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Reorienting a Quasi-Rigid Body

Using Shape Changes

Marie Bro
∗

Maria Mose
†

Abstract

It is well-known that a falling cat can reorient itself merely by changing its shape.

We present here a ball and stick model which captures the features necessary for a cat

to turn without external torque. We calculate the reorientation of this model resulting

from a cyclic sequence of shape changes, or in terms of differential geometry the geometric

phase obtained by following a given closed path in shape space. We further determine via

numerical implementation of this model the most efficient series of shape changes leading

to a given reorientation. In other words we solve numerically a version of the isoholonomic

problem.

1 The Isoholonomic Problem

The concept of geometric phase have been studied by a number of authors [1], [6], [7], [9].

We give here a brief outline of the concept, and how it should be understood in the context

of control theory.

The geometric phase of a dynamical system is a certain type of phase shift. Any continuous

change in the variables of the system corresponds to a curve its configuration space. If the

system is a control system the variables can be split into control variables and state variables,

and the configuration space can be given the structure of a fiber bundle. The set of control

variables will constitute the base space and the state variables form the fibers.

One may then ask the question: ’Given a curve in base space, which curve in the confi-

guration space will result from the changes in the control variables along this curve?’. In

terms of differential geometry this question adresses the problem of lifting a curve from base

space to the fiber bundle in a unique way. Lifts in general are not unique, but the so-called

horisontal lifts are. They occur in the presence of a connection since a connection define the

horisontal spaces. Connections often emanate from conservation laws or other constraints

on the system. The phase shift in the state variables obtained from lifting a closed curve
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in the base space horisontally is the geometric phase (in references [7] and [8] refered to as

holonomy).

When falling, the cat controls its orientation by changing its shape. Hence, the control

variables are those that describe the shape, and the state of the system is the orientation. The

falling cat’s problem is to obtain a certain reorientation (i.e geometric phase) as efficiently

as possible. It is therefore a special case of The Isoholonomic Problem [8]: Among all curves

with a fixed geometric phase, find the loop of minimum length.
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(a) The geometric phase is the phase shift in

the state variables (i.e. the fiber variables)

obtained when the control variables follow a

closed curve in base space. The geometric

phase is determined by performing a horison-

tal lift of the curve to the configuration space
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(b) Sketch of the isoholonomic prob-

lem. Several closed curves in the base

space with the same starting point

might lead to the same geometric

phase. The isoholonomic problem is

to determine the shortest of these.

Figure 1:

This is an optimal control problem, and for the model we propose in the next section it has

the formulation:

minimize
ξ(t)∈B

f(ξ) =

∫ t1

t0

‖ξ̇(t)‖dt

such that η̇(t) = g
(

ξ(t), η(t)
)

ξ̇(t), (1)

ξ(t0) = ξ(t1) = ξ0,

η(t0) = η0,

η(t1) = ηend, t ∈ [t0, t1]

Here, the objective funktion f(ξ) is the length of the curve in base space; the first constraint

ensures that the lift is horisontal; the second constraint guarantees a closed curve and that the

starting point is kept fixed; and finally the third and the fourth constraint gives the correct
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initial and final orientations, hence the correct geometric phase.

2 The Mechanical Model

Different models of the falling cat have been proposed most of which model the cat as two

coupled rigid bodies [3], [4], [5]. These models differ in the nautre of the coupling of the two

bodies. Here, we propose a ball and stick model of the falling cat.

Translation plays no part in reorientation through shape changes [6], [8], and therefore

we consider a quasi-rigid body, modelling the cat in a frame where origo is at the center of

mass. Hence each configuration comprise a shape, described by the internal variables, and

an orientation, described by the external variables. As we saw in the previous section the

shape variables are the control variables and the orientation variables are the state variables.

This means that when viewing the configuration space as a fiber bundle, the shape space

constitutes the base space and the group of rotations in R
3 forms the fibers. Since we are

dealing with reorientation of the quasi-rigid body, it makes sense to assign SO(3) as the

structure group of the fiber bundle thus making it a principal bundle.
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(a) A schematic drawing of a cat

in relation to the proposed model.

ℓ3

zb

α3

α2

m1

m4

α1

ℓ2

xb

ℓ1

m2 m3
yb

(b) The body frame of the model. The shape

is given by the three angles α1, α2 and α3.

Figure 2:

The model consists of four point masses m1, m2, m3, and m4 which are connected by

three massless rods ℓ1, ℓ2 and ℓ3 (see Figures 2(a) and 2(b)). The rods ℓ1 and ℓ3 represent the

forelegs and the hind legs, respectively, while ℓ2 respresents the spine of the cat. The shape

space is S1 × S2, as indicated by figure 2(b).

