼ 6×1010), so evaluating the totality of possible
mechanisms is not a viable approach.1

An alternative way to address the problem is to first
generate a complete set of topological graphs and then
embed them (as shown in Fig. 2) into the ground struc-
ture in all possible ways. Assuming that the mechan-
ism has no redundant elements (for brevity, we shall not
discuss this here; see, e.g., Calladine (1978), Pellegrino
(1986) and Fowler (2000) for details), the degrees of free-
dom of a mechanism that is supported in a statically
determinate manner can be calculated by the following
DOF equation based on Maxwell’s rule in 2D:

f = 2n−m−3 (2)

where n is the number of nodes and m is the number of
bars. In this case wherem= 8 and f = 1, a possible mech-
anism has n= 6 nodes (note that this is only a necessary
condition, see the above references). If we choose to fo-
cus on one topological configuration of eight edges and
six vertices (we shall use edge and vertex for topological
graphs), as shown in Fig. 2, we can reduce the design
problem to a subproblem that entails picking six ordered
nodes from the 12 potential nodes of the ground struc-
ture. This results in the assignment of six vertices of the

1 If one function evaluation (i.e., one non-linear analysis)
takes one second, the total calculation time amounts to about
180 years.
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topological graph to six out of 12 nodes in the ground
structure. The subproblem can be illustrated by a bipar-
tite matching problem shown in Fig. 3. The complexity
of the subproblem is only 12P6(∼ 6×105)

2. If we have p
different topological configurations, the calculation time
is simply multiplied by p. In the present case, p= 24 and
the complete set of the 24 non-isomorphic graphs, which
have six vertices and eight edges, can be found in Harary
(1969).
So far, we have not utilized the symmetry constraint

and we illustrate now how to use this to reduce the prob-
lem further. We begin with vertex configurations without
edges. There are two possible symmetric vertex configu-
rations with three rows (see Fig. 4). Here we introduce
a symmetric embedding that assigns the vertices to the
nodes maintaining the symmetry around the horizontal
mid-axis, which means that the vertices on the first row
go to the nodes on the first row, the second row in F1 or
F2 goes to the second row in Fig. 1, and so on.

3.1
Case F1

Note that all the possible topological graphs generated
from the vertex configuration F1 should satisfy the fol-
lowing condition on the number of incident edges with
a vertex, namely vertex degree vi (i= 1, . . . , 6):

v1 = v6 (3)

due to the restriction of the symmetry. Besides, if the
embeddings involve all possible swaps among vertices 2
through 5, it suffices to consider the cases where vertex
degrees meet the constraints:

v2 ≥ v3 ≥ v4 ≥ v5 . (4)

2 This amounts to 7.7 days of computational time for evalu-
ating all designs.
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This is because vertices 1 and 6 should be assigned to the
input ports in the ground structure of Fig. 1 anyway.
We can thus classify the topological graphs generated

from the configuration F1 by the vertex degree v1(= v6)
running from 1 to 4; these correspond to the classes
(i) to (iv) in Fig. 5. Note that the number of possible
graphs varies in the different classes. Graph (i) is actu-
ally irrelevant as in reality it has two degrees of free-
dom even though (2) gives f = 1 DOF. This is a special
case where the structure has one redundant bar in the
mid axis. In this case, the structure has extra states of
self-stress and mechanism mode. Thus the mechanism
DOF increases; see Calladine (1978), Pellegrino (1986)
and Fowler (2000) for details. Graphs (ii)-{1, . . . ,5},
(iii)-{1,2} and (iv)-1 are also all irrelevant due to the sym-
metric loading and support conditions; all these graphs
have asymmetric mechanism modes with respect to the
horizontal mid-axis.
With reference to the mechanisms that have one iso-

lated bar, since the rest of nodes and bars form a struc-
ture, these mechanisms cannot transfer energy or work
from the input ports to the output port. Also, we have ob-
served that the isolated bars cause the mechanical DOF
to increase in graph (i). We are not interested in all of
these irrelevant mechanisms, and will consider the topo-
logical graphs that satisfy vi ≥ 2 as the candidate graphs
henceforth.
The final graph (iv)-2 essentially has only one pos-

sible embedding into the ground structure because ver-
tices 1 and 6 of the graph are assigned to the input ports
in Fig. 1, and swapping any pair of vertices 2 through
5 makes no difference in terms of the embedding. This
mechanism is, however, difficult to move because the edge
between vertices 1 and 2 and the edge between vertices 2
and 6 are on the straight line. The mechanism relies on
buckling, which would only occur due to some imperfec-
tion; thus we discard this graph, too.

(iv)-1

(iii)-2(iii)-1

(ii)-3

(ii)-2

(ii)-5

(iv)-2

(ii)-4

1

2 3 4 5

6
(i) (ii)-1

Fig. 5 Topological graphs generated from the vertex config-
uration F1

3.2
Case F2

There is a formula for the relation between the total ver-
tex degrees and the total number of edges m in a graph
(see, e.g., Kaveh (1991)):

n∑

i=1

vi = 2m. (5)

Considering the symmetry of the vertex configuration F2,
we obtain

v1+2v2+2v3+ v4 = 16 ; v2 = v6 ; v3 = v5 . (6)

Embedding a graph from the vertex configuration F2 into
the ground structure requires that one pair of the ver-
tices 2 and 6 and the vertices 3 and 5 retain their sym-
metry. If the embedding involves any vertical reflection, it
suffices to investigate the following cases.

v1 ≤ v4 ; v2 ≤ v3 . (7)

Besides, because we are not interested in isolated edges
and the maximum vertex degree is five (as the number of
vertices is six), we can bound each variable as

2≤ vi ≤ 5 (i= 1, . . . , 6) . (8)

Based on (6) together with (7) and (8), the vertex config-
uration F2 produces six classes described in Table 1. Each
class has at least one possible graph as shown in Fig. 6.
In order to obtain a valid mechanism among the embed-
dings one has to require that a relative move between
vertices 3 and 5 is possible (or, topologically equivalent,
between vertices 2 and 6). For that reason, we can dis-
card graphs (I)-1 and (I)-2 immediately because both
pairs, vertex 2–6 and vertex 3–5, are linked directly. Like-
wise, graph (V) can be discarded because vertices 2 and
6 are linked directly and vertices 3 and 5 are on the ad-
jacent two triangles, which form a rigid substructure in
the graph. Graphs (IV)-1 and (IV)-2 are irrelevant be-
cause the motion of the mechanism is asymmetric. All in
all, we can conclude that all the relevant graphs amounts
to only five, namely graphs (I)-3, (II), (III)-1, (III)-2 and
(VI). The original problem is thus reduced to five em-
bedding subproblems, corresponding to each of the five

Table 1 Classification of topological graphs from F2 by ver-
tex degrees

Class v1 v2 v3 v4

I 2 3 3 2
II 2 2 4 2
III 2 2 3 4
IV 3 2 3 3
V 3 2 2 5
VI 4 2 2 4
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(I)-2(I)-1

1

2 3

4

56 (I)-3

(II) (III)-1 (III)-2

(VI)

(IV)-2(IV)-1

(V)

Fig. 6 Topological graphs generated from the vertex config-
uration F2

graphs. (II), (III)-1 and (III)-2 require 36 calculations for
each. (I)-3 and (VI) need 18 calculations for each because
of their vertical symmetry. The total enumeration corres-
ponds to the evaluation of 144 possible mechanisms, one
of which then constitutes the globally optimal (symmet-
ric) mechanism.
Figure 7 shows the best mechanism among the embed-

dings of graph (III)-2 with the undeformed state depicted
in grey and the deformed state in black. Also, this mech-
anism is the global optimum solution to the problem.
Figure 8 compares the performance among the best mech-
anisms from the five different graphs. Graph (III)-2 is sig-
nificantly better than the rest of the topologies, which all
have a similar performance that is significantly lower than
that of the optimal mechanism. This shows the great im-
portance of also choosing good topologies when designing
mechanisms – bad topologies cannot be expected to be
improved significantly by changing the shape. Moreover,
note that the optimal topology (III)-2 forms a scissors-
like mechanism when embedded as the globally optimal
mechanism and this is the reason for its outstanding per-
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Fig. 7 Best mechanism from graph (III)-2
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Fig. 8 Comparison of the performance

formance. This kind of mechanism can not be obtained
by the continuum-based topology optimization technique
that has been very successful for compliant mechanism,
suggesting that an inclusion of hinges in the “ground
structure” is crucial for obtaining efficient articulated
mechanisms.
We close this technical note by remarking that the de-

velopment above should be seen as a method to obtain
a benchmark design that will be useful for further devel-
opments in the area; the key is that the globally optimal
solution has been identified. It is not clear if the approach
can be generalized to more complicated settings – it is
the identification of the topological graphs that is a cor-
nerstone of the method and here number synthesis, as
described by Tischler (1995), may provide a viable path
ahead.
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SUMMARY

This paper deals with design of articulated mechanism using a truss-based ground-structure represen-
tation. The proposed method can accommodate extremely large displacement by considering geometric
non-linearity. In addition, it can also control the mechanical degrees of freedom (DOF) of the resultant
mechanism by using a DOF equation based on Maxwell’s rule. The optimization is based on a relaxed
formulation of an original integer problem and also involves developments directed at handling the
redundancy inherent in the ground-structure representation. One planar test example is selected as the
basis for the developments so as to compare the proposed method with other alternative approaches
including a graph-theoretical enumeration approach which guarantees the identification of the globally
optimal solution. Also, an inverter problem is treated where a continuation method is required in
order to direct the optimization algorithm towards an integer solution. Copyright � 2004 John Wiley
& Sons, Ltd.

KEY WORDS: mechanism design; topology optimization; degrees of freedom

1. INTRODUCTION

Research on design of compliant mechanisms [1–4] using topology optimization techniques
in continuum structures suggests that it should also be possible to obtain results for articulated§

mechanisms by applying such techniques [5, 6]. For design of articulated mechanisms the
concept of mechanical degrees of freedom (DOF) becomes critical for obtaining a proper
design. It is an insignificant feature for compliant mechanism design as such mechanisms do
not have real joints. In the present paper, by DOF we mean the number of independent inputs
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required to determine the position of all links of the mechanism with respect to a global
co-ordinate system [7].

Kinematic diagrams (schematic drawings of mechanisms) are widely used for conventional
mechanism designs and are especially helpful for the understanding of complicated mechanism
topologies [7]. It seems natural and advantageous to represent kinematic diagrams by truss
elements and pin joints. Firstly, one can directly interpret the truss topology from the kinematic
diagram. Also, it is possible to accommodate large displacement without element distortion
problems. Finally, with this interpretation one can formulate the optimization problems in
terms of the so-called ground-structure approach for truss topology design [8]. The idea of
the truss ground-structure approach is: we first give a large set of all potential elements
in the design domain; then we eliminate unnecessary elements, or equivalently choose the
necessary elements, according to the requirements; finally we obtain the resultant mechanism
design.

In this paper, we introduce a constraint on the mechanical degrees of freedom of the
mechanism, based on Maxwell’s rule [9–11]. However, Maxwell’s rule requires that every sub-
structure contains no redundant elements. Thus we cannot directly apply the formula to the
ground structure which is intrinsically redundant as it includes all potential elements. Therefore,
the number of bars cannot be counted in a straightforward way. We have two possibilities:
one is to introduce additional constraints to eliminate the redundant elements; the other is to
preserve the redundant elements but ignore them in the DOF calculation. The first idea is
similar to the sub-tour elimination constraints of the famous Traveling Salesman Problem [12].
An alternative, and the one we apply, works by detecting the number of independent bars in
the ground structure. The number of independent bars is related to the rank of the (linear)
stiffness matrix in the unsupported condition which for our purposes suitably can be determined
by an eigenvalue analysis. However, due to the regularity of the nodal positions, this method
ignores also overlapping elements which are often useful for large displacement mechanism. In
order to distinguish overlapping bars as independent, we need to rearrange the nodal positions
and this can conveniently be achieved by relocating all the nodes onto a circle. In this way a
standard eigenvalue analysis is capable of identifying the number of independent bars, allowing
for the implementation of the constraint on the degrees of freedom. Furthermore, we shall relax
the DOF equation so as to solve the problem with gradient-based optimization methods such
as MMA—the method of moving asymptotes [13]. Thus we here introduce a differentiable
approximation of the step function in order to count non-zero eigenvalues for independent bars
and to count non-zero nodal degrees for active nodes.

2. TRUSS REPRESENTATIONS OF ARTICULATED MECHANISMS

Kinematic diagrams (or skeleton diagrams) are the schematic drawings commonly used for
conventional mechanism designs and they are especially helpful for the understanding of com-
plicated mechanism topologies [7]. It seems natural to represent kinematic diagrams by truss
elements and pin joints because of the following advantages:

• One can directly interpret the truss topology from the kinematic diagram.
• It is possible to accommodate extremely large displacement without any element distortion

problems.
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1522 A. KAWAMOTO, M. P. BENDSØE AND O. SIGMUND

• With this interpretation one can formulate the optimization problems in terms of the so-
called ground-structure approach for truss topology design [8].

Normally articulated mechanisms are modelled by rigid bars and revolute joints. Nevertheless
we use truss representations for articulated mechanisms in the present paper. But note that the
articulated mechanisms are not supposed to rely on the elasticity in the final designs. In other
words, the functionality of articulated mechanisms never changes after all the truss elements
are replaced with rigid bars. This is the critical difference between articulated and compliant
mechanisms.

3. DEFINITION OF A TEST EXAMPLE

The test example that we employ is shown in Figure 1. The figure shows the truss ground
structure of possible nodes and connections, as well as all necessary boundary conditions, load
cases and other related parameters. The springs and forces at the input ports model a strain-
based input actuator (e.g. shape memory alloy or piezoelectric device) and the output spring
models a resistance to the movement. One relevant mechanism design problem is to maximize
the output displacement Dout for the given input forces Fin by picking M∗ truss elements out
of the M possible connections, so that the resultant mechanism has f = 1 degree of freedom
when supported in a statically determinate manner, and so that it is symmetric with respect
to the line between nodes 2 and 11. This problem can be formulated as the following binary
integer optimization problem for the truss connectivity vector (�1, . . . , �M):

MECH1:

max
�

: Dout

s.t. :
M∑

e=1
�e = M∗

1

2

3

4

5

6

7

8

9

10

11

12

1

1

Dout

Kout

Fin

Fin

Kin

Kin

Figure 1. Ground structure.
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: �e ∈ {0, 1}
: f = 1

: symmetric

Here Dout is given via the displacement vector U which is a solution to an equation R(U) = 0
that expresses the residual version of the equilibrium equations. Geometrical non-linearity is
here taken into account, so we use the Green–Lagrange strain measure and adopt a force
incremental method with Newton–Raphson iterations for evaluation of the displacement Dout.

We note that the global optimum mechanism design is known for MECH1, in the case of
M∗ = 8 (this result is based on a graph theoretical enumeration method) [14]. This provides
for a solid comparison of the methods that will be developed in the following.

4. RELAXATION

The complexity of the problem, namely the number of all possible combination of bars is
calculated as

MCM∗ := M!
M∗!(M − M∗)! (1)

This number ‘explodes’ with the increase of M for a certain number M∗ of desired bars. Thus
it seems reasonable to relax the original problem in order to use gradient-based optimization
techniques. One possible relaxation is to permit each variable �e to take on intermediate values
between 0 and 1. We thus define � as the relaxed truss connectivity vector (�1, . . . , �M) (and
leave out the degree of freedom constraint for the moment). The relaxed problem can then be
formulated as follows:

RELAX1:

max
�

: Dnon-linear
out

s.t. :
M∑

e=1
�e �M∗ + �

: 0 < �min � �e � 1

: symmetric

where �min is a positive lower bound of the design variables �e (= 0.001 typically). This is
introduced in order to avoid numerical difficulties such as a singular stiffness matrix and an
insensitivity of the objective function to changes in the design variables around zero values. The
term � compensates the effect of �min on satisfying the bound M∗ (i.e. � = (M − M∗)�min).

This kind of problem can be solved by applying gradient-based optimization methods. In the
present research, we have used the algorithm named MMA (method of moving asymptotes)
[13]. When applying such an algorithm one needs to perform a sensitivity analysis, here for
the output displacement Dnon-linear

out . For this we use the standard adjoint technique (see, for
example Reference [2] for an explicit derivation for the present situation).
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Figure 2. Example I: a solution to RELAX1, Dout = 0.4673.

Note that we search for an optimal solution following a path through a design space of
approximate mechanisms that take relaxed intermediate values of the design variables. Thus
the proposed method implicitly assumes that the binary solution can be found as a limit of the
relaxed design variables (i.e. density). Therefore, the method cannot be expected to solve the
problem if the binary solutions are isolated in the relaxed design space.

4.1. Penalization

In order to recover the 0–1 values of �, we will penalize the intermediate values of �e by
expressing the cross-sectional areas Ae, e = 1, . . . , M of the bars as:

Ae = �P
e Amax (2)

where P > 1 (= 3 typically) and where Amax is an upper bound. Since we have a constraint
M∗ < M on the total element number of bars the penalization makes the intermediate values
less efficient, thus typically forcing � to go to the extremums for optimized designs, i.e. �min
or 1. This is a typical technique used in continuum-based topology optimization problems [8].

4.2. Example I

For the test example MECH1, the global optimum mechanism design is, as already mentioned,
known for the case of M∗ = 8 [14]. For comparison, we will here also show a result obtained
with RELAX1, for M∗ = 8.

Figure 2 shows a solution to RELAX1. The bars at the lower bound are made invisible
simply for aesthetic improvements. If we accept the intermediate solution, this truss may work
as a mechanism. But it has more than 1 degree of freedom; even if the input ports are fixed,
it still has a moving part at the right end. Note that this mechanism relies on two thin bars
in order to function. However, the intermediate solution is not feasible for the original integer
formulation MECH1. Without these thin bars the mechanism would not work at all. In general,
formulation RELAX1 may give this kind of rather spurious mechanisms (as are also seen in
the literature).
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5. ALTERNATIVES TO THE DOF CONSTRAINT

The formulation RELAX1 is obtained by relaxing the 0–1 constraint on the truss connectivity
vector. This, however, tends to give unstable mechanisms which have 2 or more degrees of
freedom, and it seems imperative to introduce a constraint on the degrees of freedom. But
before we proceed with this, we first examine two alternative ideas that may improve the
stability of the mechanism against disturbances.

5.1. A mean compliance constraint

A mechanism that has exactly f = 1 degree of freedom is called a constrained mechanism [7].
This means that the mechanism becomes rigid when one of the revolute joints is fixed. One
might expect that this kind of mechanism can be obtained for the test example by introducing
an additional perpendicular load case at the output port, as shown in Figure 3. In other words,
the resultant mechanism is expected to form a stiff structure against the perpendicular load
Fp at the output port when the two input ports are firmly supported. The requirement can
be considered in a modified problem, RELAX2, as an additional constraint for the mean
compliance with respect to the load Fp:

Cp = F�
p Up (3)

where the displacement vector Up is a solution to a linear equilibrium equation for the unac-
tuated mechanism.

This results in a problem form:

RELAX2:

max
�

: Dout

s.t. :
M∑

e=1
�e �M∗ + �

: 0 < �min � �e � 1

: symmetric

: Cp �C∗
p

where C∗
p is the constant that gives the upper bound for the mean compliance Cp.

5.2. Example II

We will also solve RELAX2 when M∗ = 8. We examine the following three examples with
the mean compliance constraint values: C∗

p = 0.001, 0.0001 and 0.00001. In the examples, the
magnitude of the perpendicular load is set as ||Fp|| = 0.01. Thus, the three upper bounds for
the mean compliance correspond to the displacements 0.1, 0.01 and 0.001 in absolute value,
respectively. Table I shows the optimization results of the three examples.

