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Abstract
Cast shadows from moving objects reduce the general ability of robust classi�cation andtracking of these objects, in outdoor surveillance applications. A method for segmentation ofcast shadows is proposed, combining statistical features with a new similarity feature, derivedfrom a physics-based model. The new method is compared to a reference method, and foundto improve performance signi�cantly, based on a test set of real-world examples.

1 Introduction
The introduction of digital video cameras, and recent advances in computer technology,make it possible to apply (semi-)automated processing steps to reduce the amount of datapresented to an operator in a surveillance application. This way the amount of trivial tasksare reduced, and the operator can focus on a correct and immediate interpretation of theactivities in a scene.The Danish Defence Research Establishment (DDRE) is currently focusing part of it'sresearch on implementing a system for automated video surveillance. The main objectivesof the DDRE are to gain general knowledge in this area, and eventually implement anautomated surveillance application that is capable of detecting, tracking and classifyingmoving objects of interest.At this point the DDRE has carried out some initial studies in testing and implement-ing parts of the W4-system [4] for automated video surveillance. The W4-system e�ectivelydetects moving objects, tracks them through simple occlusions (blocking of the view), clas-si�es them and performs an analysis of their behavior. One limitation of W4 is that thetracking, classi�cation and analysis of objects fails when large parts of the moving objectsare actually cast shadows.Distinguishing between cast shadows and self shadows is crucial for the further anal-ysis of moving objects in a surveillance application. Self shadows occur when parts of anobject are not illuminated directly, but only by di�use lighting. Cast shadows occur whenthe shadow of an object is cast onto background areas, cf. �gure 1. The latter are a
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major concern in today's automated surveillance systems because they make shape-basedclassi�cation of objects very di�cult.

Figure 1: Types of shadows. Self shadow is shadow on the object itself, a person in this case. Castshadow is the shadow cast onto the background.
In [9] Prati et al. give a comparative evaluation of the most important methods upuntil 2001. They conclude that the more general situations a system is designed to handle,the less assumptions should be made, and if the scene is noisy, a statistical approach ispreferable to a deterministic model. In [5], Hsieh et al. focus on removing cast shadows frompedestrians using a statistical model combined with spatial assumptions. Only situationswith pedestrians in an upright posture are handled and the cast shadows are assumed totouch their feet. Javed et al. [6] make no spatial assumptions of posture or compositionprior to a statistical modelling of shadows, based on a correlation of the derivatives forregions of similar pixels.In [7] Nadimi et al. apply a number of steps in a physics-based shadow detectionalgorithm. No spatial assumptions are made, but other assumptions makes it less suitablefor some types of weather. Furthermore several threshold dependent parameters shouldbe optimized. Finlayson et al. [3] use a physics-based approach to derive an illuminationinvariant, therefore shadow free, gray-scale image of an RGB image. From this image theoriginal RGB image, without shadows, is derived. Finlayson's approach is aimed at shadowelimination in general in images obtained with a color calibrated standard digital camera[2],[3].The rest of this paper consists of three sections, in section 2 existing methods for shadowhandling are described in more detail, leading to a new combined method for segmentationof cast shadows. In section 3 the experimental results are presented, and section 4 is theconclusion.

2 Methods
The statistical approach suggested by Javed et al. [6] is implemented as a reference,because it makes no spatial assumptions and has the least number parameters to tune. Thephysics-based method suggested by Finlayson et al. is elegant, but not previously appliedin surveillance applications. The new similarity feature proposed in this work is based onthe ideas og Finlayson et al. Combining Javed's method with the new similarity feature, anew approach for handling cast shadows in surveillance applications is suggested.



2.1 Statistical Approach
Javed et al. [6] use a statistical approach for segmenting foreground pixels darker thana reference image (pixel-candidates) into cast shadow, self shadow and object pixels darkerthan the background. A K-means approximation of the EM-algorithm is used to performunsupervised color segmentation of the pixel candidates. Each pixel candidate is assignedto one of the K existing Gaussian distributions if the Mahalanobis distance is below acertain threshold. If above this threshold a new distribution is added with it's mean equalto the pixel value. All distributions are assumed to have the same �xed covariance matrix� = �2I, where �2 is a �xed variance of the colors and I is the identity matrix. After apixel candidate is assigned to a distribution, the distribution mean is updated as follows:

