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ABSTRACT

In order to evaluate a given ventilation system in a
livestock building and its sensitivity to wind, pres-
ence of heat sources (e.g. livestock) etc. it is of
interest to estimate flow vector fields correspond-
ing to the airflow. By introducing particles (e.g.
smoke) into the air inlets of a model of a livestock
building, the airflow in a laser-illuminated plane
may be visualized. Based on sequences of images
recorded of this plane using a video camera, esti-
mates of 2–D flow vectors are derived locally. The
local estimates of velocity are found using a set of
spatio-temporal convolution filters on the image
sequence. After which the local estimates are in-
tegrated to smooth flow fields using a model that
incorporates spatial smoothness. The algorithms
are illustrated using a scale model of a pigs sty
under isothermic conditions. It should be noted
that this is an non-invasive technique (laser and
camera may be placed so they do not disturb the
airflow) for estimating air velocity in a 2–D plane.
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1. INTRODUCTION

At the National Institute of Agricultural Engi-
neering of Denmark air flow patterns in livestock
buildings are studied. The purpose being to
evaulate the effect of given ventilation systems. In
particular it is of interest to determine if draught
occurs. Since this may lead to decreasing growth
of and increasing sickness among the livestock.

By introducing particles (e.g. smoke) into the
air inlets of a model of a livestock building, the
airflow in a laser-illuminated plane may be visu-
alized. Based on the recording of a sequence of
images (a film) of the patterns occuring in the
laser-illuminated plane we may use image analy-
sis to obtain estimates of the optical flow, i.e. the
2–D motion field of the patterns in the illuminated
plane.

In the sense that the method described in this
article, uses a laser sheet to illuminate particles
inserted in the fluid at study, and thus visualizing
the flow field, it is similar to the Particle Image
Velocimetry reported e.g. in (Westergaard et al.
1993).
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FIGURE 1. Experimental setup. The 1:10 plexiglas model of a segment of a pigs sty is illuminated by a laser
sheet. The video camera is placed with its optical axis perpediculat to the laser plane. The air is drawn into the
model by putting suction on the outlet.
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1.1. Estimation of Optical Flow

Independently moving objects, rotation, dila-
tion, and shear in image sequences combine to
produce complex velocity fields. Therefore, valid
velocity estimation is restricted to local computa-
tions. This ensures that for sufficiently smooth
velocity fields the velocity can (locally) be as-
sumed translational.

Coherent image translation is the basis for
several computational methods. The main meth-
ods include correlation-based methods (Wahl
and Simpson 1990) of which the Particle Im-
age Velocimetry (PIV) is a special case (West-
ergaard et al. 1993), differential methods (Horn
and Schunk 1981; Nagel and Enkelmann 1986),
energy-based methods (Adelson and Bergen 1985;
Heeger 1987; Knutsson 1989) and phase-based
methods (Fleet 1992).

Restricting measurements to small spatio-
temporal neighborhoods, however, often results in
the measurements being based on one-dimensional
intensity structures (edges and/or lines). In these
cases we can only determine the component of the
velocity perpendicular to the intensity contour re-
liably. This is known as the aperture problem.

Because the aperture problem results in flow
fields that are not fully constrained an assumption
of smoothness of the velocity field must be applied
in order to obtain a dense velocity field. One way
of doing this is by applying a restriction that force
the spatial derivatives to be small. These restic-
tions are referred to as smoothness constraints.
Methods utilizing smoothness constraints include

the work of (Nagel and Enkelmann 1986; Marro-
quin et al. 1987; Konrad and Dubois 1992).

2. DATA

All data are recorded at the National Institute
of Agricultural Engineering of Denmark using a
light sensitive consumer video camera (frame rate:
25 Hz). All measurements are carried out under
iso-thermic conditions. The experimental setup
is shown in Figure 1. The plexiglas model of the
segment of a pigs sty is 1 m broad and 0.5 m deep.
The air velocity in the inlet is measured to 3 m/s.
Smoke is induced in the airflow at the inlet. The
laser illuminated plane is placed in the center of
the model.