Figure 4 shows the resultant mechanisms of the three examples; we only show the effect
of the perpendicular load case for Example II-1, see the upper right figure in Figure 4. The
mechanism of Example II-1 in Figure 4 has obviously more than 1 degrees of freedom. This
can be improved by tightening the mean compliance constraint like Example II-2 and II-3 as

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:1520–1545
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Figure 3. Perpendicular load case.

Table I. Perpendicular load cases.

Example C∗
p Cp Dout

II-1 0.001 0.001 0.5392
II-2 0.0001 0.0001 0.2579
II-3 0.00001 0.00005 0.19541

shown in Figure 4. Note that the mean compliance constraint in Example II-3 is too tight
to find any feasible solution. However, the resultant mechanisms become more dependent on
their flexibility in the way they function. In other words, they cannot move without elon-
gating some bars. Although the perpendicular load case thus may have some effect on the
stabilization of the mechanism against disturbances, it seems to conflict with the objective
function.

5.3. Node number constraint

Another idea for obtaining a proper mechanism is to apply a constraint on the number of active
nodes. Assuming that the mechanism has no redundant elements (we shall discuss this in detail
later), the degrees of freedom of a mechanism that is supported in a statically determinate
manner can be calculated by the following DOF equation based on Maxwell’s rule (in 2D)
[9–11]:

f = 2n − m − 3 (4)

Here, n is the number of nodes, m is the number of bars, and ‘−3’ means that the mechanism
is supported in a statically determinate manner. In the case of f = 1(DOF) and m = 8(bars),
a possible mechanism has to have n = 6(nodes).
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Figure 4. Example II: solutions to RELAX2.

In order to introduce the node number constraint into RELAX1, we need to relax the active
node number n into an approximate number ñ which, for example, can be calculated as

ñ =
N∑

j=1
h1(d̃j ) (5)

Here N is the total node number of the ground structure, d̃i is a relaxed counting of the
number of incident edges, and h1(x) is a differentiable approximation of the step function.
Here we apply the sigmoid function h1(x) given as:

h1(x) := 1

1 + exp[−T1(x − H1)] (6)

Figure 5 shows the case where (T1, H1) = (50, 0.75).
As mentioned, d̃j is a relaxed value that counts the number of incident edges dj , that is,

the degrees of the j th node in the sense of graph theory [15]. The relaxed d̃j is calculated as

d̃j = ∑
e∈ALj

�P
e (7)

where ALj means the adjacency list of edges which are incident with the j th node [16].
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Figure 5. Sigmoid function: h1(x).

In conclusion, we obtain the following relaxed formulation with node number count:

RELAX3:

max
�

: Dout

s.t. :
M∑

e=1
�e �M∗ + �

: 0 < �min � �e � 1

: symmetric

: ñ �N∗

where N∗ is the upper bound of the active node number.

5.4. Example III

The problem statement RELAX3 may give a solution as shown in Figure 6. The right graph
in Figure 6 depicts the connectivity of this mechanism with a schematic drawing. Although
the mechanism has 8 edges and 6 nodes, it still has 2 degrees of freedom. This is because the
resulting mechanism violates the assumption for Maxwell’s rule as expressed in Equation (4)
namely that the mechanism has no redundant elements. More precisely, the assumption is that
every sub-structure of the truss has no redundant elements. The curved edge of the schematic
drawing in Figure 6 illustrates the redundant element which reinforces the stiffness of the right
triangular sub-structure, but which contributes little to the function of the mechanism. This
suggests that we should take account of the redundancy when counting the node number and
the element number as they appear in Equation (4).
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Figure 6. Example III: a solution to RELAX3, Dout = 0.5919.

6. INTRODUCTION OF A DOF CONSTRAINT

The examples above indicate that it will be useful to work directly with a constraint on the
degrees of freedom. Also, one should not directly apply the DOF Equation (4) to the ground
structure because it has all potential elements present and intrinsically has some redundancy,
i.e. we cannot count the number of bars in a straightforward way.

We envisage two possibilities for catering for this:

1. Introduce additional constraints to eliminate the redundant elements.
2. Preserve the redundant elements but ignore them in the DOF calculation.

The first idea is similar to the sub-tour elimination constraints of the famous Traveling Salesman
Problem [12] and it involves the investigation of all possible sub-structures. This may be the
subject of future work, but here we do not go further in this direction.

Instead, we shall pursue the second possibility which can be accomplished by detecting the
number of independent bars m̂ in the ground structure. The number of independent bars m̂

is given as the rank of the direction cosine matrix H in the equilibrium equation between
the element force vector and the nodal force vector. From a computational point of view, it
is useful to use the relation between the number of the independent bars m̂ and the linear
stiffness matrix KF in the unsupported condition. As we have that

KF = HDH� (8)

where D is a diagonal matrix whose entries are the stiffness of the bars (D is positive definite),
we have that the rank of the direction cosine matrix H is the same as the rank of the global
stiffness matrix KF .

Thus we can use the rank of the global stiffness matrix KF to count the number of
independent bars m̂:

m̂ = rank(KF ) (9)

and Equation (4) for calculating the degrees of freedom is now modified to the form,

f = 2n − m̂ − 3 (10)
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(a) (b)

Figure 7. Two plane trusses which have 6 nodes and 9 edges.

We shall demonstrate how this idea works with the following examples which are also
discussed by Calladine [9]. In Figure 7, both trusses have n = 6 nodes and m = 9 edges. If we
applied the DOF Equation (4) to them without any consideration, we would have f = 0 DOF
in both cases. In fact, truss (a) is a simple stiff truss while truss (b) is partly redundant and
partly a mechanism. Hence we need to detect the number of the independent bars in order to
know the correct number of degrees of freedom of truss (b). Since the stiffness matrix KF is
real, symmetric and positive semidefinite, the rank of KF is equal to the number of non-zero
eigenvalues. Figure 8 shows the results of standard eigenvalue analyses for the two trusses.
We see that truss (a) has 9 non-zero eigenvalues (i.e. m̂ = 9) while truss (b) has 8 non-zero
eigenvalues (i.e. m̂ = 8). Substituting these results into Equation (10), the correct number of
degrees of freedom can be given for both cases, namely f = 0 DOF for truss (a) and f = 1
DOF for truss (b).

Another consideration we should take into account is that the ground structure has some
elements that overlap. This is an effect of the regularity of the nodal positions. The problem
caused by such overlapping bars can be illustrated by the following simple 3 bar truss, as in
Calladine [9]. The truss in Figure 9 has 3 bars with 3 joints that are on line in the undeformed
configuration. A transverse displacement � generates the restoring force which equilibrates the
load F [9]:

F = AE�3

2a3 (11)

The restoring force is proportional to the third power of the displacement �. Therefore, Equa-
tion (9) cannot distinguish overlapping bars as independent since KF is based on a linear
analysis. On the other hand, we can raise the effect of the restoring force from the third power
to a linear one in the displacement � by giving the central node of the truss in the undeformed
configuration a finite offset in the vertical direction.

In the realm of geometric non-linearity, this kind of overlapping elements may give very
useful mechanisms such as the scissors shown in Figure 10, and we would like to preserve
this possibility in the mechanism design formulation.

From the discussion above it is apparent that we can avoid the difficulty of detecting useful
overlapping elements by rearranging the nodal positions. One idea is to create what we call a
‘connectivity circle’, as shown in Figure 11, by relocating all the nodes on a unit circle to the
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Figure 8. Detection of independent bars by eigenvalue analysis.
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2a

Figure 9. Overlapped 3 bar truss.

following positions (for further details see Appendix A):

[xi, yi] = [cos �i , sin �i] (12)

�i = 2�

N
((i − 1) + �2−2i

) (13)
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Figure 11. Connectivity circle: � = 0.

where i = 1, 2, . . . , N is the nodal numbering, and � is an optional parameter for avoiding
parallel edges in the circle. Then we redefine the number of independent bars as the number

m̂ = rank(KR) (14)

where KR is the new (linear) stiffness matrix obtained with the circular nodal positions in
the unsupported condition and the same connectivity as the original truss. Since KR is real,
symmetric and positive semidefinite, the rank of KR is equal to the number of non-zero
eigenvalues, and we apply this for evaluating the rank, as we need to generate a differentiable
relaxation of it. The eigenvalue problem for KR is here written as

KR�i = �i�i , i = 1, . . . , 2N (15)
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where �i is the eigenvalues, and �i is the corresponding eigenvector and the following orthog-
onality is assumed (	ij denotes Kronecker’s delta):

��
i �j = 	ij , i, j = 1, . . . , 2N (16)

��
i KR�j = �i	ij , i, j = 1, . . . , 2N (17)

6.1. Relaxation of the DOF equation

In order to introduce the degree of freedom equation (10) into RELAX1, we need to relax this
equation as well. We have already relaxed the number of active nodes as ñ in Equation (5).
The number of independent bars m̂ can be relaxed as

m̃ =
2N∑
i=1

h2(�i ) (18)

where N is the total node number of the ground structure. In the two-dimensional case, each
node has 2 DOF, and the total degrees of freedom amounts to 2N . The function h2(x) is a
differentiable approximation of the step function, defined as in Equation (6) (with parameters
T2 and H2):

h2(x) := 1

1 + exp[−T2(x − H2)] (19)

Assuming that the eigenvalues are simple, the derivative of m̃ with respect to �e exists and
is calculated as

dm̃

d�e

=
2N∑
i=1

h′
2(�i )

d�i

d�e

(20)

where we have used that the derivative of the eigenvalue exists (cf., e.g. Reference [17] and
references therein). Moreover, we have the following expression for the simple eigenvalues:

d�i

d�e

= ��
i

�KR

��e

�i (21)

For the case of multiple eigenvalues we assume that the solution to Equation (15) yields a
NL-fold eigenvalue:

�̄ = �i , i = 1, 2, . . . , NL (22)

where we can choose a set of orthonormal eigenvectors �i (i = 1, 2, . . . , NL) which span the
eigenvector subspace of the eigenvalue in question. It is known that the multiple eigenvalue is
non-differentiable [17–20], and that a sub-differential exists and is given as follows [18]:

��̄ =
{

NL∑
i=1

wi�
�
i

�KR

��e

�i : wi � 0 for all i and
NL∑
i=1

wi = 1

}
(23)
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Also, for the case at hand, the right-hand side of Equation (21) only gives eigenvalue sub-
gradients [21], here labelled as,

�′
i (�i ) := ��

i

�KR

��e

�i , i = 1, 2, . . . , NL (24)

For considering the differentiability of Equation (18) we first remark that the function value
h2(�̄) assigns equal weights to the multiple eigenvalues. Thus it suffices to consider a straight
summation of all the sub-gradients of Equation (24) and to see that this is independent of the
choice of eigenvectors, meaning that the relevant sub-differential contains just one element. In
other words, we note that the summation of all the NL-fold eigenvalue sub-gradients �′

i (�i ) is
uniquely determined and is independent on the choice of eigenvectors. To see that this holds,
choose another arbitrary set of orthonormal vectors �̄ = [�̄1, �̄2, . . . , �̄NL

] for the eigenvalue
�̄ such that

KR�̄ = �̄�̄

�̄
�
�̄ = I

There then exists a NL × NL orthogonal matrix R (i.e. R�R = I ) that satisfies

�̄ = �R

where � = [�1, �2, . . . , �NL
] is the original orthonormal eigenvectors in Equations (23)

and (24). Therefore, we can calculate the summation of the sub-gradients as

NL∑
i=1

�′
i (�̄i ) =

NL∑
i=1

�̄
�
i

�KR

��e

�̄i

= tr

[
�̄

� �KR

��e

�̄

]

= tr

[
R��� �KR

��e

�R

]

= tr

[
�� �KR

��e

�

]
(∵ similar transformation [22])

=
NL∑
i=1

��
i

�KR

��e

�i

(
=

NL∑
i=1

�′
i (�i ) in Equation (24)

)

This means that the summation of the sub-gradients �′
i (�i ) is independent of the choice of

eigenvectors, and that this summation is differentiable.¶

¶We note that the summation of all eigenvalues equals the trace of the matrix. In this case differentiability
follows directly.
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Figure 12. Example IV: a solution to RELAX4, Dout = 0.7913 and the connectivity circle.

From this we thus infer that the expression for the sensitivity of m̃ for both simple and
non-simple eigenvalues can be written as

dm̃

d�e

=
2N∑
i=1

h′
2(�i )�

�
i

�KR

��e

�i (25)

for any choice of orthonormal eigenvectors.
Finally, with these developments, we can introduce the relaxed and differentiable version of

the constraint on the degrees of freedom as the expression:

f̃ = 2ñ − m̃ − 3 (26)

and apply it to the following formulation of our optimization problem:

RELAX4:

max
�

: Dout

s.t. :
M∑

e=1
�e �M∗ + �

: 0 < �min � �e � 1

: symmetric

: f̃ � 1

6.2. Example IV

We have also solved RELAX4 in the case of M∗ = 8 bars. Figure 12 shows the resultant
mechanism and the connectivity circle. The obtained mechanism in Figure 12 is a feasible
solution in the original problem MECH1 as well, and interestingly enough it equals the global
optimum solution found by a graph-theoretical enumeration approach in Reference [14].

Figure 13 shows the optimization histories of Example IV. The optimization process required
29 iterations to converge, which took about 72.5 s with a Matlab code implemented on a
Pentium4-1.7 GHz CPU. One notes that the objective function value increases monotonously.
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Figure 13. Optimization histories and active nodes at the optimum.

Also, both the constraints on the degrees of freedom and on the total number of elements
(depicted as thin lines in Figure 13) are not violated during the optimization process.

We remark here that the constraint f̃ � 1 of RELAX4 involves the application of two sigmoid
functions with parameters (T1, H1) and (T2, H2), respectively. The choice of these parameter
values is somewhat arbitrary, but does influence the results. T1 and T2 are connected with the
sharpness of the ‘step’ of the sigmoid functions, and H1 and H2 are the thresholds between
active and inactive counting of active nodes or non-zero eigenvalues. Good values of (T2, H2)

can be determined by the longest truss of a connectivity circle. The parameter T2 is preferred
to be as small as possible for numerical stability, but not to be so small that the function fails
to recognize an independent bar as active. We have more freedom in the choice of (T1, H1). If
H1 is small, the recognition of the active nodes will be delayed. This means that the constraint
on the degrees of freedom is made looser so it is easier to find a feasible starting point. The
larger H1 becomes, the more conservative is the degree of freedom constraint and the more
difficult it is to find a feasible starting point.

6.3. Effectiveness of the DOF constraint

Table II shows the results of the application of the proposed degree of freedom equation (26)
to the results of Examples I–IV. The introduction of the degree of freedom constraint f̃ � 1
eliminates the solutions found in Example I, II-1 and III. It is especially noteworthy that for
the solution of Example III the DOF equation has successfully detected the 7 independent bars
(instead of 8) and has given the correct number of degrees of freedom as f̃ = 2.
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Table II. Application of the degree of freedom equation.

Examples f̃ (DOF) m̃ (bars) ñ (nodes)

I 5.0 8.0 8.0
II-1 4.0 9.0 8.0
II-2 1.0 8.0 6.0
II-3 0.0 9.0 6.0
III 2.0 7.0 6.0
IV 1.0 8.0 6.0

Table III. Mechanisms which have f � 1 DOF.

Example f̃ (DOF) Cp Dout

II-2 1.0 0.00010 0.2579
II-3 0.0 0.00005 0.1954
IV 1.0 0.00028 0.7913

For further investigation of the examples which have f̃ � 1 DOF (Examples II-2, II-3, and
IV) we need to include an evaluation of the mean compliance given by perpendicular load case
of Figure 3. Table III shows this comparison. The mean compliance of Example IV is larger
than those of Example II-2 and II-3, so both the compliance constraints were too tight relative
to obtaining the result of Example IV. This underlines the difficulty in applying the mean
compliance constraint as a method for controlling the degrees of freedom of the mechanism.

7. A SECOND TEST EXAMPLE

The test example used above has the advantage that the global optimum solution is known.
Here we now proceed with a problem of generating an inverter mechanism utilizing a larger
ground structure.

7.1. Inverter mechanism problem

The inverter mechanism problem is shown in Figure 14. The nodes are numbered from left
to right and from bottom to top. The ground structure contains all possible nodes and truss
connections as well as all necessary boundary conditions, load cases and other related param-
eters. The binary integer formulation is basically the same as MECH1: the maximization of
the output displacement Dnon-linear

out for the given input forces Fin by picking 8 truss elements
out of the 300 possible connections, so that the resultant mechanism has f = 1 DOF when
supported in a statically determinate manner. Also, the mechanism should be symmetric with
respect to the line between nodes 3 and 23. We apply RELAX4 to the inverter problem and
solve it, as above, by MMA.

We have obtained a result as shown in Figure 15 (here thin bars close to the lower bound
(�e < 5 · �min) are made invisible). Figure 16 shows the optimization histories of the objective
function value, the total element number, the degrees of freedom, as well as the active nodes
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Figure 14. Inverter mechanism problem.
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Figure 15. A solution to RELAX4, Dout = 0.1427.

at the optimum. The optimization process required 34 iterations to converge; this took about
192.6 s (Pentium4-1.7 GHz CPU). As Figure 15 shows, the relaxed formulation did not succeed
in providing a (near) integer result; we still in this result have intermediate values in the design
variables �e (the two right-end bars of the mechanism have �e = 0.6457). Moreover, none of
the lower bound constraints (�min � �e) for the design variables is active, and this holds for
the DOF constraint as well.

Although we have tried smaller lower bounds such as �min = 0.0001 and larger penalization
indices such as P = 4, the situation apparently cannot be cured without further revisions of
the optimization procedure.
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Figure 16. Optimization histories and active nodes at the optimum for the inverter mechanism problem.

7.2. A continuation method

One possibility for revising the optimization scheme is to introduce an additional constraint
that will promote the separation of the design variables between the two extrema, i.e. �min or
1. For that purpose we define a separation function as

Cs(�) :=
M∑

e=1
(�e − �min)(1 − �e) (27)

This function is positive in the domain where 0 < �min < �e < 1 (e = 1, . . . , M), and gives
zero when all the design variables attain either �min or 1.

A possible reformulation of our design problem is then:

RELAX5:

max
�

: Dout

s.t. :
M∑

e=1
�e �M∗ + �

:
M∑

e=1
�e �M∗ + � − C∗

s
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Figure 17. A solution to RELAX5, Dout = 0.1338 and the connectivity circle.

: 0 < �min � �e � 1

: symmetric

: f̃ � 1

: Cs �C∗
s

where C∗
s is the upper bound of the separation function. The second constraint makes it possible

to force the total number of elements towards M∗. In implementations, we start the iterations
with a certain positive value for C∗

s and update the value according to the progress of the
refinement of the solution. In other words, we apply a continuation method that has an outer
loop that wraps the inner loop RELAX5 with a certain value for C∗

s . We have adopted the
following update scheme for iC∗

s in the ith outer iteration:

iC∗
s = 0.9 × i−1C∗

s (i � 1) (28)

where 0C∗
s is given from the solution �∗ to RELAX4 as 0C∗

s = Cs(�∗).
We have solved the inverter problem with MMA and obtained an extremum solution as shown

in Figure 17. Figure 18 shows the optimization history. The optimization process required 275
iterations for convergence (25 min with a Pentium4-1.7 GHz CPU). As expected, the objective
function value of the discrete-valued solution is less than that of the solution to RELAX4
(which is less constrained). The thin grey lines in the upper right graph in Figure 18 indicate
the upper and lower bounds of the total element number; the lower bound increases after each
update of iC∗

s . The thin grey line in the lower right graph in Figure 18 indicates the upper
bound of the separation function iC∗

s , which decreases as it is updated in the outer loop.
The crucial difference between the two inverter mechanisms in Figures 15 and 17 is the

position of the input port after deformation. The input port of Figure 15 goes deeper into the
design area than that of Figure 17 because of the effect of the bars at intermediate areas. This
explains why the optimization finds a solution to RELAX4 that contains intermediate values
and why one needs the additional separation constraint of RELAX5.
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Figure 18. Optimization histories of the continuation method.

