Technical University of Denmark

Refractive index engineering in silica glass

Kristensen, Martin

Publication date: 2003

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Kristensen, M. (2003). Refractive index engineering in silica glass.

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

doktorafhandling_MK.qxd 18-09-2003 15:20 Side 1

Refractive Index Engineering in Silica Glass by Martin Kristensen Technical University of Denmark COM Center - Glass Components & Materials

Copyright © by Martin Kristensen. All rights reserved.

Portrait: Lasse Rusborg Prepress: Heidi Koch Printed in Denmark 2003 by Levison + Johnsen + Johnsen A/S, Glostrup

ISBN 87-90974-41-7

A

The refractive index of glass can be changed by exposure to ultraviolet light or strong electrical fields. This doctoral thesis summarises research on different methods to change the refractive index. The main subjects are processes induced by ultraviolet light in germaniumdoped glass, the application of refractive index changes within components for telecommunications, and the development of high-voltage treatment (poling) as a method to fabricate non-linear glass.

The thesis presents a model for ultraviolet-induced refractive index changes. The model assumes that refractive index changes take place when ultraviolet light is absorbed at germanium-sites and transferred through non-radiative processes to other places in the glass where defects are formed. This describes a wide range of the phenomena observed in germaniumdoped glass. The model presentation is followed by a summary on the application of the refractive index changes for fabrication of components such as Bragg grating filters and lasers.

The last section concerns poling. Strong electrical fields at elevated temperatures perform poling of the glass. The aim is to obtain a non-linear refractive index in the glass. Potential applications of non-linear glass include wavelength conversion (e.g. turning red light into blue) and electro-optic switching. Refractive Index Engineering in Silica Glass MARTIN KRISTENSEN DTU

₩

Refractive Index Engineering in Silica Glass

Martin Kristensen

Martin Kristensen received the M.Sc. and Ph.D. degrees from Aarhus University, Denmark in 1989 and 1992 within the subjects of molecular physics, and laser cooling and spectroscopy. From 1992 to 1994 he was at the Huygens Laboratorium in Leiden, The Netherlands, performing research on quantum optics.

From 1994 to 1998 he was group leader within photonics at Mikroelektronik Centret, Technical University of Denmark (DTU), where he was performing research and development of integrated optics and Bragg gratings. In January 1999 his group was transferred to the newly established COM Center at DTU. April 1, 2000 he was appointed Professor at COM, where he is heading the Gratings and Poling group in the glass competence area. In addition to Bragg gratings and glass poling he and his group are performing research on planar photonic bandgap components.

E-mail: mk@com.dtu.dk

Glass Components & Materials COM Center

2800 Kgs. Lyngby, Denmark +45 4525 6352 +45 4593 6581 ail Info@com.dtu.dk Ca

Martin Kristenser