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A 3-D Contextual Bayesian Classifier
Rasmus Larsen

Abstract— In this paper we will consider an extension of the Bayesian
2-D contextual classification routine developed by Owen, Hjort & Mohn to
3 spatial dimensions. It is evident that compared to classical pixelwise clas-
sification further information can be obtained by taking into account the
spatial structure of image data, i.e. neighbouring pixels tend to be of the
same class. The algorithm developed by Owen, Hjort & Mohn consists of
basing the classification of a pixel on the simultaneous distribution of the
values of a pixel and its four nearest neighbours. This includes the spec-
ification of a Gaussian distribution for the pixel values as well as a prior
distribution for the configuration of class variables within the cross that is
made of a pixel and its four nearest neighbours. We will extend this algo-
rithm to 3-D, i.e. we will specify a simultaneous Gaussian distribution for
a pixel and its 6 nearest 3-D neighbours, and generalise the class variable
configuration distribution within the 3-D cross. The algorithm is tested on
a synthetic 3-D multivariate dataset.
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I. I NTRODUCTION

WHEN applying classical classification schemes in image
analysis the spatial structure of the datasets is neglected.

This is non-satisfying, because further information obviously
can be drawn from the spatial arrangement of pixels, i.e. neigh-
bouring pixels tend to be of the same class. We will refer to this
type of information as contextual information.

Contextual information can be taken into account in a number
of ways when performing classification. One important way is
to include (derived) features that hold information of the neigh-
bourhood of a given pixel, i.e. contextual features. Another way
to take the spatial nature into account is in the analysis. Several
algorithms have been proposed in the 2-D case. In [1] it is pro-
posed simply to augment the feature vector with the average of
the feature vector from the four neighbouring pixels. In order
to find the maximum a posteriori estimate in a Markov random
field model stochastic relaxation has been proposed in [2]. An
approximation to the maximum a posteriori estimate using iter-
ated conditional modes was proposed in [3]. In [4], [5], [6] a
classification scheme for 2-D images that bases the actual clas-
sification of pixel on the feature vectors of the pixel itself and
those of the 4 nearest neighbours is introduced. In [6] it is as-
sumed that classes of the nearest neighbours of a pixel are condi-
tionally independent given the class of the center pixel, whereas
in [4], [5] it is assumed that the pixel size is small relative to
the grains of the pattern under study, which leads to a vastly re-
duced set of possible class configurations among a pixel and it
four nearest neighbours.

In this article we will extend the algorithm proposed in [4],
[5] to 3-D images, and carry out a series of tests on a synthetic
3-D image.

II. M ETHODS

In this Section we will develop a contextual classification
rule, specify a Gaussian distribution for the observed (and de-
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rived) features, and specify a prior distribution for the class vari-
able.

A. Construction of a Contextual Classification Rule

Suppose that a pixel is an observation from one of the classes
(populations)π1, π2, . . . , πk. The classification of the observa-
tion depends on the vector of featuresX = (X1, X2, . . . , Xp)T

of that pixel. Furthermore, let us assume knowledge of the
prior distribution of the classes, i.e. the prior probabilities,
P (C = πi) = pi, i = 0, 1, . . . , k whereC is the class vari-
able. This distribution determines the probability with which
an arbitrary feature vector has been generated from a particular
class.

We will denote the feature vector of the neighbouring pix-
els XN , XE , XS , XW , XT , and XB for the north,
east, south, west, top, and bottom pixel, respectively. The
augmented feature vector consisting of the feature vector
for the pixel and its neighbours will be denotedD =
(XT , XT

N , XT
E , XT

S , XT
W , XT

T , XT
B)T .

We obtain the Bayes solution for the case of equal losses by
setting the discriminant score equal to the maximum a posteri-
ori probability. The posterior distribution for the class variable
becomes

f(πν | d) = P (C = πν |D = d) =
P (C=πν)P (D=d|C=πν )
k∑

i=1

P (C=πi)P (D=d|C=πi)

=

∑
a,b,c,d,e,f

pνP (D=d|C=(πν ,πa,πb,πc,πd,πe,πf ))g(πa,πb,πc,πd,πe,πf |πν )

h(d)

whereh(d) is the unconditional density of the augmented fea-
ture vector,(a, b, c, d, e, f) is one of the possiblek6 configura-
tions of the class variables of the neighbouring pixels,C is the
class configuration corresponding to the augmented feature vec-
tor D, andg(πa, πb, πc, πd, πe, πf | πν) is the probability of the
configuration of the class variables of the neighbouring pixels
given that the center pixel has classπν .

Contextual information comes into the model in two ways,
first in the spatial dependence of the feature vectors (specifi-
cation of the conditional distribution of the augmented feature
vector), and second in the specification ofg.