In order to be sure that the functionality of the mechanism does not change, we have analysed
again the mechanism without the thin bars that are at the lower bound of the density and we
have obtained the same deformed configuration with the output displacement: Dout = 0.1338.

8. CONCLUSIONS

We have experimented with four different kinds of relaxation approaches to the basic test
example in terms of applying the DOF constraint. This encompasses:

RELAX1: No DOF constraint
RELAX2: Mean compliance constraint
RELAX3: Node number constraint
RELAX4: Relaxed DOF constraint

From these examples it is apparent that a DOF constraint is necessary in order to obtain
good results.

Specifically for RELAX4 we note that:

• A method for detecting independent bars in the ground structure has been devised.
• A relaxed version of degree of freedom equation has been implemented.
• The resultant mechanism in Example IV from RELAX4 is the same as the global optimum

solution obtained by an graph-theoretical enumeration approach [14].
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We have also found that RELAX4 may have a difficulty in finding discrete valued solutions
in some cases, here illustrated via an inverter design problem. In order to make sure that a
(near) integer solution is found, we have proposed the continuation method of RELAX5 and
obtained a solution with the desired properties.

Even though the proposed method seems promising with the presented examples, there exists
a critical limitation due to the non-convexity of the problem. It is not clear how much we can use
the same strategy for larger problems. One can expect that it will be very difficult to even find
feasible binary solutions with more bars in use. So we will need to combine some global opti-
mization techniques for generalization and further applications; thus work is in progress [23].

APPENDIX A: NODAL POSITIONS ON THE CONNECTIVITY CIRCLE

In general, the connectivity circle as illustrated in Figure 11 enables one to detect independent
bars in a truss by a standard eigenvalue analysis based on the linear stiffness matrix of the
truss. It is, however, important to note that one should be careful about the placement of the
nodal points on the connectivity circle for some special cases where symmetry may play a
role. For illustration, consider the two trusses shown in Figure A1, in which the numbering of
nodes is somewhat artificial.

If we construct their connectivity circles based on a regular placing of the nodes on the
circle (i.e. � = 0) like Figure A2 and apply standard eigenvalue analyses to their linear stiffness
matrices, we obtain the results shown in Figure A3. Both the connectivity circles have 8 non-
zero eigenvalues, but truss (a) has 9 independent bars while truss (b) has 8 independent bars
(truss (a) forms a stiff structure, while truss (b) is a mechanism). Here the regular nodal lay-
out for truss (a) has created more than two trapezoids (in general this could include twisted
trapezoids) and one fails to detect the independent bars correctly because the linear stiffness
matrix cannot express any higher order effects of stiffness.

Thus Equations (12) and (13) are designed to create asymmetric nodal positions with irregular
intervals between the nodes on the connectivity circle when � > 0. This ensures that none of
the connection between nodal pairs of the truss becomes parallel in the connectivity circle.
Figure A4 shows the connectivity circles for the example above but with the irregular intervals
(� = 1), and the prediction of the number of independent bars is now rectified, cf., Table A1.

An alternative to this is to reduce the number of trapezoids in the connectivity circle by
swapping two or more nodal positions. This is a little bit more complicated because we first
need to find a way to reduce the number of trapezoids in the connectivity circle. The number
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Figure A1. Two plane trusses which have 6 nodes and 9 edges.
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Figure A2. Detection of independent bars by eigenvalue analysis.
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Figure A3. Detection of independent bars by eigenvalue analysis.
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Table A1. Effect of nodal relocations on eigenvalues.

Mode Circle(a) Circle(a)-1 Circle(a)-2 Circle(b) Circle(b)-1 Circle(b)-2

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.00000 0.00159 0.97733 0.00000 0.00000 0.00000
5 3.80866 3.57353 3.03620 8.48612 8.17001 6.61961
6 10.56275 10.51132 8.31595 8.48612 8.69149 8.08050
7 15.00000 14.56579 12.58322 15.00000 14.67180 11.76246
8 17.39342 16.60888 15.92641 15.00000 15.35712 12.71789
9 22.73835 23.45285 22.88706 20.00000 19.98904 17.03465

10 25.00000 25.82366 26.59729 26.51388 24.81688 23.75651
11 28.59083 29.35334 26.64641 26.51388 27.70841 26.40928
12 30.00000 32.10739 29.21816 30.00000 32.54784 29.80711
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Figure A5. Connectivity circles with swap between node 1 and 2.

of trapezoids in Circle (a) can be reduced by, for instance, swapping the first and second nodes
like Circle (a)-2 in Figure A5. However, for Circle (b) we have no possibility to reduce the
number trapezoids due to the symmetry. If we swap the first and second nodes of Circle (b),
we will have Circle (b)-2 in Figure A5, which still has three trapezoids.

Table A1 shows the effect of the two methods on the eigenvalues of the connectivity circles.
We note that the first idea is easy to implement but the effect is quite modest in terms of the
perturbation of the eigenvalues, while the second idea is more difficult but we can expect a
greater effect on the lowest non-zero eigenvalue.
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Design of planar articulated mechanisms using
branch and bound

Mathias Stolpe‡ Atsushi Kawamoto§

Abstract

This paper considers an optimization model and a solution method for the design of two-dimensional
mechanical mechanisms. The mechanism design problem is modeled as a nonconvex mixed integer
program which allows the optimal topology and geometry of the mechanism to be determined simulta-
neously. The underlying mechanical analysis model is based on a truss representation allowing for large
displacements. For mechanisms undergoing large displacements elastic stability is of major concern. We
derive conditions, modeled by nonlinear matrix inequalities, which guarantee that a stable equilibrium is
found and that buckling is prevented. The feasible set of the design problem is described by nonlinear
differentiable and non-differentiable constraints as well as nonlinear matrix inequalities.

To solve the mechanism design problem a branch and bound method based on convex relaxations
is developed. To guarantee convergence of the method, two different types of convex relaxations are
derived. The relaxations are strengthened by adding valid inequalities to the feasible set and by solving
bound contraction sub-problems. Encouraging computational results indicate that the branch and bound
method can reliably solve mechanism design problems of realistic size to global optimality.

Key Words: mechanism design – branch and bound

1 Introduction

In this paper we consider the two closely associated problems of analysis and synthesis (design) of artic-
ulated mechanisms undergoing large deformations, where we by mechanism mean a mechanical device
that can transfer motion and force. The approach chosen here is to solve the analysis and design problems
simultaneously in the sense that the necessary conditions derived from a variational form of the analysis
problem are explicitly stated in the design problem. The combined mechanism design and analysis problem
is modeled as a nonconvex mixed integer program. The design variables in this problem are binary variables
that describe the connectivity (topology) of the mechanisms and continuous variables that describe dimen-
sions and positions (geometry) of the different parts of the mechanism. The design problem also contains
continuous state variables which are associated with the mechanical analysis part and which describe the
behavior of the mechanism under loading. The feasible set of the mechanism design problem is described
by nonlinear differentiable and non-differentiable constraints as well as nonlinear matrix inequalities. To
solve the mechanism design problem a branch and bound method based on convex relaxations is developed.
In order to state a convergent branch and bound method, two different types of convex relaxations are de-
rived. The first is a quadratically constrained linear program that is solved by a general purpose sequential
quadratic programming package. The second relaxation is a linear semidefinite program that is solved by
an interior-point method. To strengthen the relaxations we derive valid inequalities which are added to the
feasible set of the relaxation. Furthermore, the quality of the relaxations are improved by solving bound
contraction sub-problems at each node of the branch and bound tree. To this end, we make extensive use of
modern solvers for linear, quadratic, and linear semidefinite programs.

During the developments of the mechanical model and the early formulations of the optimization prob-
lem it became apparent that the branch and bound method would take full advantage of any (and all) short-
comings in the mechanical model as well as in the optimization model such that technically unrealistic or
‡Mathias Stolpe: Department of Mathematics, Technical University of Denmark, Matematiktorvet Building 303, DK-2800 Kgs.

Lyngby, Denmark. e-mail: M.Stolpe@mat.dtu.dk
§Atsushi Kawamoto: Department of Mathematics, Technical University of Denmark, Matematiktorvet Building 303, DK-2800

Kgs. Lyngby, Denmark. e-mail: A.Kawamoto@mat.dtu.dk
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Fig. 1 Scissor lift.

faulty solutions would be obtained. Therefore, a large portion of this article is devoted to the development of
a mechanical analysis model and motivations for the numerous technological constraints which constitute
the major part of the feasible set of the optimization problem.

The choice of using a deterministic global optimization method is motivated by observations that these
combinatorial mechanism design problems have many good feasible solutions that are difficult to find us-
ing heuristic methods. Furthermore, by using the branch and bound method it is possible to reliably solve
planar mechanism design problems of realistic size to global optimality in reasonable time. Before proceed-
ing to the presentation of the suggested approach we introduce some terminology commonly used within
mechanism design and show one example of the practical use of articulated mechanisms.

1.1 Introduction to mechanism design

A mechanism is a mechanical device that can transfer motion and/or force from a source to an output [22].
A mechanism consists of links (or bars) which are connected by joints. Anarticulated mechanism is a
mechanism which gains all of its mobility from its joints. This is in contrast to acompliant mechanism
which is another type of mechanism that gains some or all of its mobility from the flexibility of its compo-
nents. A mechanism is calledplanar if it can be considered as two-dimensional from a mechanical analysis
point of view and its motion is planar (all bars move in parallel planes).

Articulated mechanisms are used in a great variety of engineering applications. For instance, they are
used as part of automotive suspension systems, as current collectors of electrical locomotives, and as part
of scissor lifts, see Figure 1. The mechanism shown in Figure 1 can be viewed as essentially planar even
though it consists of two planar mechanisms which are joined to form a spatial mechanism. In this example,
however, the motion is planar and any out-of-plane motion is highly undesirable.

One important property of articulated mechanisms is the number ofmechanical degrees of freedom
which is defined as the number of independent inputs required to determine the position of all links of the
mechanism with respect to a global coordinate system [22]. An input is here defined as an external load
applied at the joints of the mechanism. In this paper we focus on design of mechanisms with exactly one
mechanical degree of freedom. This means that the mechanism becomes rigid if one of the revolute joints is
fixed. A mechanism that has exactly one mechanical degree of freedom is called aconstrained mechanism,
see [22].

Normally, articulated mechanisms are modeled by rigid bars and revolute joints, see e.g. [37] and [29].
The design process is commonly divided into three stages, see e.g. [22] and [21]. Firstly, a design objective
is determined for the mechanism to be designed. The objective may, for example, be maximization of output
displacement or generation of a prescribed output path for a given input. Secondly, mechanism properties
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such as the number of bars and joints, mechanical degrees of freedom, and connectivity are determined.
This stage is calledtype synthesis and mainly focuses on topological questions. An elaborate type synthesis
technique based on number synthesis is developed in [47, 48]. Finally, the exact dimensions of all the
mechanical components are determined using optimization. This stage is calleddimensional synthesis and
is mostly related to geometrical questions. Reviews on dimensional synthesis techniques are found in [37]
and [29]. Although type and dimensional syntheses are normally separated in the engineering community,
they are actually so closely connected that they should be treated at the same time.

In this paper we will formulate an optimization problem to facilitatesimultaneous topology and geome-
try design, i.e. simultaneous type and dimensional synthesis of articulated mechanisms. We then proceed to
develop a convergent branch and bound method capable of solving the proposed problem to global optimal-
ity. The optimization problem will be anonconvex mixed integer program with a potentially large number
of integer and continuous variables. The design problem which will be formulated and solved in this paper
can be stated as follows:

“Design an articulated mechanism with exactly one mechanical degree of freedom that given an external
input force maximizes the displacement of a certain joint in a desired direction. Furthermore, the mechanism
should be able to function repeatedly, with certainty, and without using the flexibility of its members.”

Instead of using rigid bars and revolute joints in the analysis of the mechanism we propose to use a truss
representation. Bytruss we mean an assemblage of straight elastic bars which are connected at frictionless
pin-joints (nodes). It is assumed that the external loadings are applied only at the truss joints and therefore
that only axial forces exist within the truss. This choice of model is motivated not only for its simplicity but
also for the possibility it gives to avoid the numerical problems associated with the use of rigid bars in the
dimensional synthesis (the so called non-assembly problem, see e.g. [37] and [29]).

The use of an elastic truss model is an approximation of the rigid bars and revolute joints. Therefore it is
important to choose the modulus of elasticity sufficiently large such that the articulated mechanisms cannot
rely on the elasticity of the bars to function. In other words, if the modulus of elasticity is large enough then
the functionality of articulated mechanisms will not change if all the truss elements are replaced with rigid
bars.

To formulate the design problem we adopt a commonly used technique from topology optimization of
stiff structures called theground-structure approach which was introduced in the 1960s in [20]. This tech-
nique, applied to so-calledminimum compliance problems, generated a lot of interest in the mathematical
programming community in the early and mid 1990s (see e.g. [11]) since these problems are highly struc-
tured. Minimum compliance problems can be modeled as large-scale linear semidefinite programs [49],
[12], [13], second-order cone programs [10], convex quadratically constrained quadratic programs [1], [31],
or even non-smooth problems [7]. In the ground-structure approach, a large number of potential nodes and
an even larger number of potential bars are distributed over a two-dimensional domain. Typically, the nodes
are initially evenly distributed over a rectangular design domain and connections are allowed between each
pair of nodes. In the following, the number of nodes is denoted byN and the number of potential bars is
denoted byn = N(N − 1)/2. To facilitate simultaneous topology and geometry optimization we associate
in the following with every potential bar a binary variable indicating presence or absence of the bar in the
final design (topology variables) and with every node we introduce continuous variables representing the
initial undeformed position of the node (geometry variables) as well as binary variables indicating absence
or presence of the node in the final design.

An introduction to applications and methods for topology optimization of discrete and continuum struc-
tures based on the ground structure approach can be found in the monographs [14] and [16] and the review
articles [41] and [23].

1.2 A benchmark example

To illustrate the ground-structure approach a benchmark example is shown in Figure 2. The figure shows
a truss ground-structure with possible nodes and connections, the boundary conditions, and the external
loads. Overlapping bars are not shown in the figure. In all, the ground-structure consists ofN = 12 nodes
andn = 66 potential bars. The design domain is defined as the gray square area with height and width
equal to one. The single external load, denoted byp is applied at node 1 and 3 simultaneously. The nodes
at which the external load is applied are called the input ports. The node at which the desired output should

3



1

2

3

4

5

6

7

8

9

10

11

12

c

p

p

Fig. 2 Ground-structure for the benchmark example.

take place is named the output port. In this example it corresponds to node 11. The direction of the desired
output is denoted byc. The springs and forces at the input ports model strain based actuators (e.g. shape
memory alloys or piezoelectric devices) and the output spring simulates resistance of movement.

For the benchmark examples shown in Figure 2 it is possible to enumerate all symmetric topologies
consisting of eight bars with exactly one degree of freedom, see [33]. For this example there exist 144
different topologies which can produce output displacement in the desired direction. However, as the num-
ber of potential bars, active bars, and nodes increase the number of potential topologies grows rapidly and
enumeration becomes intractable.

To illustrate the richness of the feasible set of this example, six different topologies with six nodes,
eight bars, and one mechanical degree of freedom, which all can generate output in the desired direction,
are depicted using kinematic diagrams (schematic drawings of mechanisms) in Figure 3. In these figures it
is assumed that the initial nodal positions remain fixed, and hence only the topology is changed. The curved
lines in Figure 3(f) represent overlapping bars.

Even though six different topologies with completely different behavior under loading are depicted in
Figure 3, the connectivity of the mechanisms shown in Figure 3(a) - 3(c) and Figure 3(d) - 3(f), respectively,
are very similar. In fact, if the nodal positions of the three active nodes where no springs are attached are
allowed to change, the topologies in Figure 3(a) - 3(c) (and 3(d) - 3(f) respectively) can be made exactly the
same! This observation suggests that the positions of the nodes are of the utmost importance and should
also be considered as a part of the problem formulation.

A very important concept in mechanism design is that of elastic stability. In our benchmark example
instability is particularly noticeable as buckling of sub-structures. This is a global phenomenon in contrast to
the local Euler buckling of long thin bars. To illustrate buckling of substructures we consider the mechanism
shown in Figure 3(a). Consider the two left-most vertical bars in Figure 3(a). If a small force is applied as
indicated in the ground-structure, these two bars will be compressed. In this situation their common node,
the node labeled 2 in Figure 2, will initially not move. As the applied force is increased, the node will
suddenly move to the right or left depending on imperfections in the design. Unfortunately, this move will
be large and instant and the direction is unpredictable. Therefore, this situation is undesirable. Accompanied
with each mechanism in Figure 3 is a statement, for now based on engineering experience, if the mechanism
is stable or not with respect to buckling of sub-structures. In two of the examples shown in Figure 3 the
mechanisms are unstable since buckling must occur before movement of the output port in the desired
direction is possible. Also stated below each mechanism is the displacement of the potential movement of
the output port in the desired direction.

There exist several reasons for choosing complete deterministic methods to solve the considered mecha-
nism design problems. First of all, the considered topology optimization problem is of combinatorial nature
with potentially many good feasible designs (topologies) as indicated in Figure 3. Secondly, the outlined
approach gives the possibility to include various types of nonconvex restrictions to the feasible set, such
as global stability and local stress constraints. These constraints are important from a mechanical point of
view but they have previously been considered too difficult to include due to the nonconvexity of the con-
straints or due to the drastically increased size of the optimization problem. Thirdly, the choice of method is
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(a) Unstable (0.118). (b) Stable (0.118). (c) Stable (0.118).

(d) Stable (0.791). (e) Unstable (0.820). (f) Stable (0.778).

Fig. 3 Some potentially feasible topologies for the benchmark example.

motivated by computational experience with the penalization methods traditionally used in topology opti-
mization with binary variables, see [32]. Finally, computational experience with branch and bound methods
for the design of stiff truss structures indicate that it is possible to solve problems of the size which will be
required, see [17] and [44].

1.3 Outline

This paper is organized as follows. In Section 2, the mechanical model together with the equilibrium
equations, the stability analysis, and degree of freedom analysis are presented. In Section 3, a basic topol-
ogy optimization problem together with two convex relaxations and some specialized valid inequalities are
presented. In Section 4, the topology design problem is extended such that simultaneous topology and ge-
ometry design is possible. The branch and bound method for the proposed problems is presented in Section
5. Section 6 contains solutions to several numerical examples. Section 7, finally, contains conclusions and
possible directions for future research within this area.

2 The mathematical-mechanical model

In this section we present the mathematical format of the models for the analysis of large-displacement
trusses which are used throughout the paper. First we introduce a relevant strain measure and present the
mechanical analysis problem for elastic trusses undergoing large displacements. The analysis problem
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consists of determining the behavior, quantified by displacements, strains, and stresses of the truss under
loading. This problem will be defined by two necessary conditions on the displacements stating that(i) the
external and internal loads should be in balance for a given design, and(ii) that the deformed mechanism
should be stable. Then we present stability conditions for the undeformed mechanism, designed to avoid
elastic instabilities which may cause the mechanism to malfunction. Finally, we present a procedure to
correctly compute the mechanical degrees of freedom of a truss with overlapping bars.

2.1 Notation

Given a real symmetric matrixA, the expressionA � 0 means thatA is positive semidefinite. Ifa ∈ R then
the notationa+ denotesa+ = max{a,0}. Similarly, a− is defined asa− = min{a,0}. If a is a real vector or
a real matrix thena+ anda− are defined component-wise. The vectore and the matrixI denote the vector
of all ones and the identity matrix whose dimensions are defined by the context of their use.B

n denotes the
set ofn-dimensional binary vectors.

