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ABSTRACT 
 

Cognitive component analysis (COCA) is defined as the process of 
unsupervised grouping of data such that the resulting group 
structure is well-aligned with that resulting from human cognitive 
activity [1]. In this paper we address COCA in the context short 
time sound features, finding phonemes which are the smallest 
contrastive unit in the sound system of a language. Generalizable 
components were found deriving from phonemes based on 
homomorphic filtering features with basic time scale (20 msec). 
We sparsified the features based on energy as a preprocessing 
means to eliminate the intrinsic noise. Independent component 
analysis was compared with latent semantic indexing, and was 
demonstrated to be a more appropriate model in COCA. 

 
 
 

1. INTRODUCTION 
 

Cognitive component analysis (COCA) as a newly defined concept 
was first brought to bear in [1]: the process of unsupervised 
grouping of data such that the resulting group structure is well-
aligned with that resulting from human cognitive activity. The 
concept is related to Lee and Seung’s work on non-negative matrix 
factorization (NMF), in [2] they showed that components could be 
understood using concepts from gestalt theory: The factorization of 
an observation matrix in terms of a relatively small set of cognitive 
components leads to a parts-based object representation. In 2002, 
similar parts-based decompositions were obtained in a latent 
variable model based on non-negative linear mixtures of non-
negative independent source signals [3]. Holistic, but parts-based, 
recognition of objects is frequently reported in perception studies 
across multiple modalities and increasingly in abstract data, where 
object recognition is a cognitive process.  

The human perceptual system can model complex multi-agent 
scenery by using a broad spectrum of cues for analyzing perceptual 
input and for identification of individual signal producing agents. It 
is remarkable that representations found in human and animal 
perceptual systems closely resemble the theoretically optimal 
representations from independent component analysis (ICA) [4, 5, 
6]. In this paper our aim is to further discuss the generality of 
cognitive component analysis, and try to answer the question: Are 
such optimal representations based on abstract “independence” 
also relevant in higher cognitive functions? 

The phoneme is the smallest contrastive unit in the sound 
system of a language. Phoneme recognition is an active research 
field in speech recognition, see e.g., [7]. In [8] phonemes have 
been investigated by one of the COCA analysis, namely Latent 
Semantic Indexing (LSI), and generalizable components and 

structures representing some of these smallest units have been 
found, as illustrated in Fig. 1. However whether the generalizable 
structure found in this work can assist phoneme recognition in 
general, still needs to be explored. Grouping by ICA has been 
pursued earlier for several abstract data types including text, 
dynamic text (chat), images, and combinations [9, 10, 11, 12, 13]. 
It was found in this work that ICA is a more appropriate model 
than both principal component analysis (PCA), which is too 
constrained, and clustering, which may in some instances be too 
flexible as a representation of text data. 

The generality of ICA makes it possible to be utilized in many 
different areas. The classical application in signal processing of 
ICA model is blind source separation (BSS). A classical example 
of BSS is the cocktail party problem (CPP), see e.g., [14]. The 
problem is to separate the voices of different speakers, using 
recordings of one or more microphones. Comparing to BSS/CPP 
which is basically using original sound signals, the ICA model in 
COCA analysis applies on homomorphic filtering features, namely 
Mel-frequency Cepstral Coefficient (MFCC). MFCCs are short-
term spectral features, and the mel-frequency warping 
transformation based on human auditive system. In COCA we are 
interested in a cognitive level, so to speak before semantics. The 
features we look for can be compared to the features a foreign 
speaker hears on entry. Sounds are recognized but without 
semantic reference. Hence, the cognitive context in our COCA is 
in the intermediate-level between source separation (low-level) and 
content recognition (high-level).  

 
2. COGNITIVE COMPONENT ANALYSIS 

 
2.1 Latent semantic indexing (LSI) 
Latent semantic indexing is the PCA applied on abstract data such 
as text [15]. It is basically a tool for dimensionality reduction and 
also can be used to find group structure in data when the signal-to-
noise ratio is high [8]. Our approach is inspired by LSI and the 
main innovation here is the active search for generalizable non-
orthogonal linear features that may be described in terms of an 
independent component generative model. 

A strong assumption in LSI is that the data has a Gaussian 
distribution. Unfortunately, many real world data are nongaussian, 
instead very sparse [1, 8]. Hence LSI is often used as a tool to 
reduce dimensionality, which is post-processed to reveal cognitive 
components, e.g., by interactive visualization schemes [16]. 