�n+1 = �n + 1n+ 1(xn+1 � �n); (1)
where x is the color vector of the pixel and �n is the mean of the Gaussian before the n+1thpixel is added to the distribution. Using a connected component analysis the spatiallydisconnected segments are divided into multiple connected segments. Smaller segments arethen merged with the largest neighboring segment using region merging. Then each segmentis assumed to belong to one of the three classes, cast shadow, self shadow or part of theobject darker than the background image. To determine which of the segments are castshadows, the textures of the segments are compared to the texture of the correspondingbackground regions. Because the illumination in a cast shadow can be very di�erent fromthe background the gradient direction is used:

� = arctan fyfx ; (2)
where � is the gradient direction and fy and fx are the vertical and horizontal derivatives re-spectively. If the correlation is more than a certain threshold, the region is considered a castshadow. Otherwise it is either self shadow or dark part of the object. This method is con-sidered as a state-of-the-art method in surveillance applications but still faces fundamentalproblems concerning some very context dependent parameters.
2.2 Physics-based Approach

The physics-based approach suggested by Finlayson et al. [3] derives an illuminationinvariant grayscale image from an RGB-image.The color of a pixel in an image depends on the illumination, the surface re�ection andthe camera sensors. Denoting the spectral power distribution of the illumination E(�), thesurface spectral re�ection function S(�), and the camera sensor sensitivity functions Qk(�)(k = R;G;B), the RGB color �k at a pixel can be described as an integral over the visiblewavelengths �:
�k = Z E(�)S(�)Qk(�)d� ; k = fR;G;Bg: (3)

This description assumes no shading and distant lighting and camera placement. If thecamera sensitivity functions Qk(�) are furthermore assumed to be narrow-band, they canbe modelled by Dirac delta functions Qk(�) = qk�(�� �k), where qk is the strength of thesensor. Substituting this into (3) reveals:
�k = E(�)S(�)qk ; k = fR;G;Bg: (4)



Lighting is approximated using Planck's law:
E(�; T ) = Ic1��5 �e c2T� � 1��1 ; (5)

where I is the intensity of the incident light, T is the color temperature, and c1 and c2 areequal to 3:74183 �10�16Wm2 and 1:4388 �10�2Km respectively. Daylight is very near to thePlanckian locus. The illumination temperature of the sun is in the range from 2500K to10000K (red through white to blue). For the visible spectrum (400-700nm) the exponentialterm of (5) is somewhat larger than 1. This is Wien's approximation [6]:
E(�; T ) ' Ic1��5e� c2

T� : (6)
If the surface is Lambertian (perfectly di�use re�ection) shading can be modelled as thecosine of the angle between the incident light a and the surface normal n. This reveals thefollowing narrow-band sensor response equation:

�k = (a � n)Ic1��5e� c2
T�S(�)qk ; k = fR;G;Bg: (7)

De�ning band-ratio chromaticities rk remove intensity and shading variables:
rk = �k�G ; k = fR;Bg: (8)

Taking the natural logarithm (ln) of (8) isolates the temperature:
r0k � ln(rk) = ln(sk=sG) + (ek � eG)=T ; k = fR;Bg; (9)sk = ��5S(�)qk; (10)ek = �c2=�k: (11)

For every pixel the vector (r0R; r0B)T is formed as a constant vector plus a vector (eR �eG; eB � eG)T times the inverse color temperature. As the color temperature changes,pixel values are constrained to a straight line in 2D log-chromaticity space, since (9) isthe equation for a line. By projecting the 2D color into the direction orthogonal to thevector (eR� eG; eB � eG)T , the pixel value only depends on the surface re�ectance and nottemperature hence illumination:
r0R � eR � eGeB � eG r0B = ln(sR=sG)� eR � eGeB � eG ln(sB=sG);= f(sR; sG; sB): (12)

Applying (12) to all pixels reveals the illumination invariant image gs(x; y):
gs(x; y) = a1r0R(x; y) + a2r0B(x; y); (13)

where the constant vector a = (a1; a2)T is orthogonal to (eR � eG; eB � eG)T , determinedby the camera sensitivity functions only (12)(11), and scaled to unit length:
a = a0ka0k ;
a0 = � 1� eR�eGeB�eG

� : (14)



Figure 2: Finlayson's approach to shadow removal [3]. (a): Original image. (b) Illuminationinvariant grayscale image. (c): Grayscale of original image. (d): Edge map for invariant image.(e): Edge map for non-invariant image. (f): Recovered shadow-free image.
Figure 2(b) shows an example of an illumination invariant grayscale image, where edges dueto shadows are not visible. Figure 2(a) and 2(c) show the original image, and the normalgrayscale image.If the sensor functions of the camera, and thereby �k of (11), are unknown, [2] and [3]outline a procedure for camera color calibration. The invariant direction is estimated bycomparing a number of images taken during the day with changing illumination. Daylight isassumed to be Planckian with varying temperature. Each image contains di�erent standardcolor patches from the Macbeth Color Chart.The shadow edges are detected by comparing the gradient of each channel in the originallog image, r�0(x; y), with the gradient of the illumination invariant image, rgs(x; y), cf.�gure 2(d) and 2(e). The idea is that if the gradient in �0(x; y) is high, while it is low ings(x; y), the edge is most likely to be a shadow edge. The following threshold functionreveals a gradient image of the log response where gradients due to shadows are eliminated(set to zero):