2.2 Equilibrium equations

The topology variables in the model are the bar areasaj ∈ {0,1}, j = 1, . . . , n wheren is the number
of potential bars in the ground-structure. The geometry variables in the model are the nodal positions
χ = (x1, y1, . . . , xN , yN)� ∈ R2N whereN is the number of nodes (frictionless joints) in the ground-structure
and (xk, yk) is the position of thek-th node. Further, the state variables in the model are collected in the
vectoru ∈ Rd containing the nodal displacements of the design under the external load. The dimension
of the displacement vectord is the number of degrees of freedom (in the finite element method sense) of
the structure which for a two-dimensional trussd = 2N − df wheredf is the number of prescribed fixed
displacements (assumed to be zero). The total potential energyΠ(a, u, χ) of a truss subjected to the external
static nodal force vectorp ∈ Rd is given by

Π(a, u, χ) =
1
2

u�K0u +
1
2

n∑
j=1

E jl j(χ)a jε j(u, χ)
2 − p�u,

whereK0 ∈ Rd×d is the constant spring stiffness matrix due to linear springs attached to some of the nodes
in the truss,E j > 0 is the Young’s modulus in thej-th bar,l j(χ) is the undeformed length, andε j(u, χ) is the
strain (defined below) of thej-th bar, respectively.

For a given topology and geometry the displacement vectoru ∈ Rd should be a minimizer of the
potential energy. In order to find a stable equilibrium, we need to find a local minimizer or at least a
stationary point ofΠ(a, u, χ) such that the Hessian of the potential energy with respect tou is positive
semidefinite. The problem of finding such au is called the analysis problem. The first order optimality
conditions for this problem, in the form ofequilibrium equations, are given by

∇uΠ(a, u, χ) = 0, (1)

while the second order conditions, in the following calledstability conditions, are given by

∇2
uuΠ(a, u, χ) � 0. (2)

Note thatΠ(a, u, χ) in general is a nonconvex functional which may have no such stationary points. Al-
ternatively, there may exist several displacement vectorsu satisfying both (1) and (2) for a given design
(a, χ).

Throughout the present paper we make the following assumptions on the mechanical model.

1. Large displacements are allowed but the strains are assumed to be small.

2. The strain is given by the Green-Lagrange strain measure.

3. The material is linearly elastic and the material properties remain constant.
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The Green-Lagrange strain measureε j(u, χ) is defined as

ε j(u, χ) =
l̂2j (u, χ) − l2j (χ)

2l2j (χ)
,

wherel̂ j(u, χ) is the deformed length of thej-th bar, see e.g. [19]. In order to rewrite this strain measure,
we first introduce a symmetric positive semidefinite matrixBj ∈ R2N×2N which is defined such that the
undeformed length of thej-th bar is given byl j(χ) = (χ�Bjχ)1/2. The non-zero part ofBj is given by, in
local coordinates corresponding to the position of the end nodes of the considered bar,

Bj =


1 0 −1 0
0 1 0 −1
−1 0 1 0

0 −1 0 1

 .

The matrixB̃ j is the symmetric positive semidefinited × d matrix that remains after removing the rows and
columns corresponding to the fixed degrees of freedom fromBj. The matrixB̂ j is thed × 2N matrix which
remains after removing the rows corresponding to the fixed degrees of freedom fromBj.

The Green-Lagrange strain in thej-th bar may now be reformulated as

ε j(u, χ) =
1

l2j (χ)
b�j (χ)u +

1

2l2j (χ)
u�B̃ ju, (3)

wherebj(χ) = B̂ jχ ∈ Rd. Then the vectorbj(χ)/l j(χ) contains the direction cosines of thej-th bar,
b�j (χ)u/l j(χ) is the linearized elongation of the bar, andb�j (χ)u/l2j (χ) is the linear (small deformation)
strain. The potential energy can, using the Green-Lagrange strain (3), be written as

Π(a, u, χ) =
1
2

u� (K(a, χ) +G(a, u, χ) + H(a, u, χ)) u − p�u

where the positive semidefinite matrixK(a, χ) ∈ Rd×d is given by

K(a, χ) = K0 +

n∑
j=1

a jE j

l3j (χ)
b j(χ)b

�
j (χ)

and the matrixG(a, u, χ) ∈ Rd×d is given by

G(a, u, χ) =
n∑

j=1

a jE j

l3j (χ)
b�j (χ)uB̃ j =

n∑
j=1

s j(χ)

l j(χ)
B̃ j.

We denote the small deformation axial forces bys j(χ) = a jE jb�j (χ)u/l2j (χ). The higher order terms are

collected in the positive semidefinite matrixH(a, u, χ) ∈ Rd×d given by

H(a, u, χ) =
1
4

n∑
j=1

a jE j

l3j (χ)
(B̃ ju)(B̃ ju)�.

The matricesK(a, χ) andG(a, u, χ) are normally called the linearstiffness matrix and thegeometry matrix
of the truss respectively.

2.3 Stability analysis

Of major importance in mechanism design, as well as in traditional truss topology design in linear elasticity,
is the possibility of obtaining an optimal design which is unstable. For structures, such as bridges, insuffi-
cient elastic stability may cause the structure to fail under loading even if the stresses in the material are not
significant. For mechanisms, insufficient elastic stability may hinder the mechanism to function properly.
For example, consider the mechanism in Figure 3(e). This mechanism cannot move unless buckling occurs.
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For this mechanism, the direction of movement is also uncertain and determined by imperfections in the
design.

Since we want the optimal design to be able to perform its task repeatedly and with certainty, the elastic
stability of the mechanism must be assured. To meet this requirement, we include constraints on the global
stability of the mechanism in the problem formulation. The derivation of the stability conditions in this
section are described in [8] and [34].

Intuitively, a structure or mechanism is stable for small external loads, but as the force increases and
reaches a certain limit, the mechanism may become unstable. The problem of truss stability is to find a
critical load for which the structure becomes unstable. A commonly used model for the stability analysis
of trusses is thelinear buckling model, see e.g. [6]. Using the linear buckling model, the condition on the
truss stability can be stated as the nonlinear matrix inequality

K(a, χ) +G(a, u0, χ) � 0, (4)

whereu0 is a solution to the small-deformation equilibrium equations

K(a, χ)u0 = p. (5)

Since the stability conditions (4) and (5) are intended for stiff structures rather than mechanisms, the dis-
placement vectoru0 that solves (5) may violate the small displacement assumptions. We therefore replace
the external loadp in the small-deformation equilibrium equations (5) byαp, whereα is a given scalar
satisfying 0< α < 1. In the numerical examples we useα = 0.5.

The global stability conditions (4) guarantee that the mechanism is stable in the initial configuration,
while the conditions (2) guarantee that the mechanism is stable in the final configuration. These conditions,
however, do not guarantee that the mechanism is stable for the entire load path.

2.4 Degree of freedom analysis

In this section we present a way to compute the mechanical degrees of freedom of a mechanism which is
independent of the geometry of the mechanism and correctly accounts for the possibility that some bars are
overlapping.

Assuming for now that a mechanism hasno redundant elements, then the number of mechanical degrees
of freedomdm of the mechanism that is supported in a statically determinate manner can be calculated by
the following equation based on a two-dimensional version of Maxwell’s rule, see e.g. [18], [40], and [25],

dm = 2 (number of nodes)− (number of bars)− 3. (6)

Here, ‘−3’ means that the mechanism is supported in a statically determinate manner, i.e. that the mecha-
nism can neither translate nor rotate. The formula (6) is used to define necessary conditions on the topology
variables so that the mechanism has exactly one degree of freedom. In order to count the number of active
nodes, additional binary variables, callednode activity variables, vk ∈ {0,1} for k = 1, . . . ,N are introduced.
The number of active nodes, i.e. nodes for whichvk = 1, can easily be determined by summing the node
activity variables.

Since the ground-structure allows connections (bars) between each pair of nodes it intrinsically contains
redundant bars. Therefore, the number of bars cannot be counted in a straightforward way in the mechanical
degree of freedom analysis. The counting method applied in this paper works by detecting the number of
independent bars m(a) in the ground-structure. The number of independent bars is given by the rank of the
so-calledlinear equilibrium matrix C(a, χ) ∈ R2N×n [18]. The j-th column in the matrixC is given by

C j(a, χ) = a jBjχ/l j(χ), j = 1, . . . , n.

Due to the regularity of the nodal positions in the original ground-structure, the above method fails to detect
overlapping elements as independent. This is unfortunate since overlapping bars are often useful for large
displacement mechanisms. In order to distinguish overlapping bars as independent, the nodal positions are
rearranged within the degree of freedom analysis. One approach is to create what is called aconnectivity
circle, shown in Figure 4 for the benchmark example, by relocating all the nodes onto a unit circle with the
positions

(x̃k, ỹk) = (cosθk, sinθk),
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Fig. 4 Connectivity circle for the benchmark example (β = 0).

where the anglesθk are given by

θk =
2π
N

(
(k − 1)+ β2−2k

)
.

Hereβ is an optional parameter for avoiding parallel edges in the circle, for further details we refer to [32].
In the numerical examples we useβ = 1. The number of independent bars is then redefined as

m(a) = rank
(
C(a, χ̃)

)
,

whereχ̃ = (x̃1, ỹ1, . . . , x̃N , ỹN)� ∈ R2N . Finally, the degree of freedom analysis writes

dm(a, v) = 2
N∑

k=1

vk − m(a) − 3. (7)

Due to the definition of them(a) and the sum of the node activity variables that appear in (7) the number of
mechanical degrees of freedom is only well-defined for (a, v)� ∈ Bn × BN .

3 The basic topology optimization problem

Since the pure topology optimization problem is of significant importance in its own right and the formu-
lation contains (mathematical) structures which should be exploited, but which are lost when the positions
of the nodes in the ground-structures are allowed to change, this problem will be treated separately. The
changes and amendments to the method and analysis necessary to enable variation in the nodal positions
are outlined in a separate section.

3.1 Motivation for the optimization problem

During the developments of the mechanical model and the early formulations of the optimization problem it
became apparent that the branch and bound method would take full advantage of any (and all) shortcomings
in the mechanical and optimization models. In the first attempts no global stability or stress constraints were
included in the problem formulation.

The first obtained optimal designs therefore violated the small strain assumption by allowing the de-
formed length of certain bars to approach zero by compressing the bars, thus allowing the strain to approach
its lower bound, i.e.ε j → −1/2. The small strain assumption is therefore enforced by adding stress con-
straints to the feasible set of the optimization problem. Ifσmin

j < 0 andσmax
j > 0 are given stress limits in

compression and tension respectively, then the stressesσ j(u) defined asσ j(u) = E jε j(u) must satisfy

σmin
j ≤ E jε j(u) ≤ σmax

j , ∀ j : a j = 1. (8)
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Note that stress constraints must only be enforced for bars which have a nonzero area, otherwise these
constraints will make the feasible set overly stringent. Constraints of this type are often called design-
dependent.

The lack of global stability constraints further revealed the branch and bound method’s capabilities
to exploit weaknesses of the mechanical model. If the stability condition∇2

uuΠ(a, u) � 0 is omitted, a
displacement vector may be found satisfying∇uΠ(a, u) = 0 and∇2

uuΠ(a, u) � 0 meaning that the mechanism
will potentially not be able to return to the original configuration if the external forces are reversed. If, on
the other hand, the linear buckling constraintsK(a) + G(a, u0) � 0 are omitted, the solution shown in
Figure 3(e) becomes the optimal design for the benchmark problem. In this example there exist at least
two displacement vectors which satisfy both∇uΠ(a, u) = 0 and∇2

uuΠ(a, u) � 0. One with an output port
displacement of 0.82 and the other with an output port displacement of−0.05 ! Both the topologies in
Figure 3(a) and 3(e) are unstable with respect to the linear buckling conditions.

3.2 Problem formulation

In this section we present the pure topology optimization problem. The problem under consideration is to
design a stable mechanism with exactly one mechanical degree of freedom which, given an external input
force p ∈ Rd, maximizes the output port displacement in the desired direction defined by the vectorc ∈ Rd.
For manufacturing purposes, we wish to control the number of barsVn in the final mechanism and therefore
add the requirement that

n∑
j=1

a j = Vn, (9)

whereVn > 0 is a given integer. Because of the requirement on the mechanical degrees of freedom the
number of active nodes can also be safely controlled by adding the requirement

N∑
k=1

vk = VN , (10)

whereVN > 0 is an integer chosen such thatVN andVn satisfy 2VN − Vn − 3 = 1. Due to the requirement
(10), the number of mechanical degrees of freedom becomes independent ofv and for brevity we write
dm(a) = 1.

In order to obtain a practical mechanism that can transfer energy or work from the input ports to the
output port, it is required that at least two bars incident upon nodek are present if nodek is active, see [33]
for details. This can be modeled by the linear inequalities

∑
j∈Ak

a j ≥ 2vk, k = 1, . . . ,N, (11)

whereAk is an index set containing the bars incident upon nodek. Similarly, nodes which are inactive
(vk = 0) are prevented from having any incident bars present. These requirements may be enforced by the
following linear constraints

a j ≤ vk, j ∈ Ak, k = 1, . . . ,N. (12)

Formally, the topology design problem is stated as the nonconvex mixed integer optimization problem

maximize c�u
subject to ∇uΠ(a, u) = 0,∇2

uuΠ(a, u) � 0,
K(a)u0 = p,K(a) +G(a, u0) � 0,
σmin

j ≤ E jε j(u) ≤ σmax
j , ∀ j : a j = 1,

dm(a) = 1,
e�v = VN , e

�a = Vn,∑
j∈Ak

a j ≥ 2vk, k = 1, . . . ,N,

a j ≤ vk, k = 1, . . . ,N, j ∈ Ak,

umin ≤ u, u0 ≤ umax,

a ∈ {0,1}n, v ∈ {0,1}N ,

(13)
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where the variables are (a, u, u0, v)� ∈ Bn × Rd × Rd × BN ; umin ∈ Rd andumax ∈ Rd are given displacement
limits. The displacement bounds are included in the formulation for several reasons. They give the designer
the possibility to control the size of the deformed mechanism and to prevent movement of the nodes that
violate the planar motion assumption such as nodes which cross over each other. The displacement bounds
also make the feasible set of the topology design problem (13) bounded, a property which is essential for
constructing convex relaxations of the problem.

In order to define a convergent branch and bound method for solving the nonconvex mixed integer pro-
gram (13) it is necessary to construct a convex relaxation of (13) which can provide good upper bounds on
the optimal objective function value of (13). There exist a multitude of possibilities to construct convex re-
laxations of (13). Our choice is motivated by a compromise between the tightness (quality) of the relaxation
and the computational burden to solve it. Furthermore, the choice is colored by the availability of fast and
robust solvers for solving the relaxation. Our aim is to construct smooth convex nonlinear programming
relaxations which can be solved by standard methods such as sequential quadratic programming.

To construct a convex relaxation of the nonconvex mixed integer problem (13), the nonlinear semidef-
inite stability constraints∇2

uuΠ(a, u) � 0, the stability constraintsK(a)u0 = p, K(a) + G(a, u0) � 0 as well
as the degree of freedom constraintdm(a) = 1 are relaxed, simply by temporarily removing them as well as
the small-displacement variablesu0.

The degree of freedom constraint is removed since it is only well-defined for topologies satisfying
(a, v)� ∈ Bn ×BN . If a candidate topology is found, either by partitioning or by some heuristic method, this
constraint is reintroduced in the form of afeasibility test. This feasibility test is also used as a pruning test.
If the topology is completely fixed at some node in the search tree, due to branching, the node can safely be
fathomed if the feasibility test determines that the degree of freedom constraint is not satisfied.

The stability constraints are removed since relaxing them will introduce linear matrix inequalities and
matrix valued variables in the convex relaxations. Although the quality of the relaxations would improve,
the solution time would increase drastically.

The stability constraintsK(a)u0 = p, K(a) + G(a, u0) � 0 are also reintroduced in a feasibility test
which is called every time a candidate topology ¯a ∈ Bn is found either by branching or by heuristics.
In the feasibility test it is determined if there exist a displacement vectoru0 such thatK(ā)u0 = p and
K(ā) +G(ā, u0) � 0. This can be done by solving a linear semidefinite program.

To guarantee that the stability constraints∇2
uuΠ(a, u) � 0 are satisfied, a more elaborate feasibility test,

called apruning test, is used. Again, this test is called for a fixed topology and the aim is to deduce if
a certain domain defined by displacement bounds (and the fixed topology) may be excluded from further
examination of the branch and bound method. This pruning test can also be conducted by solving a linear
semidefinite program.

After the removal of these complicating constraints a nonconvex mixed integer relaxation of (13) is
obtained. This problem is then reformulated to contain only linear, bilinear, and convex quadratic terms.
This reformulation is achieved by introducing additional variables and constraints. The bilinear terms are
then relaxed using the convex and concave envelopes of bilinear terms over a box inR

2. Finally, the integer
requirements on the topology and node activity variables are relaxed. The relaxation that will be used to de-
termine upper bounds on the objective function value of (13) has a linear objective function, linear equality
and inequality constraints, and convex quadratic inequality constraints. The quadratic inequalities are then
approximated by linear inequalities to give a linear programming relaxation of (13). This relaxation will
then be used to define bound contraction sub-problems that are used to strengthen the nonlinear relaxation.

3.3 Reformulation and relaxation of the problem

To remove the design-dependence in the stress constraints (8) and to reduce the order of nonlinearity on
the equilibrium equations additional variablesf = ( f1, . . . , fn)� ∈ Rn representing the bar forces andε =
(ε1, . . . , εn)� ∈ Rn representing the strains are introduced together with the bilinear equalities

f j = a jE jε j, j = 1, . . . , n, (14)

and the quadratic equalities

ε j =
1

l2j
b�j u +

1

2l2j
u�B̃ ju, j = 1, . . . , n. (15)
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The stress constraints (8) may, using the above introduced force and strain variables, be written as linear
inequality constraints. If the stress constraints are multiplied byaj then the force variables must satisfy

a jσ
min
j ≤ f j ≤ a jσ

max
j , j = 1, . . . , n. (16)

The following lemma shows how bilinear equalities involving a binary variable and a bounded continuous
variable can equivalently be expressed as a set of linear inequalities.

Lemma 3.1 Let εmin ∈ R and εmax ∈ R be given constants and letM = {(a, f , ε) ∈ {0,1} × R × R | εmin ≤
ε ≤ εmax}. Then (a, f , ε) ∈ M satisfies the bilinear equation

f = aε

if and only if (a, f , ε) ∈ M satisfies the four linear inequalities

aεmin ≤ f ≤ aεmax, (1− a)εmin ≤ ε − f ≤ (1− a)εmax.

A proof of Lemma 3.1 is given in [45].

Because of the boundedness of the displacement variables and the integer constraints on the design
variables the bilinear constraints (14) are equivalently written as the linear inequalities

a jE jε
min
j ≤ f j ≤ a jE jε

max
j , j = 1, . . . , n, (17)

(1− a j)E jε
min
j ≤ Eε j − f j ≤ (1− a j)E jε

max
j , j = 1, . . . , n, (18)

where the constant lower and upper bounds on the strain variables, denoted byεmin
j ∈ R and εmax

j ∈ R
respectively, can be determined by solving, for eachj, the two quadratic programs

εmin
j =

1

l2j
minimize
umin≤u≤umax

b�j u +
1
2

u�B̃ ju (19)

and

εmax
j =

1

l2j
maximize
umin≤u≤umax

b�j u +
1
2

u�B̃ ju. (20)

Problem (19) is a convex quadratic program and can thus be efficiently solved using an active set or interior
point method. Problem (20) on the other hand is a maximization problem with a convex objective function
which must be solved to global optimality. It is well-known that the optimal solution will be located at an
extreme point of the feasible set. Since the problem can be transformed to a problem in local coordinates
with at most four variables it can be solved by exhaustively enumerating the extreme points of the feasible
set.