 
2.2 Independent component analysis (ICA) 
ICA algorithms can estimate the independent components from 
linear mixtures [17], and has applications in many real world data. 
Here we will discuss some basic characteristics of mixtures and the 
possible recovery of sources. 
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Fig. 1. Scatter plot of data on latent space 

The latent space is formed by the two first principal components of the training data consisting of 
four separate utterances representing the sounds ‘s’, ‘o’, ‘f’, ‘a’. The structure clearly shows the 
sparse component mixture, with ‘rays’ emanating from the origin (0,0). The ray marked with an 
arrow contains a mixture of ‘s’ and ‘f’ analysis windows, a generalizable characteristic feature 
associated with the vowel a-like sound that opens both an ‘s’ and an ‘f’. 

 
 

First, we note that LSI/PCA is not able to reconstruct the 
mixing. PCA, being based on co-variance is simply not informed 
enough to solve the problem. To see this let the mixture be given 
as 
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where Xj,t is the value of j’th feature in the t’th measurement, Aj,k is 
the mixture coefficient linking feature j with the component k, 
while Sk,t is the level of activity in the k’th source. In a text instance 
a feature is a term and the measurements are documents, while the 
components can be interpreted as topical contexts.  

As a linear mixture is invariant to an invertible linear 
transformation we need to define a normalization of one of the 
matrices A, S. We do this by assuming that the sources are unit 
variance. As they are assumed independent the covariance will 
thus be trivially given as the unit matrix. LSI, hence PCA, of the 
measurement matrix is based on analysis of the covariance 
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Clearly the information in AAT is not enough to uniquely identify 

A, since if one solution A is found, any (row) rotated matrix A
~

 = 

AU, UUT = I is also a solution, because A
~

 has the same outer 
product as A. This is a potential problem for LSI based analysis. 
The ICA community has on the other hand devised many 
algorithms that use more informed statistics to locate A and thus S, 
see [17] for a recent review. 

 
3. COMPONENT ANALYSIS FOR PHONEMES 

 
The phoneme is defined as the class of sounds that are consistently 
perceived as representing a certain minimal linguistic unit in [18]. 
However phonologists have differing views of the phoneme, and 
two major ones are: in the American structuralist tradition, a 
phoneme is defined according to its allophones and environments; 
in the generative tradition, a phoneme is defined as a set of 

distinctive features [19]. An allophone is a phonetic variant of a 
phoneme in a particular language. According to the first view, the 
same phoneme can sound slightly different in different languages 
and environments. In American English approximately 40 
phonemes are in use, of which 12 are vowels. Vowels vary in 
temporal duration between 40-400msec [18].  

Four simple utterances ‘s’, ‘o’, ‘f’, ‘a’ from the TIMIT 
database [20] were used for this demonstration. The basic time 
scale of 40 msec was used (windowing with 95% overlap), since 
the speech production system is generally considered stationary for 
time intervals on the order of 20-40 msec [18]. The windows were 
represented by 16 MFCCs. The temporal development of the mel-
cepstral representation of the four utterances is presented in the 
upper panel of Fig. 4. After variance normalization we sparsified 
the energy based coefficients by zeroing windows of normalized 
magnitudes with a statistical z < 1.4, which retains 55% energy 
from original features. LSI/PCA was performed on the sparsified 
feature coefficients to get the most variant PCA components. The 
results from Fig. 1 seem to indicate that generalizable cognitive 
components corresponding to phonemes, e.g. /æ/ from utterance ‘s’ 
and ‘f’, can be identified using linear component analysis. 
However the ray structures representing the phonemes are not 
aligned with the directions of the principal components, hence, an 
ICA scheme is required.  

Six components ICA was applied on the PCA coefficients. 
Fig. 2 shows the scatter plot of sparsified features on the first two 
principal components derived from the 16 x 16 sparsified feature 
covariance matrix. The six independent sources were annotated as 
red circle, blue square, green diamond, magenta +, cyan triangle 
and black X respectively. The tag for the sample was labeled 
according to the independent sources, S matrix, from ICA analysis 
on sparsified and dimensionality reduced features. The arrows in 
Fig. 2 represent the directions of sources which are the column 
vectors of the mixing matrix A in equation (1).  The ‘ray’ structure 
with rays emanating from the origin of the coordinate system is 
evident, and each ray along the vector belongs to one independent 
source.  In order to testify  the  generalizability of  this  structure,  a  



 
Fig. 2. Scatter plot of training data 

Six components ICA performed on PCA coefficients. 
Scatter plot shows the data projected on the first two 
principal components derived from the sparsified 
features. The circle, square, diamond, +, triangle and X 
stand for 6 independent sources. The tag for the sample 
was labeled according to S matrix from ICA, and the 
arrows represent the directions of sources from mixing 
matrix A. The ‘ray’ structure with rays emanating from 
the origin (0,0) is evident. 
 