S(r�0(x; y);rgs(x; y)) =
8<
: 0 if kr�0(x; y)k > t1and krgs(x; y)k < t2r�0(x; y) otherwise; (15)

where t1 and t2 are context dependent thresholds. By integrating S a log response imagewithout shadows is recovered. This corresponds to solving the following Poisson equation:
r2q0(x; y) = r � S(r�0(x; y);rgs(x; y)); (16)

where r2 is the Laplacian and q0 is the log of the image without shadows. The gradientimage of S equals the Laplacian of q0 for each color band. Assuming Neumann boundaryconditions (rq0 = 0 for boundary normals), q0 can be solved uniquely up to an additiveconstant using the cosine transform [10]. When exponentiating q0 to arrive at the shadowfree image q the unknown constant becomes multiplicative. For the colors to appear "re-alistic" in each band, the mean of the top 5-percentile of pixels is mapped to maximum ofthe RGB image. In this way the unknown constants are �xed, and a shadow free image qis derived, cf. �gure 2(f).



The major drawback of this method is reported to be de�ning the shadow edges. Itturns out that using a robust edge detection algorithm (e.g. Canny or SUSAN [3]) andsetting the thresholds are crucial factors. Furthermore a morphological opening is appliedon the binary edge map to thicken the shadow edges and thereby improve the suppressionof shadow gradients before the re-integration step.Despite all of the assumptions and di�culties reported the method shows good results onthe images shown in [2],[3]. It should be noted that the gradient images and thresholds arevery context dependent. However, even when the method performs poorly it still attenuatesthe shadows. This is often the case for shadows with di�use edges. Therefore the methodis interesting in conjunction with surveillance tasks, where the artifacts introduced by theimperfect shadow edge detection and the re-integration are not crucial.Due to assumptions in the model, and in the derivation of the shadow free RGB image,the method is far from perfect, but shadows are attenuated signi�cantly. The method hasnot been applied in a surveillance application yet.
2.3 New Similarity Feature

It was found that the illumination invariant image is sensitive to the limited dynamicrange in the video sequences of the camera used (8 bit) and to the spectral sensor functionsof the camera not being delta functions. Because of this, determining edges due to shadowsin a robust way becomes very di�cult. Finlayson et al. also reports this to be the majordrawback of the method [3].Instead of only using the illumination-invariant image to determine edges due to shad-ows, other information should also be used. An important observation to make is that aforeground mask is available from the background model in a surveillance application. Thiscan be used to eliminate artifacts from false shadow edges outside the foreground mask,and should be exploited in the detection of shadow edges.A dilated version of the edges of the foreground mask is used to determine which gra-dients to suppress in the gradient image of the illumination invariant image, before recon-structing the "shadow-free" image. Figure 3(a) shows an image and a version of it, �gure3(b), that is reconstructed without suppressing any gradients. Therefore the two images aresimilar. Figure 3(c) shows the mask used for suppressing gradients, and �gure 3(d) showsthe corresponding reconstructed image.

Figure 3: Reconstruction of an image. (a): Original image. (b): Reconstructed image withoutsuppressed gradients. (c): Suggested mask for suppressing gradients. (d): Reconstructed image withsuppressed gradients.
Both shadow and object gradients are suppressed, but �gure 3(d) still clearly containsadditional information that can be exploited in the segmentation of cast shadows.



The new similarity feature compares corresponding pixels of the reconstructed imageand the background image, for every color segmented region:
CS = 1�̂2R;BG(K � 1)