Since the gradient of the total potential energy is given by

∇uΠ(a, u) = K0u +
n∑

j=1

E jl ja jε j(u)∇ε j(u) − p

where the gradient of the strain in thej-th bar is given by

∇ε j(u) =
1

l2j
(b j + B̃ ju)

it follows that the equilibrium equations∇uΠ(a, u) = 0 expressed in the force and displacement variables
are given by

K0u +
n∑

j=1

f j

l j
(b j + B̃ ju) − p = 0. (21)

A nonconvex mixed integer relaxation of the topology design problem (13) containing only linear,
bilinear, and quadratic terms is given by the following problem in the variables (a, u, v, ε, f )� ∈ Bn × Rd ×
B

N × Rn × Rn.
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maximize c�u
subject to (15), (16), (17), (18), (21),

(9), (10), (11), (12),
umin ≤ u ≤ umax,

a ∈ {0,1}n, v ∈ {0,1}N .

(22)

3.4 Convex relaxations

To construct a convex relaxations of the mixed integer nonconvex programs (22) and (13), we follow the
practice used in e.g. [35], [3], and [24], and replace every bilinear term with its convex and potentially also
concave envelope. The convex envelope of a functiong is denoted by cog while the concave envelope is
denoted by cavg. LetΩ denote a box inR2 defined by

Ω =
{
(ξ, η) ∈ R2 | ξmin ≤ ξ ≤ ξmax, ηmin ≤ η ≤ ηmax

}
.

In the following two lemmas, which will be used frequently throughout the remainder of this paper, the
convex and concave envelopes of bilinear terms are stated.

Lemma 3.2 The convex envelope of ξη over Ω is

co ξη = max{ξminη + ηminξ − ξminηmin, ξmaxη + ηmaxξ − ξmaxηmax}.
A proof of Lemma 3.2 is given in [4].

Lemma 3.3 The concave envelope of ξη over Ω is

cav ξη = min{ξminη + ηmaxξ − ξminηmax, ξmaxη + ηminξ − ξmaxηmin}.
A proof of Lemma 3.3 is given in [2].

A critical property of the above convex and concave envelopes to guarantee convergence of a branch
and bound method for problems with bilinear terms is stated in the next lemma.

Lemma 3.4 co ξη = ξη and cav ξη = ξη for all (ξ, η) on the boundary of Ω.

A proof of Lemma 3.4 is given in [2].

Since the matrices̃Bj are positive semidefinite, convex relaxations of the quadratic equality constraints
(15) are obtained by replacing them by the convex inequalities

b�j u +
1
2

u�B̃ ju ≤ l2jε j, j = 1, . . . , n. (23)

This relaxation is not strong enough to guarantee convergence of a branch and bound method. We therefore
also approximate the nonconvex quadratic inequalities

b�j u +
1
2

u�B̃ ju ≥ l2jε j (24)

by replacing them with the concave envelope of the bilinear constraints

b�j u + 1
2u�ν j ≥ l2jε j, j = 1, . . . , n,

where the additional variablesν j ∈ Rd are defined by

ν j = B̃ ju, j = 1, . . . , n. (25)

To this end, we need upper and lower bounds on the components inν j. These bounds are given by

νmax
j = B̃+j umax+ B̃−j umin
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and
νmin

j = B̃+j umin + B̃−j umax,

whereB̃+j ∈ Rd×d and B̃−j ∈ Rd×d denote the matrices consisting of the positive and negative parts ofB̃ j,
respectively. Introduce additional variablesωi j ∈ R corresponding to the bilinear termsuiνi j. The variables
ωi j should satisfy the linear inequalities

ωi j ≤ umin
i νi j + uiν

max
i j − umin

i ν
max
i j ,

ωi j ≤ umax
i νi j + uiν

min
i j − umax

i ν
min
i j .

(26)

Relaxations of the constraints (24) are now given by the linear inequalities

b�j u +
1
2

d∑
i=1

ωi j ≥ l2jε j. (27)

The equilibrium equations (21) are bilinear in the variablesf j andν j(= B̃ ju). Therefore, additional
variablesη j ∈ Rd corresponding tof jν j are introduced. The variablesη j must satisfy the linear inequalities

η j ≥ f jν
max
j + f max

j ν j − f max
j νmax

j ,

η j ≥ f jν
min
j + f min

j ν j − f min
j ν

min
j ,

η j ≤ f jν
min
j + f max

j ν j − f max
j νmin

j ,

η j ≤ f jν
max
j + f min

j ν j − f min
j ν

max
j ,

(28)

where the lower and upper bounds on the force variables aref min
j = σmin

j and f max
j = σmax

j . A relaxation of
the equilibrium constraints (21) is given by the linear equality constraints

K0u +
n∑

j=1

1
l j

( f jb j + η j) − p = 0. (29)

A continuous convex relaxation of the nonconvex mixed integer program (22) is now given by the quadrat-
ically constrained linear program

maximize c�u
subject to (16), (17), (18),

(23), (25), (26), (27),
(28), (29),
(9), (10), (11), (12),
umin ≤ u ≤ umax,

a ∈ [0,1]n, v ∈ [0,1]N ,

(30)

where the variables are (a, u, v, ε, f , η, ω, ν). Since the convex problem (30) is a relaxation of the nonconvex
relaxation (22) it is also a relaxation of the original topology design problem (13). The above discussion
motivates the following proposition.

Proposition 3.1 Problem (30) is a convex relaxation of (13).

If the variablesωi j are forced to satisfy also the linear inequalities

ωi j ≥ umin
i νi j + uiν

min
i j − umin

i ν
min
i j ,

ωi j ≥ umax
i νi j + uiν

max
i j − umax

i ν
max
i j ,

(31)

then a relaxation of the quadratic inequalities (24) is given by the linear equality

b�j u +
1
2

d∑
i=1

ωi j = l2jε j. (32)
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If the convex quadratic inequalities (23) and the linear inequalities (27) are replaced by the linear equalities
(32) and the additional inequalities (31) are added to the relaxation (30), then the following linear program
is obtained.

maximize c�u
subject to (16), (17), (18),

(25), (26), (28), (29), (31), (32),
(9), (10), (11), (12),
umin ≤ u ≤ umax,

a ∈ [0,1]n, v ∈ [0,1]N .

(33)

Proposition 3.2 Problem (33) is a linear programming relaxation of (13).

In practical computations when solving the relaxations (30) and (33), the additional variablesν j need not be
explicitly used, but are kept here for readability. Furthermore, since the matricesB̃ j are structured and very
sparse, most of the entries inν j, η j, andω j can be fixed to zero and therefore omitted in the computations,
in fact, at most four entries in each of the above vectors can be nonzero. The number of variables in (30) is,
after this reduction, about 15n + d + N. The number of convex quadratic constraints in (30) isn while the
number of linear constraints, excluding bounds, is about 35n + d.

3.5 Valid inequalities

Since the stability constraintsK(a)u0 = p andK(a) + G(a, u0) � 0 and the degree of freedom constraint
dm(a) = 1 have been removed in the relaxations it is possible that the branch and bound method will
produce, through branching or heuristics, topologies which cannot satisfy these constraints. In order to
prevent these topologies from being generated several times, we propose to exclude these topologies using
valid inequalities which are stored in a global cut pool, see e.g. [39]. If the method generates a design,
denoted by ¯a ∈ Bn such thateT ā = Vn, which does not satisfy the linear stability and/or degree of freedom
constraints then every feasible topologya ∈ Bn must differ from ā in at least two components. Since each
feasible designa ∈ Bn must satisfyeT a = Vn this condition may be written asa�ā ≤ Vn−1. This discussion
motivates the following two lemmas.

Lemma 3.5 If ā ∈ Bn, e�ā = Vn, and dm(ā) � 1 then

a�ā ≤ Vn − 1 (34)

is a valid inequality for (13).

Lemma 3.6 If ā ∈ Bn, e�ā = Vn, and � u0 ∈ Rd such that K(ā)u0 = f and K(ā) +G(ā, u0) � 0 then

a�ā ≤ Vn − 1 (35)

is a valid inequality for (13).

To determine if∃ u0 ∈ Rd such that the given topology ¯a satisfies the linear buckling constraintsK(ā)u0 = p
andK(ā) +G(ā, u0) � 0 we propose to solve the linear semidefinite program

maximize
u0,µ

µ

subject to K(ā) +G(ā, u0) � µI,
K(ā)u0 = p,
umin ≤ u0 ≤ umax.

(36)

If an optimal solution (u∗0, µ
∗) to (36) is found withµ∗ ≥ 0 the suggested mechanism satisfies the linear

buckling conditions. If on the other hand, an optimal solution withµ∗ < 0 is found or if the linear constraints
make the problem infeasible, then the valid inequality (35) is added to the cut pool.
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3.6 Pruning test for the stability constraints

Since the stability conditions∇2
uuΠ(a, u) � 0 are not considered in the convex relaxations (30) and (33),

additional steps must be taken to ensure convergence of the branch and bound method. To guarantee con-
vergence we propose to deal with the stability conditions using a pruning test in which a liberal estimate of
the minimal eigenvalue of∇2

uuΠ(ā, u) � 0 over the domainumin ≤ u ≤ umax and for a given topology ¯a ∈ Bn

is computed. Consider the nonconvex semidefinite program

maximize
u,µ

µ

subject to ∇2
uuΠ(ā, u) � µI,
∇uΠ(ā, u) = 0,
umin ≤ u ≤ umax.

(37)

If there exist a feasible solution (u∗, µ∗) of (37) withµ∗ ≥ 0 then there exist a displacement vector satisfying
the stability conditions (2) over the given domain. If on the other hand an optimal solution to (37) satisfies
µ∗ < 0 or if problem (37) is infeasible, then it can be concluded that no such displacement vector exist.

A weaker, but tractable, test is obtained if instead a convex relaxation of (37) is solved. We will next
present a linear semidefinite program which is a relaxation of (37) and which also satisfy the property that
if the upper and lower bound on the displacements approach each other component wise, then the optimal
objective value of this relaxation will approach the minimal eigenvalue of∇2

uuΠ(ā, u) over the domain.
Again, let ā ∈ Bn denote a given topology generated by the branch and bound method at a nodeτ in the
search tree and letumin,τ andumax,τ denote the bounds on the displacement variables at the nodeτ.

The Hessian of the potential energy for the topology ¯a can be written as

∇2
uuΠ = K0 +

n∑
j=1

ā jE jl jε j(u)∇2ε j(u) +
n∑

j=1

ā jE jl j∇ε j(u)(∇ε j(u))�.

Using the variables introduced in Section 3.4 the Hessian can be written as

∇2
uuΠ = K(ā) +

n∑
j=1

f j

l j
B̃ j +

n∑
j=1

ā jE j

l3j
(b jν

�
j + ν jb

�
j + ν jν

�
j ).

To relax the bilinear termsν jν
�
j we introduce additional positive semidefinite matrix variablesVj ∈ Rd×d

together with the relaxation (
1 ν�j
ν j V j

)
� 0. (38)

This relaxation is not strong enough and hence we approximate the bilinear termsν jν
�
j using the linear

component-wise inequalities

Vj ≥ νmax
j ν

�
j + ν j(νmax

j )� − νmax
j (νmax

j )�,
Vj ≥ νmin

j ν
�
j + ν j(νmin

j )� − νmin
j (νmin

j )�,
Vj ≤ νmax

j ν
�
j + ν j(νmin

j )� − νmax
j (νmin

j )�,
Vj ≤ νmin

j ν
�
j + ν j(νmax

j )� − νmin
j (νmax

j )�.

(39)

To conclude, the linear semidefinite program

maximize µ

subject to K(ā) +
n∑

j=1

f j

l j
B̃ j +

n∑
j=1

ā jE j

l3j
(b jν

�
j + ν jb

�
j + Vj) � µI,

(14), (25), (26), (28), (29), (31), (32),
(38), (39),
umin,τ ≤ u ≤ umax,τ,

(40)

where the variables are (u, µ, ε, f , η, ω, ν,V1, . . . ,Vn), is a relaxation of (37) over the domainumin,τ ≤ u ≤
umax,τ that can be used as a pruning test. If an optimal solution to (40) satisfiesµ∗ ≥ 0 then the node in the
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branch and bound tree may produce solutions which satisfy the stability conditions (2). If on the other hand
an optimal solution to (40) satisfiesµ∗ < 0 or if problem (40) is infeasible, then the nodeτ may be pruned
from the search tree.

In practice, the size of (40) is rather modest. First of all, we only need to consider thosej for which
ā j = 1. Furthermore, since at most four entries in the vectorsν j are non-zero only the essential 4× 4 part of
the matricesVj need to be taken into account. Moreover, some of the degrees of freedom are irrelevant and
hence the size of the approximate Hessian can be reduced.

4 An extended problem

A natural extension of the pure topology design problem (13) is to include also the positions of the nodes
in the ground-structure as variables, i.e. to perform simultaneous topology and geometry optimization (si-
multaneous type and dimensional synthesis). One advantage of this possibility is that the ground-structure
need not be very dense, and thus, the number of binary topology variables can be kept at a modest level.
Methods for simultaneous topology and geometry optimization of stiff truss structures is considered in e.g.
[38], [15], and [9]. In this section we present the modifications to the topology design problem (13) which
are necessary to include the nodal positions as variables. The possibility to change the positions of the
nodes in the undeformed configuration greatly influence the degree of nonlinearity in the problem since the
undeformed lengthsl j and the vectorbj are now functions of the nodal position variablesχ. This section is
structured in a similar fashion as the previous section. First the simultaneous topology and geometry prob-
lem is presented as a nonconvex mixed integer program. Then this problem is reformulated and relaxed so
that the relaxation only contains linear, bilinear, and quadratic terms. Two continuous convex relaxations
to the extended problem are presented. Finally, the valid inequalities and pruning test from the previous
section are generalized.

4.1 Problem formulation for the extended problem

In this section we present the simultaneous topology and geometry design problem. The problem under
consideration is to design a stable mechanism with one mechanical degree of freedom which, given an
input force p, maximizes the output port displacement in the desired directionc. Formally, this design
problem is stated as the nonconvex mixed integer optimization problem

maximize c�u
subject to ∇uΠ(a, u, χ) = 0,∇2

uuΠ(a, u, χ) � 0,
K(a, χ)u0 = p,K(a, χ) +G(a, u0, χ) � 0,
σmin

j ≤ E jε j(u, χ) ≤ σmax
j , ∀ j : a j = 1,

dm(a) = 1,
e�v = VN , e

�a = Vn,∑
j∈Ak

a j ≥ 2vk, k = 1, . . . ,N,

a j ≤ vk, k = 1, . . . ,N, j ∈ Ak,

umin ≤ u, u0 ≤ umax,

χmin ≤ χ ≤ χmax,

a ∈ {0,1}n, v ∈ {0,1}N ,

(41)

where the variables are (a, u, u0, χ, v)� ∈ Bn × Rd × Rd × R2N × BN ; χmin ∈ R2N andχmax ∈ R2N are given
limits on the nodal positions.

4.2 Reformulation and relaxation of the extended problem

To remove the design dependence in the stress constraints (8) we follow the practice from the reformulation
of the topology design problem and reintroduce the additional variablesf = ( f1, . . . , fn)� ∈ Rn representing
the bar forces andε = (ε1, . . . , εn)� ∈ Rn representing the strains together with the bilinear equalities

f j = a jE jε j, j = 1, . . . , n. (42)
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Since both the displacement and nodal position variables are assumed to be bounded the strain will also be
bounded in the context of topology and geometry optimization. Therefore, the bilinear equalities (42) are
equivalently written as the linear inequalities

a jE jε
min
j ≤ f j ≤ a jE jε

max
j , j = 1, . . . , n, (43)

(1− a j)E jε
min
j ≤ Eε j − f j ≤ (1− a j)E jε

max
j , j = 1, . . . , n. (44)

Since the Green-Lagrange strain measure is now a function of both displacementsu and nodal positionsχ,
i.e.

ε j(u, χ) =
l̂2j (u, χ) − l2j (χ)

2l2j (χ)
,

the lower and upper bounds on the strain variablesεmin
j and εmax

j need to be recalculated. To this end
it is convenient to introduce additional variablesl = (l1, . . . , ln)� ∈ Rn

+ representing the lengths of the
undeformed bars andq = (q1, . . . , qn)� ∈ Rn

+ representing the square lengths of the undeformed bars
together with the quadratic equalities

q j = l2j , j = 1, . . . , n (45)

and
q j = χ

�Bjχ, j = 1, . . . , n. (46)

The lower and upper bounds on the square lengths denoted byqmin
j andqmax

j can be determined by solving
the quadratic programs

qmin
j = minimize

χmin≤χ≤χmax
χ�Bjχ (47)

and
qmax

j = maximize
χmin≤χ≤χmax

χ�Bjχ. (48)

Similarly, by defining deformed square lengths ˆq = (q̂1, . . . , q̂n)� ∈ Rn as

q̂ j = χ̂
�Bjχ̂, j = 1, . . . , n,

whereχ̂ denotes the actual nodal positions after deformation, the lower and upper bounds ˆqmin
j andq̂max

j can
be determined by solving the quadratic programs

q̂min
j = minimize

χ̂min≤χ̂≤χ̂max
χ̂�Bjχ̂ (49)

and
q̂max

j = maximize
χ̂min≤χ̂≤χ̂max

χ̂�Bjχ̂. (50)

Problems (47) and (49) are convex quadratic programs that can be efficiently solved using an active set or
interior point method. Problems (48) and (50) are maximization problems with a convex objective function
that can be solved to global optimality by exhaustive enumeration of the extreme points of the feasible set.
Assuming thatqmin

j andqmax
j are strictly positive, the lower and upper bounds on the strainsεmin

j andεmax
j

are given by

εmin
j =

1
2

q̂min
j

qmax
j

− 1
2

and

εmax
j =

1
2

q̂max
j

qmin
j

− 1
2
.

In the context of geometry optimization the equalities defining the strains are no longer quadratic since
the lengths are now functions of the nodal positions. We therefore modify the definition of the strains by
introducing additional variablesbj ∈ Rd satisfying

b j = B̂ jχ, j = 1, . . . , n. (51)
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Using the newly introduced variablesqj andbj the strains are now redefined with the quadratic equalities

ε jq j = b�j u +
1
2

u�B̃ ju, j = 1, . . . , n. (52)

The equilibrium equations (21) contain the terms 1/l j. By introducing additional variablesg = (g1, . . . , gn)� ∈
R

n representing scaled forces, i.e.gj = f j/l j the equilibrium equations are rewritten as

K0u +
n∑

j=1

g j(b j + B̃ ju) − p = 0, (53)

where the variablesgj must satisfy
f j = g jl j, j = 1, . . . , n. (54)

A nonconvex mixed integer relaxation of (41) containing only linear, bilinear, and quadratic terms is
now given by the problem

maximize c�u
subject to (16), (43), (44), (45), (46),

(51), (52), (53), (54),
(9), (10), (11), (12),
umin ≤ u ≤ umax,

χmin ≤ χ ≤ χmax,

a ∈ {0,1}n, v ∈ {0,1}N ,

(55)

where the variables are (a, u, χ, v, ε, f , l, q, b)� ∈ Bn × Rd × R2N × BN × Rn × Rn × Rn
+ × Rn

+ × Rnd.

4.3 Convex relaxations of the extended problem

In order to construct a convex relaxation of the nonconvex mixed integer problems (55) and (41), the bilinear
terms in (55) are replaced by their convex and concave envelopes.

Since the matricesBj are positive semidefinite convex relaxations of the quadratic equality constraints
(45) and (46) defining the variablesl j andqj are obtained by replacing the equalities by inequalities accord-
ing to

l2j ≤ q j, j = 1, . . . , n (56)

and
χ�Bjχ ≤ q j, j = 1, . . . , n. (57)

To approximate the nonconvex quadratic equalitiesl2j = q j by linear inequalities we replace them with

q j ≥ 2l jlmax
j − lmax

j lmax
j ,

q j ≥ 2l jlmin
j − lmin

j lmin
j ,

q j ≤ l j(lmin
j + lmax

j ) − lmin
j lmax

j .