Elements in shape space are denoted ξ, and elements in SO(3) are denoted η. Hence, the

position si of the mass mi in the laboratory frame is given by:

si(ξ, η) = R(η)
(

bi(ξ) − bCM (ξ)
)

, i = 1, . . . , 4
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where R(η) is a rotation matrix, and bi(ξ) and bCM (ξ) are the position vectors in the body

frame for mi and the center of mass respectively.

A set of ODE’s for calculating the geometric phase for this model along a path in shape

space can now be derived using the conservation of angular momentum. We assume that

the cat is initially at rest, and hence we impose the constraint ’angular momentum = 0’ on

the system. This constraint is equivalent to the mechanical connection [1], [8]. The angular

momentum is calculated from the position vectors, and it turns out that it can be written

as the sum of a matrix Kη(ξ, η) times the time derivative of the orientation, η̇ and a matrix

Kξ(ξ, η) times the time derivative of the shape ξ̇.

LCM =
3

∑

i=1

si × miṡi = Kη(ξ, η)η̇ + Kξ(ξ, η)ξ̇ (2)

Given the constraint on the angular momentum, and assuming that Kη(ξ, η) is regular, we

obtain the following relation between small changes in the orientation and small changes in

the shape:

dη = −
(

Kη(ξ, η)
)−1

Kξ(ξ, η) dξ (3)

The reorientation obtained by following a given closed curve in shape space (i.e. going

through a series of shape changes beginnig and ending with the same shape) can be calculated

by integrating the above expression. On top of this, we want to determine an optimal series

of shape changes which the (model) cat can perform in order to reorient itself as to land on

its feet. This problem is adressed in the next section.

3 Implementation

The expression relating small changes in shape to small changes in orientation, (3), can easily

be integrated using e.g. a standard ODE solver i MATLAB. However, the software used in

solving the isoholonomic problem numerically requires the gradients of the constraints, hence

also of the ODE-solver, as input. It is, therefore, necessary to use a known and simple numer-

ical method. To keep things relatively simple the time derivatives of ξ are discretized using

simple forward differences, while the ODEs (i.e. the time derivatives of η) are discretized

using Eulers Method.

The software used for solving the optimal control problem was SNOPT which is a Fortran

based package for MATLAB. SNOPT solves large non-linear optimization problems using an

SQP-method [2]. SQP-methods are iterative, and hence an initial guess is required. An initial

guess is some closed curve in shape space which represents a series of shape changes that leads

to the desired reorientation. We have constructed three, from careful studies of photos of real

cats while falling. Two of these are shown as red curves in figures 3(a) and 3(b).
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4 Results

We have obtained variuos results from optimizing the initial guesses. The main conclusion

to be drawn is that there are several local minima, and that initial guesses that are quite

similar can lead to very different minima when optimized. This is not very surprising from

a mathematical point of view, and when studying photographs of cats flipping in the air one

realizes that different cats use different methods.

Figure 3 shows two different curves in shape space each resulting from optimizing an

initial curves with respect to the isoholonomic problem. The two initial curves (the red

curves) are quite similar, but the results (the blue curves) are considerably different. One

result (see figure 3(a)) is in good agreement with some of the motions we have inferred from

photographs of cats. The other 3(b) is quite unphysical. The principal cause for this is the

crudity of the model. It has no ’body’, no extension. Another reason might be the low order

of the discretization.
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(a) This result (the blue curve) resembles fairly

well some of the motions we have observed in pho-

tographs of falling cats. It corresponds to a series

of motions where the cat draws its legs towards the

body and at the same time twist its spine, followed

by stretching out the hind legs, and finally mov-

ing both hind- and forelegs to their initial position

while twisting the spine in the oppposite direction.
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(b) This result is quite unphysical. It corresponds

to a series of motions where the cat pull in its legs

and ’work a bit’ with them in various directions

and the unfold them. The reorientation is obtained

by the small movements of the legs.

Figure 3: Initial curves (red) and the resulting optimized curves (blue) in shape space

Our model of the cat can give an idea about how a quasi-rigid-body can be reoriented.

Furthermore we have discovered several curves (the initial guesses) that gives the desired

reorientation, and represents a movement similar to the one performed by the cat. However,

the optimization results suggest that the presented model does not capture the features of the
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cat to an extent where it is adequate as a basis for an optimization where the result should

resemble the actual movement of a cat.

The two models presented in [4] both take into account the body of the cat, but disregard

the effect of the limbs. Our model is opposite of that in the sense that it disregards the bulk

of the body and focuses on the limbs. Neither of the models fully captures all the features of

the cat involved in the reorientation. Therefore, one should be careful when making biologic

conclusions about the cat on the basis of either of the models, and it seems infeasible to make

a refined model of that take both the body an the limps into account, given the complexity

of these models. On the other hand, if the goal is to discover new principles for efficient

reorientation, all three models will be relevant to study.
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