KX
i=1 (Ri �BGi)2; (17)

where CS is the similarity feature of a region, K is the number of pixels of the region timesthe three colorbands, R and BG are the intensity values of the i'th pixels in the recon-structed image and the background image, respectively. �̂2R;BG is a variance normalizationfactor, which is the estimated variance between all pixels in a background image, BG, andall pixels in a reconstructed image, R, of a new frame containing no foreground objects.Performing a variance normalization of CS makes it a relative measure of similaritythat, ideally, only contains variation due to the region not being cast shadow, and notcontains variation due to the experimental setup and the complex processing of the images.The estimate of the variance is based only on one sequence since it was di�cult to obtainsequences, without foreground objects, that were static while an entire background modelwas estimated. It is therefore a rough estimate.The CS measures a normalized mean value of squared di�erences between regions inthe reconstructed foreground image, cf. �gure 3(d), and corresponding regions in the back-ground image. If the reconstructed image contains shadow regions along the border of theforeground mask, cf. �gure 3(c), these shadow regions are attenuated in the reconstructedimage, making them more similar to the background image. This is the key observation thatthe enhanced similarity feature, CS, is based on. Therefore a large value of CS correspondsto little similarity, which indicates that the region is part of the object. Small values of CSindicate high similarity, i.e. the region is then part of a cast shadow.It is emphasized that CS only supplies useful information when the shadow edges areactually part of the edge of the foreground mask. In some cases it will not supply anyadditional information, e.g. when edges due to objects instead of shadows are suppressed.This will tend to smear neighboring background and object regions, for which reason it issuggested only to apply the CS in cases where the correlation threshold, described in 2.1,does not produce con�dent results. This corresponds to introducing a reject class for thecorrelation feature.Figure 4 shows the suggested enhanced classi�cation of color segmented regions. The

Figure 4: Flowchart illustrating the enhanced classi�cation of color regions. The enhanced similar-ity feature, (CS), classi�es all regions that the correlation feature assign to a reject class (k�Corr.threshold < Correlation < Corr. threshold ) reject class, 0<k<1).
left part corresponds to the classi�cation originally suggested by Javed, using a simplecorrelation threshold. The enhanced classi�cation introduces a reject class if the correlationlies in an interval between k and 1 times the Correlation threshold introduced by Javed [6].k should lie in the interval [0; 1], and is empirically chosen to be 0:5 in this framework. If



the regions in the reject class have a CS larger than the CS threshold they are classi�ed asobject regions. Otherwise they are classi�ed as cast shadow regions.
3 Data and Results

The camera used for data acquisition is a state-of-the-art industry digital video camera(SVS-204CFCL) with a resolution of 1024x768 pixels. The frame rate currently available is20 fps., with a dynamic range of 8 bits, and with colors obtained through standard Bayer�ltering. A typical scene for a surveillance application is chosen where the typical movingobjects are vehicles, people and bicycles.A kernel-based background model is used to segment foreground objects [1]. Onlyone frame of an object is used in the data set to avoid stochastic dependence betweensamples. 18 foreground objects are used in a manual optimization of model parameters and72 foreground objects are used for validation and comparison of methods [1]. The mainperformance parameter used is the overall accuracy (AC), de�ned as the ratio of correctlyclassi�ed pixels and the total number of pixels that are shadow candidates. True positives(TP) are de�ned as the proportion of correctly classi�ed object pixels, and true negatives(TN) as the proportion of cast shadow pixels correctly classi�ed.A color calibration of the camera was performed to determine the the optimal angleof projection in the log-chromaticity space (39:4�). This angle corresponded well with theangle obtained from the spectral sensitivity functions of the camera.As a reference Javed's statistical segmentation of shadow candidates is used. This iscompared to the new method using the new similarity feature. In the optimization of modelparameters of the two methods di�erent values for the region merging criteria were found tobe optimal. In the reference method more regions were merged into larger regions, makingit hard to obtain a performance better than mediocre, because some regions contained bothshadow- and object pixels and was classi�ed as a whole. Due to the new similarity feature,the optimal merging parameter was found to produce more and therefore smaller regionsto classify, making the method less susceptible to regions containing both types of pixels.Figure 5 compares the classi�cation using the reference method and the enhanced methodon the example of �gure 3.

Figure 5: Classi�cation (%), AC=Accuracy, TN=True cast shadow pixels, FP=False object pixels,FN=False cast shadow pixels, TP=True object pixels. (a): Reference method ( J). (b): Enhancedmethod (E) applying the new similarity feature.
Table 1 shows the mean and std. of the absolute performance measures, based on the



test set, for the two methods.
Method AC TP TNJaved (J) - Mean (Std.) [%] 64:9 (17:8) 63:4 (30:0) 64:7 (33:4)Enhanced (E) - Mean (Std.) [%] 69:2 (13:7) 69:7 (18:3) 66:0 (23:9)

Table 1: Absolute performance of the two methods ( J and E) based on the test set of 72 examples.Mean values and standard deviations are shown. AC=Accuracy, TP=True object pixels, TN=Truecast shadow pixels.