(58)

To approximate the nonconvex quadratic equalitiesχ�Bjχ = q j we replace them with the convex and
concave envelope of each of the bilinear terms inχ�ζ j = q j where the additional variablesζ j ∈ R2N are
defined by

ζ j = Bjχ, j = 1, . . . , n. (59)

To this end, we need upper and lower bounds on the components inζ j which are given by

ζmax
j = B+j χ

max+ B−j χ
min

and
ζmin

j = B+j χ
min + B−j χ

max.

We also introduce auxiliary variablesξi j that correspond to the bilinear termχiζi j. The auxiliary variables
ξi j should satisfy the linear inequalities

ξi j ≥ χmax
i ζi j + χiζ

max
i j − χmax

i ζ
max
i j ,

ξi j ≥ χmin
i ζi j + χiζ

min
i j − χmin

i ζ
min
i j ,

ξi j ≤ χmin
i ζi j + χiζ

max
i j − χmin

i ζ
max
i j ,

ξi j ≤ χmax
i ζi j + χiζ

min
i j − χmax

i ζ
min
i j .

(60)
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Now, the quadratic equalitiesχ�Bjχ = q j can be approximated by the linear equalities

q j =

2N∑
i=1

ξi j, j = 1, . . . , n. (61)

The equalities (52) defining the strain in the case of geometry optimization contain bilinear terms inε j

andqj. Therefore, we introduce auxiliary variablesϕ = (ϕ1, . . . , ϕn)� ∈ Rn that correspond to the bilinear
termε jq j. The auxiliary variablesϕ j should satisfy the linear inequalities

ϕ j ≥ ε jqmax
j + εmax

j q j − εmax
j qmax

j ,

ϕ j ≥ ε jqmin
j + ε

min
j q j − εmin

j qmin
j ,

ϕ j ≤ ε jqmin
j + ε

max
j q j − εmax

j qmin
j ,

ϕ j ≤ ε jqmax
j + εmin

j q j − εmin
j qmax

j .

(62)

With regards to the quadratic termsu�B̃ ju in the equalities (52), we reuse the auxiliary variablesωi j ∈ R
introduced in Section 3.4 together with the linear inequalities (26) and (31). Here, we also add the convex
quadratic inequalities

u�B̃ ju ≤
d∑

i=1

ωi j, j = 1, . . . , n, (63)

to provide a tight relaxation. Moreover, the equalities (52) contain the bilinear termsb�j u and therefore we
need to introduce auxiliary variablesκi j ∈ R approximating the bilinear termsbi jui that satisfy

κi j ≥ umax
i bi j + uib

max
i j − umax

i bmax
i j ,

κi j ≥ umin
i bi j + uib

min
i j − umin

i bmin
i j ,

κi j ≤ umin
i bi j + uib

max
i j − umin

i bmax
i j ,

κi j ≤ umax
i bi j + uib

min
i j − umax

i bmin
i j ,

(64)

where the upper and lower bounds onbj are given by

bmax
j = B̂+j χ

max+ B̂−j χ
min,

and
bmin

j = B̂+j χ
min + B̂−j χ

max.

Finally, a linear relaxation of the nonconvex definition of the strain stated in (52) is given by

ϕ j =

d∑
i=1

κi j +
1
2

d∑
i=1

ωi j. (65)

The equilibrium equations (53) are bilinear ingj andbj. We therefore introduce auxiliary variables
h j ∈ Rd approximatinggjb j that satisfy the linear inequalities

h j ≥ g jbmax
j + gmax

j b j − gmax
j bmax

j ,

h j ≥ g jbmin
j + gmin

j b j − gmin
j bmin

j ,

h j ≤ g jbmin
j + gmax

j b j − gmax
j bmin

j ,

h j ≤ g jbmax
j + gmin

j b j − gmin
j bmax

j ,

(66)

wheregmin
j andgmax

j denote the lower and upper bounds ongj. The equilibrium equations (53) are also

bilinear in gj andν j = B̃ ju. We therefore introduce auxiliary variablesη j ∈ Rd approximatinggjν j that
satisfy the linear inequalities

η j ≥ g jν
max
j + gmax

j ν j − gmax
j ν

max
j ,

η j ≥ g jν
min
j + gmin

j ν j − gmin
j ν

min
j ,

η j ≤ g jν
min
j + gmax

j ν j − gmax
j ν

min
j ,

η j ≤ g jν
max
j + gmin

j ν j − gmin
j ν

max
j .

(67)
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For the bilinear equalities (54), the force variablesf j have to satisfy the linear inequalities

f j ≥ g jlmax
j + gmax

j l j − gmax
j lmax

j ,

f j ≥ g jlmin
j + gmin

j l j − gmin
j lmin

j ,

f j ≤ g jlmin
j + gmax

j l j − gmax
j lmin

j ,

f j ≤ g jlmax
j + gmin

j l j − gmin
j lmax

j .

(68)

Finally, the equilibrium equations (53) are approximated by the linear equalities

K0u +
n∑

j=1

(h j + η j) − p = 0. (69)

A continuous convex relaxation of the topology and geometry design problem (41) is now given by the
following quadratically constrained linear program in the variables (a, u, χ, v, ε, f , l, q, b, ζ, ξ, h, η, g, ϕ, κ, ω, ν).

maximize c�u
subject to (16), (26), (31), (43), (44),

(56), (57), (58), (59), (60),
(61), (62), (63),
(64), (65), (66),
(67), (68), (69),
(9), (10), (11), (12),
umin ≤ u ≤ umax,

χmin ≤ χ ≤ χmax,

a ∈ [0,1]n, v ∈ [0,1]N .

(70)

The above discussion motivates the following proposition.

Proposition 4.1 Problem (70) is a convex relaxation of (41).

If the convex quadratic inequalities (56), (57) and (63) are removed from the convex relaxation (70), a
linear programming relaxation of (55) and the topology and geometry problem (41) is obtained.

maximize c�u
subject to (16), (26), (31), (43), (44),

(58), (59), (60), (61), (62),
(64), (65), (66),
(67), (68), (69),
(9), (10), (11), (12),
umin ≤ u ≤ umax,

χmin ≤ χ ≤ χmax,

a ∈ [0,1]n, v ∈ [0,1]N .

(71)

Proposition 4.2 Problem (71) is a linear programming relaxation of (41).

In practical computations when solving the relaxations (70) and (71), the additional variablesbj, ν j,
andζ j need not be explicitly used, but are kept here for readability. Furthermore, since the matricesBj,
B̃ j, andB̂ j are structured and very sparse, most of the entries inν j, ζ j, b j, η j, andω j can be fixed to zero
and therefore omitted in the computations, in fact, at most four entries in each of the above vectors can be
nonzero.

4.4 Valid inequalities and pruning tests for the extended problem

In this section we generalize, if possible, the valid inequalities and pruning tests derived for the pure topol-
ogy design problem in Section 3.5 and 3.6.

Since the number of mechanical degrees of freedom is assumed to be independent of the geometry of the
mechanism, it is impossible to change the mechanical degrees of freedom of the mechanism by changing
the nodal positions after the topology is fixed. Therefore the following lemma, which is a generalization of
Lemma 3.5, holds.
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Lemma 4.1 If ā ∈ Bn, e�ā = Vn, and dm(ā) � 1 then

a�ā ≤ Vn − 1

is a valid inequality for (41).

In Section 3.5 we proposed that valid inequalities should be used to conveniently remove topologies that
fail to satisfy the linear buckling conditions (5) and (4). It is impossible to generalize this result as stated in
Lemma 3.6 to hold for the simultaneous topology and geometry design problem as the following example
illustrates. Consider the unstable mechanism in Figure 3(e) and the stable mechanism in Figure 3(f). By
moving the three nodes 8, 10, and 12 in the unstable mechanism shown in Figure 3(e) to the left it is possible
to obtain the stable mechanism shown in Figure 3(f). Therefore, we propose to use a pruning test similar to
the tests developed in Section 3.6 to determine if a certain domain of the feasible set may be excluded from
further investigation due to these constraints.

Let ā ∈ Bn denote a topology generated by the branch and bound method at a nodeτ in the search tree
and letumin,τ andumax,τ andχmin,τ andχmax,τ denote the lower and upper bounds on the displacement and
nodal position variables at nodeτ. To decide if nodeτ can be removed from the search tree we solve a
linear semidefinite relaxation of the nonconvex semidefinite program

maximize
u0,χ,µ

µ

subject to K(ā, χ) +G(ā, u0, χ) � µI,
K(ā, χ)u0 = p,
χmin,τ ≤ χ ≤ χmax,τ,

umin ≤ u0 ≤ umax.

(72)

If an optimal solution (u∗0, χ
∗, µ∗) to the relaxation of (72) fails to satisfyµ∗ > 0 or if the relaxation is

infeasible, then nodeτ in the search tree is fathomed.
To determine if a certain domain of the feasible set may be excluded from further investigation due to

the stability constraints∇2
uuΠ(a, u, χ) � 0 we propose to generalize the pruning test from Section 3.6. In

this test we solve a linear semidefinite relaxation of the nonconvex semidefinite program

maximize
u,χ,µ

µ

subject to ∇2
uuΠ(ā, u, χ) � µI,
∇uΠ(ā, u, χ) = 0,
χmin,τ ≤ χ ≤ χmax,τ,

umin,τ ≤ u ≤ umax,τ.

(73)

If an optimal solution (u∗, χ∗, µ∗) to the relaxation of (73) fails to satisfyµ∗ > 0 or if the relaxation is
infeasible, then nodeτ is pruned from the search tree.

4.5 Limitations of the models

The major drawback of the mechanism design formulations (13) and (41) and the choice of optimization
method is the lack of possibilities to control the load-displacement path during the deformation of the
mechanism. Even though the mechanism is stable in its undeformed configuration and also stable in the
final deformed configuration it may very well be unstable at some stage between the undeformed and the
fully deformed configurations. Furthermore, both the displacement and stress constraints may be violated
for intermediate configurations. Thus, the final decision if the mechanism performs well or not falls on the
engineering judgment of the designer.

A positive side effect of the branch and bound method and a possible remedy of the above problem is
the (likely) possibility to find more than one feasible solution to the considered problem. In fact, all of the
six mechanisms shown in Figure 3 were found as by products of a single attempt to solve an instance of
(13). This allows the designer to choose an alternative mechanism if the optimal design, for some reason,
does not behave satisfactory.
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5 The branch and bound method

In this section we present a convergent implementation of the branch and bound method for solving the
nonconvex mixed integer mechanism design problems (13) and (41). In many aspects the suggested method
resembles the branch and reduce method described in [42] and the branch and contract method described
in [50]. For an introduction to branch and bound in the context of continuous global optimization we refer
the reader to [30].

Before presenting the method, we would like to reintroduce the notion ofcomplicating variables (also
called nonconvex variables, see e.g. [42] and [50]) which are defined as those variables that appear in
nonconvex terms in the optimization problems. Furthermore, we denote the subset of the complicating vari-
ables which appear in the original problem statements (13) and (41) asprimary variables. These variables
play a crucial role in the branching rule to guarantee practical convergence of the method since the stability
constraints in the original problems are removed in the relaxations.

Upper bounds on the optimal objective function value of (13) and (41) are obtained by solving the
nonlinear convex relaxations (30) and (70) respectively. The linear relaxations developed in Section 3.4
and Section 4.3 serve two purposes. They are used to improve the bounds on the variables, by so called
feasibility based range reductions described in Section 5.4. This procedure improves the quality of the
convex relaxations. The linear relaxations are also used as a fall-back routine if numerical or other problems
occur during the solution of the nonlinear relaxations.

5.1 Branching

For brevity, we only describe the branching rule for the topology optimization problem (13). The branching
rule for the topology and geometry problem (41) is analogous.

Branching is first performed on the integer variables in a predetermined order of priority. First branching
is done on the node activity variablesv and then on the design variablesa. The branching variable is chosen
by the maximum integer infeasibility criterion and branching is done by variable dichotomy.

If all integer variables are fixed or if the optimal solution to the relaxation satisfies the integer require-
ments then branching is done on one of the complicating continuous variables. Every twenty fifth continu-
ous branching we perform bisection on the primary variable with the largest distance between its upper and
lower bound. This rule does not improve the performance of the method in practice but is included for the
theoretical convergence.

In all other situations, the approximation errors|ωi j − uiνi j| and |ηi j − f jνi j| of the bilinear terms are
computed at the solution to the convex relaxation. If at least one of these errors is sufficiently large, then
the displacement variable or force variable responsible for the largest of the errors is chosen as branching
variable. The branching point is chosen as the value of the branching variable in the solution to the convex
relaxation. If, on the other hand, all of these errors are small (in the implementation the limit is 10−5) we
resort to bisection of the primary variable with the largest distance between its upper and lower bound.

5.2 Node selection

The node chosen for further refinement is the one where the highest upper bound is attained (the best-
bound-first rule). This node selection rule is, by definition, bound improving, see [30].

5.3 Heuristics

To find feasible solutions to the topology design problem (13) we propose the following heuristics. Given
an optimal solution to the convex relaxation (30) at some node in the search tree the following steps are
performed. The design and node variables are rounded to the nearest integer. If the rounded values satisfies
the resource constraints (9), (10), (11), (12), the degree of freedom constraint, and there exist a small-
displacement vector such that the linear stability constraints (4) and (5) are satisfied, then local minimization
is performed on (22) with the area and node variables fixed to the rounded values and the other variables
constrained to be within the bounds at the node. If no feasible solution is found using local minimization
an attempt is made to solve the mechanical analysis problem using a second order line search method for
unconstrained problems, see e.g. [28]. The search direction in this method is a weighted sum of a descent
direction and a direction of negative curvature. Since the number of variables, here the number of degrees
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of freedom, is modest (≤ 100) the spectral decomposition of the Hessian of the potential energy is used to
determine the search directions. If a displacement vector satisfying the equilibrium equations (1) and the
stability conditions (2) is found, the strain and force variables are computed using the definitions (15) and
(14), respectively.

To find feasible solutions to the topology and geometry design problem (41) we propose the following
heuristic. Given an optimal solution to the convex relaxation (70) at some node in the search tree the
following steps are performed. The design and node variables are rounded to the nearest integer. If the
rounded values satisfies the resource constraints (9), (10), (11), (12), and the degree of freedom constraint,
then local minimization is performed on (55) with the area and node variables fixed to the rounded values
and the other variables constrained to be within the bounds at the node.

5.4 Pre-processing, range reductions, and pruning tests

Before solving one of the convex nonlinear relaxations (30) or (70) to obtain upper bounds on the objective
function value of (13) or (41) the bounds on the complicating variables are, if possible, improved by simple
pre-processing and feasibility based range reductions. Pre-processing is in common use in linear, quadratic,
and mixed integer programming, see e.g. [5], [36], and [43]. Here we will use implications given by the
simple resource constraints (9), (10), (11), (12), and the constitutive law (14) to fix or improve the bounds
on some of the variables. Before the relaxations are constructed and solved at nodeτ in the search tree the
following simple pre-processing steps are performed.

• If vmax,τ
k = 0 thenamax,τ

j ← 0 for j ∈ Ak.

• If e�vmin,τ = VN thenvmax,τ
k ← vmin,τ

k for k = 1, . . . ,N.

• If e�vmax,τ = VN thenvmin,τ
k ← vmax,τ

k for k = 1, . . . ,N.

• If e�amin,τ = Vn thenamax,τ
j ← amin,τ

j for j = 1, . . . , n.

• If e�amax,τ = Vn thenamin,τ
j ← amax,τ

j for j = 1, . . . , n.

• If amax,τ
j = 0 then f max,τ

j ← 0, f min,τ
j ← 0, gmax,τ

j ← 0, andgmin,τ
j ← 0.

• If amin,τ
j = 1 thenεmin,τ

j ← max{σmin
j /E j, ε

min,τ
j } andεmax,τ

j ←
min{σmax

j /E j, ε
max,τ
j }

Finally, if the node activity variable is fixed to zero then the corresponding displacement variables are fixed
to zero and the corresponding node position variables are fixed to the original position of the node in the
ground-structure. These operations are inexpensive and improve the performance of the method directly
by improving the quality of the relaxations and indirectly by decreasing the number variables eligible for
branching.

To further improve the quality of the convex relaxations at a node in the search tree we follow the
practice developed in [50] and solve a sequence of bound contraction subproblems. For each complicating
variable, which is not fixed at the current node in the search tree, we in turn maximize and minimize the
value of the variable over the feasible set of the linear relaxations (33) or (71). If a bound can be improved
it is immediately changed in the linear relaxation. After one pass over all the complicating variables the
relaxations are reconstructed. This procedure is repeated four times if all the binary variables are fixed, two
times if the node activity variables are fixed, and only once otherwise.

If one of the contraction subproblems is infeasible, then the relaxation is also infeasible and the node
is immediately pruned from the search tree. After the convex relaxation is solved optimality based range
reductions on the complicating variable bounds is performed as outlined in [42].

The pruning tests for the stability constraints derived in Section 3.6 and 4.4 are called if all binary
variables are fixed and the bounds on the primary variables at the current node are sufficiently close. In the
implementation this limit is 10−2.
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5.5 Convergence

Convergence of the branch and bound algorithm is guaranteed by the following observations, see [30,
Theorem IV.3].(i) The node selection rule is, by definition, bound improving.(ii) The bounding operation
is consistent, see [42].(iii) The valid inequalities added to the problem due to range reductions are valid,
see [42] and [50].(iv) The inequalities stated in Lemma 3.5 - 4.1 are valid.(v) The valid inequalities
implied by the pre-processing steps presented in Section 5.4 are valid.(vi) The pruning tests in Section 3.6
and 4.4 guarantee that the stability and degree of freedom constraints, which are neglected in the convex
relaxations, are eventually satisfied.

5.6 Implementation

The branch and bound method is implemented inMATLAB . TheMATLAB code controls the overall pro-
gram flow, the branch and bound tree, and the cut pool. All linear programs are solved using the fast and
robust simplex solvers inCPLEX 9while all convex quadratic programs are solved using the barrier solver in
the same package.CPLEX is called fromMATLAB using an interface which allows problem modifications
such thatCPLEX can take advantage of the current solution when resolving a problem after slight modifica-
tions. All nonlinear programs, such as the convex relaxations (30) and (70), are solved using the sequential
quadratic programming packageSNOPT 6.2, see [26, 27]. Again, an interface is used to accessSNOPTfrom
MATLAB . SNOPTdoes call back toMATLAB to compute the objective function and the nonlinear constraints
as well as the gradient of the objective function and the Jacobian of the nonlinear constraints. Finally, all
linear semidefinite programs are solved using theMATLAB toolboxSeDuMi, see [46].

The absolute and relative optimality tolerances in the branch and bound code are both set to 10−5,
while the integer feasibility tolerance is set to 10−7. The feasibility tolerance for the simple bounds, linear
constraints, and nonlinear constraints is 10−8. The feasibility and optimality tolerances are set to 10−6 in
SNOPTand 10−8 in CPLEX.

6 Numerical examples

In this section we present a number of academic examples and their solutions. The size of these problems,
measured in the number of nodes and bars in the ground-structure and in the final design, is realistic and
corresponds well to the size of the problems which need to be solved when designing planar mechanisms
for real-life applications.

In all the examples presented below the design domain is a two dimensional square with width and
height equal to one. The nodes in the ground-structure are evenly distributed over the design domain,Nx

nodes in the horizontal direction andNy nodes in the vertical direction. The total number of nodes is thus
N = NxNy. Connections are allowed between each pair of nodes in the ground-structure, and hence, the
number of potential bars isn = N(N − 1)/2. The modulus of elasticity is in all examples set toE j = 10
for all j. The stiffnesses of the linear springs at the input and output ports are denoted bykin and kout,
respectively. The external load vectorp and the output direction vectorc have+1 or −1 entries in the
positions corresponding to the degrees of freedom for the input and output port displacements and zero
entries otherwise. The node activity variables corresponding to input and output ports are all fixed to one.