3. METHODS

3.1. Local Estimates of Velocity

Because motion estimation in image sequences
can be viewed as identification of patterns repeat-
ing themselves over time, it is natural to try to
describe the motion analysis in the Fourier do-
main. Let us consider a neighbourhood contain-
ing a one dimensional intensity structure (e.g.,
a line) that translates coherently through time.
In the spatio-temporal domain this corresponds
to a neighbourhood of iso-grey level planes. Let
these planes be given by their unit normal vector
k̂ = (k1, k2, k3)T . We will refer to this vector as
the spatio-temporal orientation vector. The non-
zero Fourier coefficents of this neighbourhood are



concentrated to the line defined by k. The corre-
spondence of this vector and the normal flow (i.e.
the flow perpendicular to the line) is given by

µ = (µ, ν)T =
−k3

k2
1 + k2

2

(k1, k2)T (1)

Now, in order to estimate this line, we will sample
the Fourier domain using a set of spatio-temporal
Gabor filters (Gabor 1946) tuned to frequencies
distributed evenly across all spatio-temporal ori-
entations, i.e. the center frequencies of the filters
are the vertices of a diametrical symmetric regu-
lar polyhedron (Knutsson 1989). The pth Gabor
filter consists of a Gaussian function shifted to the
point kp = (kp1, kp2, kp3)T in frequency space. By
dividing the filter into an odd and an even part
we get the following convolution masks
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Finally, the energy distribution of the Fourier do-
main as estimated by the set of quadrature fil-
ter pairs may be represented by the tensor T =∑

p qpnpn
T
p where qp is the output from the pth

quadrature filter pair, and np is the unit normal
vector defining the direction of the filter.

In order to find the direction of maximum
spectral density we must find the unit vector
k that maximizes kT Tk. This vector is the
eigenvector corresponding to the largest eigen-
value of T . So for the coherently translating
one-dimensional intensity structure, which has an
effectively one dimensional Fourier domain, the
spatio-temporal orientation vector is found by an
eigen analysis of T . Because the Fourier domain
is one dimensional T has only one non-zero eigen-
value.

Now, if the translating structure has a two-
dimensional intensity structure (e.g., a grey level
corner) the spatio-temporal domain is described
by two spatio-temporal orientations, giving rise
to two non-zero eigenvalues of T . The eigenvec-
tors corresponding to these non-zero eigenvalues
each translates into a normal flow by using Equa-
tion (1). These two normal flows each constrain
the true flow in one direction.

We can furthermore determine the perpendic-
ular distance of the true flow to either of the
constraint lines, this is given by

dk(xi, yi) = (4)

‖(u(xi, yi) − µk(xi, yi))T · µk(xi, yi)
‖µk(xi, yi)‖‖,

where k = 1, 2, and u(xi, yi), and µk(xi, yi) are
the true flow and the normal flows taken at the
position (xi, yi).

It is the (weighted) sum of squares of these dis-
tances that should be minimized across the image
in order to obtain the velocity field.

3.2. Integration of Local Estimates of Ve-
locity

Now we will apply an assumption of smooth-
ness with the purpose of fully constraining the
velocity field. We do this by forcing the spatial
derivatives of the velocity field to be small. One
way of formulating such a smoothness constraint
is by use of Markovian random fields (Geman and
Geman 1984; Konrad and Dubois 1992). We do
this using the Bayesian paradigm. First we will
formulate a prior distribution for the velocity field
based on the spatial derivatives of the field.