Figure 6: Comparison of performance. (a): Accuracy of Javed's method ( J), as a function ofaccuracy of enhanced method (E), based on the test set. (b): Histograms and �tted Gaussians of Jand E, based on the test set.
Figure 6 illustrates some of the results from table 1. There is a trend that exampleswith a higher AC in (E ), are improved more than the examples with decreased AC, aredecreased. This gives rise to the higher mean values, and indicates that fewer examplestend to have much better AC, while more examples tend to have slightly decreased AC.A paired t-test is applied to determine if there is any signi�cant di�erence, at a 5% level,in the mean values of the performance measures of the two methods. Table 2 shows theresults.

Paired t-test, H0: �E � �J = 0 AC TP TNDi�erence in mean value (E � J) 1 (0:009) 1 (0:020) 0 (0:326)Lower con�dence bound [%] 1:31 1:28 �3:42
Table 2: Statistical comparison of the absolute measures, AC=Accuracy, TP=True object pixels,TN=True cast shadow pixels. Row 1: 0 denote that the mean value cannot be rejected to be equalat a 5% level, and 1 that the di�erence of the means is signi�cantly positive. p-values are shownin parentheses. Row 2: Lower con�dence bounds for the di�erences in mean values for the absolutemeasures, at a 95% con�dence level.

0 denotes that the means cannot be rejected to be equal at a 5% level, and 1 that thedi�erence of the means is signi�cantly positive. The p-values are shown in parentheses. Theconclusion to make from the test is that the new method (E ) produces signi�cantly betteraccuracy (AC) and is better at classifying object pixels correctly (TP), than the referencemethod J.The lower con�dence bounds of the di�erence in mean values, at a 95% con�dence level,are shown in the second row of �gure 2. They show that the di�erence in true mean valuesof the AC and TP for method E, are likely to be at least 1:3% above those of method J.



4 Conclusion
An enhanced method for shadow removal is suggested, based on a new similarity featurederived from a physics-based model. The new method signi�cantly improves the meanaccuracy at a 5% signi�cance level, compared to the reference method.The new similarity feature is only applied when the correlation feature of the referencemethod is uncertain, ensuring that the spatial assumption does not degrade performance,when compared to the reference method.The �nal conclusion therefore is, that the suggested enhanced method for shadow re-moval, on average is better than the state-of-the-art method suggested by Javed. Theenhanced method is also more robust, since it tends to improve the accuracy substantially,for examples where the reference method tends to fail completely.Combining Javed's statistical-based method with some of the physics-based ideas ofFinlayson, and a new similarity feature, therefore reveals a better and more robust algorithmfor segmentation of cast shadows from moving objects.The use of the illumination invariant image, as suggested by Finlayson, might be ableto improve the performance even more, but requires a larger dynamic range than the 8 bitscurrently available with the present camera.

References
[1] Erbou, SG. "Segmentation of Cast Shadows from Moving Objects". M.Sc. Thesis,Ørsted�DTU, Technical University of Denmark, October 2004.
[2] Finlayson, GD., Hordley, SD. "Color Constancy at a Pixel". Journal of the Optical Society ofAmerica A, Vol.18 no. 2, pp.253-264, 2001.
[3] Finlayson, GD., Hordley, SD., Drew, MS. "Removing Shadows from Images". European Con-ference on Computer Vision (ECCV), part IV, p823-836, 2002.
[4] Haritaoglu, I., Harwood, D., Davis, LS. "W 4: Real-Time Surveillance of People and TheirActivities". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.8,pp. 809-830, August 2000.
[5] Hsieh, JW., Hu, WF., Chang, CJ., Chen, YS. "Shadow elimination for e�ective moving objectdetection by Gaussian shadow modeling". Image and Vision Computing 21, pp.505-516, 2003.
[6] Javed, O., Shah, M. "Tracking And Object Classi�cation For Automated Surveillance". Euro-pean Conference on Computer Vision (ECCV), part IV, p343-357, 2002.
[7] Nadimi, S., Bhanu, B. "Moving Shadow Detection Using a Physics-based Approach". IEEEProceedings of Pattern Recognition. Vol. 2, pp. 701-704, 2002.
[8] Park, S., Aggarwal, JK. "Segmentation and Tracking of Interacting Human Body Parts un-der Occlusion and Shadowing". IEEE Proceedings of the Workshop on Motion and VideoComputing. pp. 105-111, 2002.
[9] Prati, A., Mikic, I., Trivedi, MM., Cucchiara, R. "Detecting Moving shadows: Algorithms andEvaluation". IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 25, No. 7,pp. 918-923, 2003.
[10] Press, WH., Teukolsky, SA., Vetterling, WT., Flannery, BP. "Numerical Recipes in C: TheArt of Scienti�c Computing". Cambridge University Press. 2nd ed. 1992.