6.1 Enforcing symmetry in the examples

In the following examples the external load, the boundary conditions, and the entire ground-structure are
symmetric around the horizontal mid-axis in the design domain. The optimal designs are therefore also
forced to be symmetric. This restriction provides the possibility to compare the obtained solutions with
previous solutions obtained for the same problems, reported in [33, 32].

Symmetry in the topology is enforced by removing redundant area variables. The number of binary
topology variables left after the reduction is denoted by ˜n. Symmetry conditions on the axial force, strain,
displacements, node activity, and node position variables are enforced by explicitly adding linear constraints
to the relaxations and heuristic problems. For the given load conditions, the displacement variables are
horizontally symmetric and vertically anti-symmetric. Symmetry for the vertical displacements of the nodes
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Fig. 5 Optimal design for the benchmark example without geometry variations.
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Fig. 6 Motion of the optimal design for the benchmark example.

on the horizontal mid-axis is achieved by the aid of roller supports attached to the nodes. All of these
supports are, for clarity, not shown in the figures defining the ground-structures.

6.2 Benchmark example

The ground-structure and load condition for the first example are shown in Figure 2. The number of nodes
in the horizontal and vertical direction areNx = 4 andNy = 3, respectively. Hence, the number of nodes
N = 12 and the number of potential barsn = 66. The number of binary topology variables after variable
reduction is ˜n = 38. The requested number of active bars and nodes areVn = 8 andVN = 6, respectively.
The stiffnesses of the linear springs at the input and output ports are set tokin = 2.0 andkout = 0.02. The
lower and upper stress limits areσmin

j = −0.05 andσmax
j = 0.05 for all j. The displacement limits are±0.5

for vertical movement and±1.4 for horizontal movement. The optimal design to the topology optimization
problem is shown in Figure 5 and its motion in Figure 6. The optimal objective function value is 0.791. The
optimal topology shown in Figure 5 is exactly the same as the design found by exhaustive enumeration in
[33].

In Figure 7(a) the settings for the simultaneous topology and geometry design problem are shown. The
nodes are allowed to move±1/6 in all directions if they remain within the design domain and satisfy the
symmetry requirements. The bounds on the nodal positions are depicted by black boxes in the figure. In
Figure 7(b) the optimal design to the simultaneous topology and geometry design problem is shown in
black. To be able to compare the optimal topology with the design from the pure topology problem, the
optimal design with initial nodal positions is shown in grey in Figure 7(b). The optimal objective function
value for the simultaneous topology and geometry problem is 0.971.
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Fig. 7 Ground-structure and optimal design for the benchmark example with geometry variations.
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Fig. 8 Ground-structure for the inverter mechanism without geometry variations.

It should be noted that there is a change in the optimal topology between the pure topology design
problem and the topology and geometry design problem. The optimaltopology with node 2 as active in
the simultaneous topology and geometry design problem is in fact unstable if the nodal positions are not
re-designed (optimized).

6.3 Inverter mechanism

In the second example, we intend to construct a force inverter, i.e. a mechanism for which the displacement
of the output port is in the opposite direction of the direction of the applied external force. The ground-
structure for the topology design problem is shown in Figure 8. The number of nodes in the horizontal and
vertical direction areNx = Ny = 5. HenceN = 25 and the number of potential barsn = 300.

In this exampleVn = 8 andVN = 6. The stiffnesses of the linear springs at the input and output ports
are setkin = 2.5 andkout = 2.5. The lower and upper stress limits areσmin

j = −0.5 andσmax
j = 0.5 for all j.

The displacement limits are±0.5 for both vertical and horizontal movement. We solve two instances of the
topology design problem for this example. The second instance contains the additional requirements that
the nodes labeled 1 and 5 in Figure 8 are restricted to move inwards.

The optimal designs to the pure topology optimization problems for the two inverters are shown in
Figure 9(a) and Figure 9(b). The optimal objective function values are 0.137 and 0.134, respectively. The
design shown in Figure 9(b) is exactly the same as the design found by a partially heuristic method in [32].

In Figure 10(a) the settings for the simultaneous topology and geometry design problem are shown.
The nodes are allowed to move±1/4 in all directions if they remain within the design domain and satisfy
the symmetry requirements. The bounds on the nodal positions are depicted by black boxes in the figure.
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(a) First inverter. (b) Second inverter.

Fig. 9 Optimal designs for the two inverter problems (without geometry variations).
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Fig. 10 Ground-structure and optimal design for the inverter problems with geometry variations.

In this case a coarser (3× 3)-node ground-structure is used. The optimal solution to the topology design
problem can, even with this coarser ground-structure, still be achieved. In Figure 10(b) the optimal design
to the simultaneous topology and geometry design problem is shown in black. The optimal objective func-
tion value for the simultaneous topology and geometry problem is 0.168 regardless of the inward-motion
requirement.

6.4 Computational results

Results concerning problem sizes, number of nodes in the search tree, and CPU-time for the numerical
examples are collected in Table 1 and Table 2 below. In the tablesNt denotes the total number of nodes and
Nm denotes the maximal number of active nodes in the branch and bound tree.

The computations are performed either on an Intel Pentium 4, 2.8 GHz clock frequency and 1 Gb
internal memory or a SUN Fire 480 with an UltraSparc III processor, 900 MHz clock frequency and 2 Gb
internal memory.

Only a few valid inequalities of the type (35) designed to remove unstable mechanisms are generated
when solving the topology design problems and on the above problems they do not significantly improve
on the total number of nodes in the search tree compared to if they are not generated. For the benchmark
example, both of the unstable topologies shown in Figure 3 gave rise to one valid inequality. Even though
only a few inequalities are generated, they are still very important. If they are not generated an unstable
solution would be found for the benchmark example. No topologies were found that violated the degree of
freedom constraints, and hence no such valid inequalities were generated.
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Table 1 Pure topology optimization on the SUN.

Problem N n ñ d Vn VN CPU Nt Nm Cuts c�u∗

Benchmark 12 66 38 18 8 6 4m30s 81 33 2 0.791
Inverter 1 25 300 160 43 8 6 2h6m 467 115 2 0.137
Inverter 2 25 300 160 43 8 6 2h5m 409 92 2 0.134

Table 2 Simultaneous topology and geometry optimization on the PC.

Problem N n ñ d Vn VN CPU Nt Nm c�u∗

Benchmark 12 66 38 18 8 6 1h12m 134 28 0.971
Inverter 1 9 36 21 13 8 6 2h49m 763 130 0.168
Inverter 2 9 36 21 13 8 6 1h55m 513 108 0.168

It may seem surprising that the total number of nodes in the search tree is small for all examples. This is
explained by the problem dependent pre-processing techniques and the extensive range reductions that are
performed at every node in the branch and bound tree. An attempt to solve the problems with pre-processing
and range reductions turned off indicated that the problems could not be solved with the branch and bound
method without these enhancements in reasonable time and with a reasonably small search tree.

For the three examples presented in Table 2 most of the computation time, on average more than 80 %,
is spent on solving linear bound contraction problems. About 10 % is spent on solving the convex relaxation
(70) and the remainder of the time is spent on solving the linear semidefinite programs for the pruning tests
and maintaining the branch and bound tree.

It should be noted that the two inverter problems differ by only two simple bounds on the displacement
variables. However, the second problem generates significantly fewer nodes in the search tree, particularly
for the simultaneous topology and geometry design problem. In general, the solution time for all problems
is sensitive to the bounds on the displacements.

We observed, in particular when solving the simultaneous topology and geometry problems, that for a
fixed topologya there often exist many (u, u0, χ) such that all constraints, except for the stability constraints
K(a, χ) + G(a, u0, χ) � 0 and/or ∇2

uuΠ(a, u, χ) � 0, are satisfied. Typically, these solutions also produce
large output displacement and the nodes at which this occurs can therefore not be fathomed from the search
tree by value dominance. When this occurs the branch and bound method without the stability pruning tests
does not converge. The pruning tests are therefore crucial to guarantee convergence.

7 Conclusions and future research

We have presented a convergent branch and bound method for solving planar mechanism design problems
modeled as nonconvex mixed integer programs. By using a truss ground-structure approach it is possible to
simultaneously determine the optimal topology as well as the optimal geometry, i.e. to perform simultane-
ous type and dimensional synthesis. The branch and bound method is enhanced by improving the quality
of the convex relaxations using valid inequalities and range reduction techniques. The numerical exam-
ples indicate that the suggested method can reliably solve planar mechanism design problems of realistic
size. Computational experience shows that it is important to carefully model and include technological con-
straints such as stability and stress constraints in the optimization problem to prevent the optimal solution
from violating implicit or explicit assumptions in the mechanical model.

In order to generalize the models and methods presented in this paper to the design of spatial mecha-
nisms it will be important to develop conditions to prevent that some members of the mechanism obstruct
the displacement path of other members. Another possibility for future research is to generalize the models
and the branch and bound method to facilitate multiple load conditions. This extension together with a
suitably chosen objective function will allow the approach presented in this paper to be used as a design
tool for type and dimensional synthesis of path-following mechanisms.
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Path-generation of articulated mechanisms by shape and
topology variations in non-linear truss representation

A. Kawamoto∗

Abstract

This paper presents studies on an optimization-based method for path-generation of articulated mech-
anisms. An extended truss ground-structure approach is taken in which both the shape and topology of
the truss are designed using cross-sectional areas and nodal positions as design variables. This leads to a
technique for simultaneous type and dimensional synthesis of articulated mechanisms. For the analysis
part it is essential to control the mechanism configuration so that the mechanism remains within a given
configuration space, thus stabilizing the optimization process and resulting in realistic solutions. This can
be achieved by using the Levenberg-Marquardt method. The design method is illustrated by a number of
design cases for both closed and open input and output paths.

Key Words: Mechanism design; topology optimization; path-generation

1 Introduction

This paper deals with a design methodology for path-generation of articulated mechanisms. An articulated
mechanism consists of several links (or bars) connected by joints and gains all the mobility from its joints.
This is in contrast to a compliant mechanism which is a different type of mechanism that gains some or all
of the mobility from the elasticity of its components. The path-generation problems are stated as designing
an articulated mechanism that can trace a prescribed path at the output port for an input path given to the
input port of the mechanism. Here an approximate synthesis approach (see, e.g., [1, 2]) is adopted to solve
the problems in the sense that the prescribed target path is approximated by minimizing the error between
the target path and the actual output path; the latter path is calculated through a kinematic analysis. The
error is evaluated point-wise and defines a vector collecting distances between the corresponding target and
actual points. In the optimization, the error vector is minimized in the infinity norm (i.e., the largest distance
between the target and actual points).

A conventional mechanism design process is divided into the following three stages (see, e.g., [3, 4]).
The first stage is formulation of the objective. The objective may, for example, be maximization of output
displacement and generation of a prescribed output path for a given input. This paper is specifically de-
voted to the latter path-generation problems. (See references [5, 6] for work on displacement maximization
problems of articulated mechanisms.) The second stage is called type synthesis which is mainly concerned
with topological questions. In this stage the number of bars and joints and their connections are determined.
An elaborate type synthesis technique based on number synthesis is developed in [7, 8]. In that approach
much effort is invested for generating a complete list of kinematic chains by eliminating isomorphic graphs
(a significant unsolved problem in number synthesis). The final stage is called dimensional synthesis and
is mostly related to geometrical questions. In this stage the exact dimensions of all the mechanical compo-
nents are determined. Reviews on dimensional synthesis techniques are found in [1, 2]. Although type and
dimensional syntheses are normally separated in the engineering context, they are actually so closely con-
nected that they should preferably be treated at the same time. In this paper, the so-called ground-structure
approach [9] is taken to the development of a method for simultaneous type and dimensional synthesis.

Research on design of continuum-based compliant mechanisms [10, 11, 12, 13] using topology opti-
mization in the finite element representation suggests that it should also be possible to obtain results for
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articulated mechanisms in the truss ground-structure representation by applying essentially the same tech-
nology [14, 15]. One outstanding feature of the technology is that, unlike other parametric optimization
methods, the method can optimize simultaneously both the topology and geometry of a mechanism (or
structure) layout. Thus the technology optimization has good potential for being developed into a system-
atic method that can design articulated mechanisms, combining type and dimensional syntheses.

A common critical factor for designing both compliant and articulated mechanisms is geometric non-
linearity. Throughout this paper, geometric non-linearity is considered using the Green-Lagrange strain
measure. This is applied to the analysis of the mechanisms since the displacements of the mechanisms
are intrinsically large. The consideration of geometric non-linearity, however, causes a numerical difficulty
relating to the non-convexity of the equilibrium equations. In the articulated mechanism analysis, the
issue is related to the geometry of the configuration spaces of the mechanism [16, 17]. It is essential to
implement a numerical method that can consistently detect a stable equilibrium point because the quality
of the equilibrium analysis directly affects the result of the associated sensitivity analysis; a sensitivity
analysis that contains a lot of noise may impede convergence of the optimization process. Note that this is
thus caused by the poor quality of the analysis and not by faults in the optimization algorithm.

The Newton-Raphson method is popular and widely used for solving the non-linear equilibrium equa-
tions. However, when the tangent stiffness matrix is not well-conditioned, the behavior of the method is
unpredictable. Specifically in the truss-based articulated mechanism design, the problem can be viewed
as a configuration transition problem. Therefore, it is important to make sure that the mechanism should
stay within a given configuration space, thus stabilizing the optimization process and resulting in a realistic
solution. This can be achieved by using the Levenberg-Marquardt method.

Another critical factor specific to articulated mechanism design is the mechanical degrees of freedom of
a mechanism. This is defined as the number of independent inputs required to determine the position of all
links of the mechanism with respect to a global coordinate system [4]. As compliant mechanisms do not
have real joints, this concept does not play a role for design of such devices. The explicit way of treating
the mechanical degrees of freedom in the articulated mechanism design is extensively discussed in [5]. In
the present situation, the issue can be treated in an implicit way in which the degrees of freedom constraint
is replaced by conditions related to the behavior under some auxiliary load cases.

This paper is organized as follows. Section 2 discusses, from the mechanism synthesis point of view,
advantages of a truss representation compared to a representation with rigid bars and revolute joints. Section
3 describes the configuration transition problem related to the non-convexity of the equilibrium equations
and a possible solution to the problem. Section 4 demonstrates that dimensional synthesis problems, in
which rigid bars and revolute joints are normally used, can be actually solved in the truss representation.
Section 5 formally states the simultaneous type and dimensional synthesis problem for path-generation and
shows some examples and results. Section 6 finally concludes the paper and suggests possible future work.

2 Advantage of a truss representation for mechanism synthesis

Normally articulated mechanisms are modeled by rigid bars and revolute joints. Nevertheless a truss repre-
sentation is adopted in the present paper as this gives a number of advantages when using optimization for
design.

In the first place, a truss is a reasonable approximation to a rigid-bar articulated mechanism; one can
directly interpret a truss topology as a kinematic chain of bars and joints. When designing articulated mech-
anisms, by setting the Young’s modulus large enough one can preclude the possibility that the mechanisms
rely on the elasticity to produce displacements. In other words, the functionality of articulated mechanisms
in the truss representation will not change after all the truss elements are replaced with rigid bars. This is the
critical difference between articulated and compliant mechanisms. Also, a truss can accommodate, by con-
sidering its geometric non-linearity, extremely large displacements without any element distortion problem.
In this paper, geometric non-linearity is taken into account using the Green-Lagrange strain measure.

In the dimensional synthesis with rigid bars and revolute joints, bar lengths are typically used as design
variables [1, 2]. This setting entails the necessity of assembling the mechanism in all possible configura-
tions during the optimization process. Normally, constraint equations are used to ensure the mechanism
assembly and the equations are solved independently at each optimization step. In this setting, however,
non-assembly problems may occur because the optimization often suggests dimensions that lead to in-
feasible designs. The situation can be helped by introducing the constraint equations as an extra explicit

2



constraint into the optimization formulation. An alternative idea is to use truss elements and pin joints in
the mechanism representation [23, 24]; there is no need for assembly of the mechanism in the truss rep-
resentation. Furthermore, by adopting nodal positions as design variables non-assembly problems never
occur since new nodal positions always suggest another feasible configuration; this is the approach taken in
this paper and in [25].

For the simultaneous type and dimensional synthesis, that is the goal of the developments here, the
truss ground-structure approach for truss topology designs (see, e.g., [9] and the references therein) turns
out to provide a suitable framework. The idea of this approach is: first, give all potential elements in
a predefined design domain; then, eliminate unnecessary elements according to design requirements (or,
equivalently, chose necessary elements). In the articulated mechanism design problems, the truss topology
is defined by a binary truss connectivity vector (a collection of normalized cross-sectional areas). However,
in order to solve the problem by continuous gradient-based optimization techniques, the binary variables are
relaxed to take on intermediate values between 0 and 1. During the optimization, the elasticity of the truss
plays an important role for approximating intermediate mechanisms since the ground-structure contains all
possible connections and is intrinsically redundant. (If we insist on using rigid bars in the ground-structure
approach, we have to do something similar for approximating intermediate mechanisms; reference [21]
suggests springs as a substitute for revolute joints.)

Typically only cross-sectional areas are used for ordinary truss topology designs. A critical issue is that
path-generation problems require fine tuning of dimensions to realize the target path. Therefore, it is natural
to include also the nodal positions as design variables. This makes it possible to keep the total complexity
low and one can obtain realistic real-life mechanisms that typically have a constraint on the total element
number of bars, e.g., M∗ ≤ 10(� 100). We actually gain an increased flexibility in the design space by
only adding 2N continuous variables, where N is the number of nodes in the ground structure. The idea
is that a relatively coarse ground structure covers the basic mechanism topology with a limited number of
elements M∗ and that the variation of the nodal positions will take charge of the element dimensions. Note
that such an extended ground-structure approach that uses both cross-sectional areas and nodal positions as
design variables is well-established for static problems (see, e.g., [22]). It is also used in [6] for maximum
displacement problems for articulated mechanisms.

3 Configuration transition problem

For the analysis part of the path-generating mechanism design problem we have to deal with a fundamental
problem pertaining to the geometry of the configuration space [16, 17]. Let us consider the two-bar link
mechanism shown in Figure 1 (see also Appendix 2). Node 3 is connected to an invisible link driven by a
motor that is rotating clockwise at a constant angular velocity around the center of the grey circle of radius
r = 0.0999. As the two-bar link cannot be completely stretched out during the motion, the mechanism
should stay in the elbow-up configuration while node 3 is moving on the input circle.

Throughout the paper we only analyze the kinematics of the mechanism and we do not take account of
dynamics at all; also, there is no time integration for the calculation of the displacements. The displaced
mechanism configuration at each step is obtained by solving static (but geometric non-linear) equilibrium
equations for the given input point. This is analogous to the standard kinematic analysis [26] in which
constraint equations are solved to determine the mechanism configuration.
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Fig. 1 Two-bar mechanism problem
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Fig. 2 Path-following analysis of a two-bar mechanism
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Fig. 3 Two stable points in the total potential field

Here, in order to simulate the movement by quasi-static analysis, namely kinematic analysis (see, e.g.,
[26]), we divide the grey input circle into 9 equally sized segments, making 9 input points; the equally
distributed input points then correspond to equally discretized time steps.

We first apply an ordinary Newton-Raphson method to the analysis. In the analysis, the Young’s mod-
ulus is set as E = 10 and all the cross-sectional areas are set as Ae = 1 for e = 1, 2. The result is shown
in Figure 2(a), in which the corresponding input-output steps are numbered parallel in italics. This solu-
tion is wrong because the analysis failed to keep the elbow-up configuration and a configuration transition
occurred in the sixth step.