Letting the flow at position (xi, yi) be
given by u(xi, yi) = (u(xi, yi), v(xi, yi))T and
the corresponding spatial derivatives be de-
noted by ux(xi, yi) = (ux(xi, yi), vx(xi, yi))T and
uy(xi, yi) = (uy(xi, yi), vy(xi, yi))T , the prior dis-
tribution of the flow field may be described by a
Gibbs distribution p({u}) = 1

Z exp(−βU1), where
Z is a normalization constant and the energy term
is given by

U1 =
N∑

i=1

[‖ux(xi, yi)‖2 + ‖uy(xi, yi)‖2
]
.(5)

where ‖ · ‖ is the Euclidean norm. This probabil-
ity distribution assigns high probability to fields
that exhibit small derivatives and low probability
to field with high spatial derivatives.

Having constructed this prior distribution for
the flow field we will now concern ourselves with
an observation model. The observation model re-
lates the local observations or measurements of
velocity to any particular realization of the prior
distribution.



FIGURE 2. Sub-sequence number 1 shown rowwise, and the estimated flow field corresponding to the center
image.

FIGURE 3. Sub-sequence number 2 shown rowwise, and the estimated flow field corresponding to the center
image.



P (Obs|u) =
1
Z

exp(−αU0) = (6)

1
Z

exp(−α
N∑

i=1

2∑
k=1

wk(xi, yi)dk(xi, yi)2)

where dk(xi, yi) is the difference between the pro-
jection of the true flow onto the normal flow given
by the kth eigenvector and the normal flow it-
self at pixel (xi, yi) as described by Equation (5).
wk(xi, yi) is an (optional) certainty measure corre-
sponding to this normal flow. Z is a normalization
constant. By using a Gibbs energy function that
punishes larger deviation in the projection of the
true flow onto the observed normal flows we allow
smoothing in the direction not constrained by the
normal flows while smoothing in the direction of
the normal flow is punished.

The prior distribution and the observation
model are combined into a posterior distribution
using Bayes’ theorem. The energy function of the
posterior distribution thus becomes

U = α

N∑
i=1

2∑
k=1

wk(xi, yi)dk(xi, yi)2 + (7)

β

N∑
i=1

[‖ux(xi, yi)‖2 + ‖uy(xi, yi)‖2
]

In this energy function we can control the proper-
ties of the estimated motion field. The faith in the
observed or measured normal flows is controlled
by α, the smoothness is controlled by β.

We can now apply a maximization scheme to
the posterior distribution in order to obtain the
maximum a posteriori estimate of the velocity
field.

4. RESULTS

From a video film of the left side of the livestock
building model two sub-sequences are extracted.
Every other image in these are shown in Fig-
ures 2 and 3. The images have 106 rows by 173
columns. The Gabor filters used have a spatio-
temporal center frequency of 1.23/pixel and a
standard deviation of the Gaussian envelope of 3
pixels.

The estimated flow fields corresponding to the
center image in two sequences is shown on the left
in Figures 2 and 3. We see that at least qualita-
tively the flow fields of the sequences are found.

5. DISCUSSION

The method described here should be applicable
for flow field estimation in all kinds of fluids.

The derived quantities of the airflow may be
used in themselves. Another important appli-
cation, which we intend to examine, is the use
of this method to produce border conditions for
Computer Fluid Dynamics computations of the
airflow.

It is evident that this algorithm is dependent
on particles being visible in the airflow. If the flow
is not visualized it can not be estimated.

With respect to the choice of smoothness con-
straint, the one used here is a simple one, that only
requires small first order spatial derivatives of the
flow field. It should be possible to use more elab-
orate models, i.e. models inspired by the physical
laws governing the observed phenomena.

The method (as described here) is restricted
to 2–D flow fields. But the algorithm can be gen-
eralized to the estimation of 3–D flow vectors in
space. Experimentally this would require multi-
plexing the laserplanes, i.e. scanning a volume in
planes by moving the laserplane across the vol-
ume.

6. CONCLUSION

We have illustrated that based on image sequences
of induced particles in airflow illuminated by a
laser plane image analysis may be used to esti-
mate the corresponding 2–D flow field. Based on
local estimates of motion a model that punishes
large first order spatial derivatives is used to find
a densely sampled flow field

This technique is noninvasive in the sense that
camera and laser can be placed outside the air
stream.
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