 
Fig. 3. Scatter plot of test data 

Another set of utterances ‘s’, ‘o’, ‘f’, ‘a’ was analyzed. 
The ‘ray’ structure is obvious and similar to the training 
set, emanating from the origin (0,0). 

 
test set with another set of utterances ‘s’, ‘o’, ‘f’, ‘a’ from TIMIT 
was analyzed using the same setup. The results are shown in Fig. 3. 
Here we only show the direction of the first source. Later we will 
demonstrate the cognitive content of this source. 

Generalizability has been verified in another way by using 
two different implementations of ICA, namely maximum 
likelihood ICA (icaML) and the fast fixed-point algorithm for ICA 
(fastICA). IcaML algorithm is the estimation of the independent 
component as in the Infomax by Bell and Sejnowski [21] using a 
maximum likelihood formulation. Fig. 4 and 5 show the 
classification results from icaML and fastICA on training and test 
sets separately.  In the two upper panels, the temporal development  

 
Fig. 4. MFCCs and Classification on Training set 

In the two upper panels, the temporal development of the 
mel-frequency cepstral representations of the original ‘s’, 
‘o’,  ‘f’, ‘a’ and 4 spasified ones is presented. The 
boundaries between them are clearly visible. 55% energy 
was retained after sparsification. The first independent 
sources from two ICA implementations are shown in the 
two lower panels: the vertical lines indicate the locations of 
windows belonging to the first source. Results from two 
ICA algorithms are similar. A large percentage of the 
windows locate in, approximately, windows No. 1 to No. 
133 for ‘s’, and No. 471 to No. 600 for ‘f’. It indicates the 
feature is related to the similar /æ/ sound that opens both ‘s’ 
and ‘f’.    

 
Fig. 5. MFCCs and Classification on Test set 

The two upper panels show the temporal development of 
the mel-frequency cepstral representations of the four 
original utterances and four spasified ones. 60% energy 
was left for test set. The two lower panels show the first 
independent sources from icaML and fastICA: the vertical 
lines indicate the locations of windows belonging to the 
first source. Two panels look quite similar. The similar 
scenario shown in Fig. 4 for training set happened again on 
test set, which indicates the feature is related to the similar 
/æ/ sound that opens both ‘s’ and ‘f’. However there are 
more mis-detections located outside the above ranges. 



of the mel-frequency cepstral representations of the four original 
utterances and four sparsified utterances is presented with the 
sequence of ‘s’, ‘o’,  ‘f’, ‘a’. The boundaries between the four 
utterances are clearly visible, and the utterances show much 
similarity between the two samples (test and train), however, they 
are of quite different duration. For training set, 55% energy was 
retained after sparsification; and 60% energy was left for test set. 
The first independent sources from two ICA algorithms are shown 
in the two lower panels of Fig. 4 and 5: the vertical lines indicate 
the locations of windows belonging to the first source. It is quite 
clear that the results of icaML resemble those of fastICA. For 
training set, we notice that a large percentage of the windows 
locate in the first part of ‘s’ and ‘f’ utterances, which 
approximately from windows No. 1 to No. 133 for ‘s’, and No. 471 
to No. 600 for ‘f’. It indicates the feature is related to the similar 
/æ/ sound that opens both ‘s’ and ‘f’.  A similar scenario happened 
in test set, however there are more lines locate outside the above 
ranges. Our interpretation is the windows containing low energy 
(almost zero) have simply been classified into the first class. The 
classification has been improved while we slightly reduced the 
threshold for sparsification. However low threshold brings more 
noise, which increases the classification error. 
 
 

4. CONCLUSION 
 

The generality of cognitive component analysis, which is defined  
as the process of unsupervised grouping of data such that the 
ensuing group structure is well-aligned with that resulting from 
human cognitive activity, has been explored in this paper. We have 
studied the derived cognitive components of phonemes from short 
time homomorphic filtering features with energy based 
sparsification. ICA on short-term spectral features, MFCC, was 
compared with latent semantic indexing, and was demonstrated to 
be a more appropriate model in COCA. 

The fact that we find such cognitively relevant component by 
simple unsupervised learning based on sparse linear component 
analysis lends further support to our working hypothesis that 
humans could use such information theoretical representations, not 
only in basic perception tasks, but also when analyzing more 
abstract data. 
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