As an alternative, the Levenberg-Marquardt method [27] can also be applied to the same analysis. This
method requires an expression for the total potential energy that is here defined as follows [28][29]:

Φ =
1
2

M∑
e=1

AeEleε
2
G − F�D (1)

where F is the nodal force vector and D is the displacement vector, both in the global coordinate system.
Moreover, εG is the Green-Lagrange strain measure that takes geometric non-linearity into account. For a
truss element this is expressed as:

εG =
l̂2e − l2e

2l2e
(2)

where l̂e and le are the deformed and undeformed lengths respectively.
The basic computational steps of the Levenberg-Marquardt method are then as follows:

Step1: Solve
(
Kt(D) + µI

)
∆D = −R(D) (R = ∂Φ

∂D ; Kt =
∂R
∂D ; µ > 0)

Step2: Update µ

Step3: If D + ∆D is acceptable, then D := D + ∆D
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Fig. 4 Dimensional synthesis of eight-bar mechanism

Here Step1 expresses that the Levenberg-Marquardt step ∆D is a linear combination of the Newton step
and the steepest descent step. The update scheme for µ in Step2 is a heuristic: increase µ if Kt(D) is
not significantly positive definite, otherwise decrease µ. (See Appendix 1 for the detail of the algorithm.)
Finally, Step3 ensures that the Levenberg-Marquardt iterations always decrease the potential function. The
combination of these three steps give the Levenberg-Marquardt method the nature of a trust region method
as known in mathematical programming [30]. Figure 2(b) shows the result for the two-bar mechanism; the
corresponding input-output steps are also here numbered parallel in italics. The analysis is here successful
since it keeps the elbow-up configuration in all the steps.

In order to investigate why the Newton-Raphson method failed in the analysis, we need to check the
iterations in the sixth step. Figure 1 plots the potential field in the sixth step and all the iterations of both
the Newton-Raphson method and the Levenberg-Marquardt method. It is notable that the Newton-Raphson
method takes the first step across the far basin and converges to the bottom of the far basin. In contrast, the
Levenberg-Marquardt method takes a very conservative step in the steepest descent direction (due to the
term µI in Step1) and converges to the bottom of the near basin; this corresponds to the physically realistic
configuration.

4 Example of dimensional synthesis in a truss representation

This section illustrates the fairly recent idea of a truss-based dimensional synthesis for path-generation
(see, e.g., [23, 24, 25]); we shall thus see that the dimensional synthesis problems, in which rigid bars and
revolute joints are normally used, can actually be solved via a truss representation.

Figure 4(a) shows an example problem setting for the design of an eight-bar mechanism that can trace
a prescribed target path for a given input path. The design will be achieved by (optimally) relocating the
nodal positions in the initial configuration.

In order to solve this problem using the kinematic analysis described in the previous section, the input
path is discretized into 20 equally distributed input points. In the analysis the Young’s modulus is set as
E = 10 and all the cross-sectional areas are set as Ae = 1 for e = 1, . . . , 8. The path-generation problem
is then stated as the minimization of the gap between the target points and the actual output points for the
given input points. Note that both the input and target points are assumed to be given in the beginning
and that the positions of the input and target points never change during the optimization process. In other
words, the original path-generation problem is reduced to a problem of a one-to-one mapping relationship
between the input and output points by point-by-point comparison between the target and output points. In
this setting, therefore, time steps do not explicitly enter the formulation.

One can alternatively consider time steps in the kinematic analysis by introducing a physical model of a
driver that is operated in the time domain. By doing this, a change of the input points can be viewed as the
varying operating speed of the input driver (as treated in [1]). In that sense, the present setting corresponds
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to the case where the operating speed (or angular velocity) of a possible input driver is constant and the
exact target point is specified for each time step since the input and target points are fixed.

The problem can be formulated as an optimization problem that, by varying the nodal position vector
X ∈ R2N , seeks to minimize the infinity norm of a gap vector G = (1G, 2G, . . . , S G) between the target
points iDtar (i = 1, 2, . . . , S ) and the current output points iDout (i = 1, 2, . . . , S ), where the gaps are defined
as iG = ||iDout − iDtar||2:

GEO:

min
X

: ||G||∞
s.t. : Xmin ≤ X ≤ Xmax

This problem can, for example, be solved by using the optimization algorithm MMA [31, 32] that al-
lows for a min-max formulation. This has proven to be a stable and efficient choice for these problems
and it is a well-known tool in topology optimization. Testing other algorithms should be useful but are
not part of this proof-of-concept paper. MMA requires that one provides subroutines that can calculate
the objective function as well as its first derivative. The first derivative can be calculated by the adjoint
technique described in [11] with a minor modification related to the use of nodal positions as design vari-
ables. Figure 4(b) shows the final dimensions of the eight-bar mechanism obtained; the application of the
Levenberg-Marquardt method was here critical for the success of the calculations.

5 Simultaneous mechanism synthesis for path-generation

In the previous section we have seen how nodal positions of a truss can be used as the design variables
for dimensional synthesis. An advantage of the approach is that it does not require the mechanism to be
assembled, unlike the representation with rigid bars and revolute joints. Computational experience shows
that the algorithm works well as long as a solution exists within the mechanism topology chosen in advance.
However, if an arbitrary path is given, we are typically forced to design the topology as well as the geometry,
and this is the final topic of the paper.

Figure 5 shows a truss ground-structure for a benchmark example of a path-generation problem in which
we are seeking to create a mechanism that can trace a prescribed target path. The target path is depicted by
the black ellipse at the output node 8 and this path should be the resulting motion for the given input path
depicted by the black circle at the input node 2. The input circular path is discretized into the eight equally
distributed input points, and then the corresponding target points are also located as indicated in the figure;
the corresponding input-output steps are numbered parallel in italics. In the same fashion as described in
the previous dimensional synthesis problem, the input motion can be realized by introducing an extra link
that is driven by a rotating motor around the center of the input circle at some constant angular velocity.
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We will seek to generate a mechanism by picking M∗ = 6 bars and simultaneously relocate the nodes
within the bounds depicted by the solid boxes in Figure 5. We require that the resulting mechanism should
be symmetric across the horizontal mid-axis. Also, in order to ensure the stability and certainty of the
resulting motion, the resulting mechanism should have f = 2 mechanical degrees of freedom (DOF);
this is defined as the number of independent inputs required to determine the positions of all links of the
mechanism with respect to a global coordinate system [4]. In the current case, each step of the kinematic
analysis implies that the input port is clamped by removing 2 DOF; this results in a both statically and
kinematically determinate structure. Thus, for the final design to be able to move along the input path and
to have unique output behavior, we must ensure that f = 2.

The problem can be formulated as a mixed integer optimization problem given below. As design vari-
ables the problem has the truss connectivity vector χ ∈ BM as well as the nodal position vector X ∈ R2N .
The problem is formulated so as to minimize the infinity norm of a gap vector G = (1G, 2G, . . . , S G) be-
tween the target points iDtar (i = 1, 2, . . . , S ) and the actual output points iDout (i = 1, 2, . . . , S ) defined as
iG = ||iDout − iDtar||2:

GEOTOP 1:

min
χ,X

: ||G||∞

s.t. :
M∑

e=1

χe = M∗

: χe ∈ {0, 1}
: Xmin ≤ X ≤ Xmax

: f (χ) = 2

: symmetric

Here, assuming that the mechanism has no redundant elements (see [5] for the detail), the DOF of a
mechanism can be calculated by the following DOF equation based on the extended Maxwell’s rule (in
2D) [18, 19, 20]:

f (χ) = 2n(χ) − M∗ − s (3)

where n is the number of active nodes which have non-zero incident bars; s is the number of supports for
the mechanism. In the case of f = 2(DOF), M∗ = 6(bars) and s = 4(supports), a possible mechanism has
to have n = 6(active nodes).

In order to solve the problem by using continuous gradient-based optimization techniques we need to
relax the problem by permitting the binary variable χe to take on intermediate values ρe between 0 and 1.

As regards the DOF constraint which is well-defined for the binary variables χ, there is an explicit
way of treating the constraints by relaxing the DOF equation (3) [5]. In this paper, however, by utilizing
the fact that the mechanism we are going to design forms a both statically and kinematically determinate
structure with the input port fixed at the given input points, we will replace the DOF constraint f = 2 by
conditions relating to the behavior with respect to the application of two additional very small load cases
at the output node 8, one horizontal and one vertical. These load cases simulate conditions in which the
mechanisms are perturbed by some disturbances and the resulting mechanism should be stable enough
against the disturbances when the input port is clamped. The two additional loads are applied separately, so
we name three gap vectors as G j ( j = 1 for no load; j = 2 for horizontal load; j = 3 for vertical load) and use
for the optimization a weighted gap vector

∑3
j=1 wjG j (w1 = 0.98; w2 = w3 = 0.01). Note that, thus, the two

additional load cases do not contradict the original objective, namely path-generation under the unloaded
condition. The gap vectors G j = (1G j,

2G j, . . . ,
S G j) between the target points iDtar (i = 1, 2, . . . , S ) and the

actual output points iDout (i = 1, 2, . . . , S ) are defined as iG j = ||iDout − iDtar||2 ( j = 1, 2, 3).
The weighted objective function was originally introduced in [11] in the continuum setting of compliant

mechanism designs. The current situation with the additional load cases means that the mechanism is stable
enough against disturbances when the input port is fixed. This in turn means that there should not be more
than n = 6 active nodes, again implying f ≤ 2; computations show that when optimizing for path-generation
the strive for flexibility then results in f = 2 in the final binary design.

The relaxed problem that we have implemented is thus:
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Fig. 6 Benchmark example of path-generation problem
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Fig. 7 Optimization histories of the benchmark example problem

GEOTOP 2:

min
ρ,X

: ||
3∑

j=1

wjG j||∞

s.t. :
M∑

e=1

ρe ≤ M∗ + α

: 0 < ρmin ≤ ρe ≤ 1

: Xmin ≤ X ≤ Xmax

: symmetric

where ρmin is a positive lower bound of the design variables ρe (= 0.001 typically). This is introduced in
order to prevent numerical difficulties such as a singular stiffness matrix and an insensitivity of the objective
function to changes in the design variables around zero values. The term α compensates the effect of ρmin

on satisfying the bound M∗ (i.e., α = (M − M∗)ρmin). Furthermore, in order to recover the 0–1 values of χ,
we will also penalize the intermediate values of ρe by expressing the cross-sectional area Ae of the e-th bar
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Fig. 8 Straight-line mechanism design problem

as:

Ae = ρ
P
e Amax (4)

where P > 1 (= 5 for the present case) and where Amax is an upper bound (= 1 for the present case). Since
we have a constraint M∗ < M on the total element number of bars the penalization makes the intermediate
values less efficient, thus typically forcing ρ to go to the extremums for optimized designs, i.e. ρmin or 1 as
the structure else would be too compliant under the load perturbations. This is a typical technique used in
continuum based topology optimization problems [9].

This problem can also be solved by using MMA [31, 32] in a min-max formulation. The first derivative
required for MMA can be calculated via the sensitivity analysis with an adjoint technique described in,
e.g., [11]. Solving the problem by using both the truss connectivity vector ρ and the nodal position vector
X simultaneously can give a result as illustrated in Figure 6(a). Here the resultant mechanism can follow
the target path fairly well. In contrast, however, if one solves the problem for fixed nodal positions, a
mechanism as shown in Figure 6(b) can be achieved. Due to the limitation of the choice of dimensions the
mechanism cannot fully follow the target path. Note that both solutions are feasible in the original problem
GEOTOP 1 since the number of active nodes is n = 6 for both the cases (cf. comment after Eq. (3)).
Figure 7(a) and 7(b) show the optimization histories of the objective function value and the total element
number constraint in the cases with and without the nodal positions variations.

Another example problem treated with the same formulation is shown in Figure 8(a); note that the input
and target paths and the boundary condition have been changed. We here seek to create a six-bar mechanism
that can transform the arc (depicted by the thick black arc) at the input node 5 into the straight line segment
(depicted by the thick black line) at the output node 8. The input circular motion can be realized by adding
an extra link that connects the input node 5 and a ground point located at the focal point of the arc.

The input arc is discretized into the eight equally distributed input points, and the corresponding target
points are located along the straight line as indicated in Figure 8(b); the corresponding input-output steps
are numbered parallel in italics. Unlike the previous problem setting, the input motion is not closed or
periodic. In this setting, if not impossible, it might be unrealistic to associate the meaning of the equally
distributed input points with the time discretization. It may be more natural to interpret that this problem
is simply to design a mechanism that can map the input points to the corresponding output points in the
one-to-one relationship, in accordance with classical kinematic analysis of mechanisms.

Figure 8(b) shows the resultant mechanism – the initial configuration is depicted in black and the dis-
placed configuration in grey. It required 34 iterations for the optimization process to converge, as shown
in Figure 9(a). Notice that in the final design the nodes 4 and 6 have moved to the right by 0.25. The
DOF of the mechanism can be calculated with the DOF equation (3). Substituting n = 5(active nodes),
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(a) Levenberg-Marquardt method
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(b) Newton-Raphson method

Fig. 9 Optimization histories of the straight-line mechanism design design

M∗ = 6(bars) and s = 2(supports), the DOF is obtained as f = 2, and this ensures the mechanism is feasible
in the original problem GEOTOP 1. The resulting mechanism is the straight-line mechanism [33] invented
in 1864 by the French engineer Charles-Nicolas Peaucellier [34]. Here this classical design has been created
by a computer algorithm for mechanism synthesis.

In contrast, if one solves the same problem by applying ordinary Newton-Raphson method instead of
the Levenberg-Marquardt method, one encounters the unstable iteration history as shown in Figure 9(b).
Note that the objective function value fluctuates severely and never converges, even after 200 iterations. In
contrast, with the Levenberg-Marquardt method, convergence is obtained after 34 iterations.

Figure 10(a) and 10(b) show the snapshots at the 25th and 33rd iterations of the optimization using
the Newton-Raphson method. In the 25th iteration, as shown in Figure 10(a), the analysis produced the
smooth output path; this means no configuration transition occurred during the analysis. On the other hand,
in the 33rd iteration of Figure 10(b), the output path looks non-smooth. Besides, if one compares the two
configurations before and after the deformation, one notices that the two configurations do not belong to the
same configuration space; the initial configuration is somehow flipped along the horizontal mid-axis after
deformation.

As regards the computational aspects, the major computational data such as the problem size, the num-
ber of iterations and the CPU-time are collected in Table 1. In the table NP denotes the number of nodal
position variables; the number in the parentheses means the number after reduction of the variables con-
sidering the symmetry. d denotes the degreed of freedom in the finite element analysis sense; note that
there is no symmetry in the analysis. NC denotes the number of constraints. NI denotes the number of
total iterations and CPU denotes the CPU-time spent until convergence. The value of ||G||∞ is the one after
convergence. Benchmark 1 and 2 indicate the benchmark example for the simultaneous type and dimen-
sional synthesis with and without nodal position variations respectively. Peaucellier 1 and 2 indicate the
straight-line mechanism design problem using the Levenberg-Marquardt method and the Newton-Raphson
method respectively.

With reference to the stopping criteria, the optimization is terminated either when the derivative of the
objective function becomes less than 10−10 or when the maximum relative difference between the current
and previous variables becomes less than 10−4. For all the computations, the initial values of the cross-
sectional areas are set to ρe = M∗/2M; also, move limits are imposed on the nodal positions of up to 20%
of the bounds at each optimization step. Each problem is solved by just one run of the algorithm and all the
computations are performed on an Intel Pentium 4, 2.8 GHz clock frequency and 1 Gb internal memory.
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Fig. 10 The unstable behavior when using the Newton-Raphson method

Table 1 Computational data for the mechanism synthesis problems

Problem NP M M∗ d NC NI CPU ||G||∞
Benchmark 1 9(5) 36(21) 6 12 1 97 7m43s 0.0088
Benchmark 2 9(5) 36(21) 6 12 1 97 7m46s 0.0581
Peaucellier 1 13(7) 36(21) 6 14 1 34 1m45s 0.0004
Peaucellier 2 13(7) 36(21) 6 14 1 - - -

6 Conclusion

A method has been developed for designing both the shape and topology of articulated mechanisms based
on the extended truss ground-structure approach using cross-sectional areas and nodal positions as design
variables. This leads to a technique for simultaneous type and dimensional synthesis. For the analysis
part it is essential to control the mechanism configuration so that the mechanism remains within the same
configuration space, thus stabilizing the optimization process and resulting in realistic solutions. This can
be achieved by application of the Levenberg-Marquardt method.

The proposed method presupposes that the input and target points on the path and the total number of
elements are given in advance. However, these parameters are also crucial for obtaining good results. It
will be possible future work to include these parameters as design variables in the optimization.

Even though the gradient-based optimization seems promising for the presented examples, it has its
limitations since the problem is intrinsically non-convex. Therefore, it will be necessary to combine some
global optimization techniques such as branch and bound in order to generalize the method. From the global
optimization point of view, the replacement of the DOF constraint with the auxiliary load cases will be less
practical since the problem size is multiplied by the number of load cases; thus direct treatment of DOF
constraint might be more advantageous [6]. A relaxed format of the DOF constraint may also be helpful for
the continuous format of the problem [5].

Another issue for future study is if the Levenberg-Marquardt method can alleviate the problem of so-
called unstable elements that are frequently observed in low-density regions in continuum-based compliant
mechanism designs [11, 35]. This problem is caused by the ill-conditioned tangent stiffness matrix arising
through the use of a ground-structure like design representation.
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Appendix 1: Application of Levenberg-Marquardt method to non-
linear truss analysis

In order to find the equilibrium, we need to minimize the total potential energy Φ defined in Eq. (1). The
truncated Taylor expansion of the potential function at the current iterate displacement D is:

Φ(D + ∆D) � Q(∆D) (5)

= Φ(D) + ∆DΦ′ +
1
2
∆D�Φ′′∆D (6)

= Φ(D) + ∆DR +
1
2
∆D�Kt∆D (7)

where Φ′ = ∂Φ/∂D(= R) and Φ′′ = ∂2Φ/∂D2(= Kt). We then define the gain factor g for the energy Φ as

g :=
Φ(D) − Φ(D + ∆D)

Q(0) − Q(∆D)
(8)

When g is close to one, we assume that the quadratic approximation is good in the neighborhood of the
current iterate D. All the steps of the algorithm are then as follows:

Algorithm: Levenberg-Marquardt method [27]
begin

D := D0; µ := µ0; found:=false; k := 0;
repeat

while Kt + µI not positive definite
µ := 2µ

Solve (Kt + µI)∆D = −R
Compute gain factor g by Eq.(8)
If g > δ (typically δ � 10−3)

D := D + ∆D
µ := µmax{ 13 , 1 − (2g − 1)3}

else
µ := 2µ

k := k + 1; Some stopping criteria
until found=true or k > kmax

end

The physical meaning of the term µI is to add extra horizontal and vertical springs that connects all the
nodes to the ground. If the node is isolated, namely no bars are incident with the node, the nodes is pinned
by the springs; thus the structure becomes more stable.
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Appendix 2: Configuration space of two-bar link mechanism

If we have no restrictions for the two-bar mechanism of Figure 1, node 3 can reach any point on the unit
disc depicted by the solid line in Figure 11. In this case, a valid representation for the configuration space
becomes a torus. Here, by valid we mean that the representation is a continuous and one-to-one correspon-
dence mapping. However, if we remove the boundary and the origin of the disk, the mechanism has no way
to transit from one (elbow-up or elbow-down) configuration to the other because the mechanism needs to be
either completely stretched out (the situation corresponds to the boundary of the disc) or completely con-
tracted (the origin of the disc) in the transition. In that case, the configuration space is completely divided
into two disjoint spaces as shown in Figure 12. The grey circle of node 3 contains neither the origin nor
the boundary points of the disc; therefore the mechanism should stay in the elbow-up configuration when it
starts with the elbow-up configuration.

R=1.0

r=0.0999

Fig. 11 Configuration space of two-bar mechanism: no restrictions

R=1.0

r=0.0999

Fig. 12 Configuration space of two-bar mechanism: w/o origin and boundary
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