B. Specification of a Gaussian distribution

We assume that each feature vector may be written as a sum
of two terms, i.e.

X = Y + ε (1)

where

Y | C = πi ∈ N(µi, (1 − θ)Σ)

(ε1, . . . , εN ) multinormal with
E{εj} = 0, E{εj1εj2} = ρ|j1−j2|θΣ

(2)



TheY terms are independent given the classes and model the
class dependency of the feature vectors, whereas theε’s are au-
tocorrelated noise terms. The indicesj, j1, andj2 refer to pixel
numbers, and|j1− j2| is the Euclidean distance between pixels
j1 and j2, N is the total number of pixels.ρ is the autocor-
relation between first order neighbours, andθ is the proportion
of the covariance matrixΣ that is due to autocorrelated noise.
Note that we choose to use an isotropic autocorrelation function,
the extension to an anisotropic function is straightforward.

Now it is possible to write the conditional distribution of the
augmented feature vector

D=




X
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(3)

where⊗ denotes the tensor product, and given that the classes
areπν , πa, πb, πc, πd, πe, andπf , respectively. Furthermore

α = ρθ, β = ρ
√

2θ, andγ = ρ2θ are the correlations be-
tween first-order, second-order, and third-order neighbours, re-
spectively.

(a) P (b) Q (c) R (d) S

Fig. 1. Patterns in the model. Within the ”cross”, that represents the neighbour-
hood of a pixel, i.e. the six nearest neighbours, it it is assumed that at most
two classes are present, and that the only possible configurations are these.

C. Specification of ag

Assuming that pixels in a scene are assigned populations by
a stochastic process, we regard a scene with pixels that have not
been assigned populations. As the first step in the process we
divide the scene by planes distributed by a stochastic process.
Each pixel will now be part of a region. If the size of the regions
are large compared to the pixel size, it can be assumed that on
the borders between regions we only have the patterns shown in
Figure 1.

By rotation we obtain six, twelve, and eight differentQ, R,
andS patterns, respectively. These patterns are assigned posi-
tive a priori probabilities, while all other patterns are assigned
the probability zero. The probabilities forP, Q, R, andS are
denotedp, q, r, ands, respectively.

As the second step we assign a population to each region in-
dependently, according to the a priori probabilities for the pop-
ulations. If two neighboring regions are assigned the same pop-
ulation we can delete the border between these regions.

Under these assumptions we have the following expression
for the probabilities, for each of the possible patterns.

P : g(πν , πν , πν , πνπν , πν | πν) = p + (q + r + s) · pν

Q : g(πi, πν , πν , πν , πν , πν | πν) =
g(πν , πi, πν , πν , πν , πν | πν) =
g(πν , πν , πi, πν , πν , πν | πν) =
g(πν , πν , πν , πi, πν , πν | πν) =
g(πν , πν , πν , πν , πi, πν | πν) =
g(πν , πν , πν , πν , πν , πi | πν) = 1

6qpi

R : g(πi, πi, πν , πν , πν , πν | πν) =
g(πν , πi, πi, πν , πν , πν | πν) =
g(πν , πν , πi, πi, πν , πν | πν) =
g(πi, πν , πν , πi, πν , πν | πν) =
g(πi, πν , πν , πν , πi, πν | πν) =
g(πν , πν , πi, πν , πi, πν | πν) =
g(πi, πν , πν , πν , πν , πi | πν) =
g(πν , πν , πi, πν , πν , πi | πν) =
g(πν , πi, πν , πν , πi, πν | πν) =
g(πν , πν , πν , πi, πi, πν | πν) =
g(πν , πi, πν , πν , πν , πi | πν) =
g(πν , πν , πν , πi, πν , πi | πν) = 1

12rpi

S : g(πi, πi, πν , πν , πi, πν | πν) =
g(πi, πi, πν , πν , πν , πi | πν) =
g(πν , πi, πi, πν , πi, πν | πν) =
g(πν , πi, πi, πν , πν , πi | πν) =
g(πν , πν , πi, πi, πi, πν | πν) =
g(πν , πν , πi, πi, πν , πi | πν) =
g(πi, πν , πν , πi, πi, πν | πν) =
g(πi, πν , πν , πi, πν , πi | πν) = 1

8spi

(4)

whereν 6= i, andν, i = 1, . . . , k.
In this way we have obtained a huge reduction in the number

of terms in the contextual classification rule.

III. R ESULTS

In order to illustrate the power of this algorithm we will apply
it to a two class 3-D synthetic dataset. This dataset consists of a
32 × 32 × 32 data volume with one variable at every pixel. The
dataset is generated by use of a (morphological) isotropic Potts
model [7]. In Figure 2 four slices are shown.

The two classes are assigned mean values−1 and1. We will
consider two cases. First, the case of pure white noise, and sec-
ond, the case of a mixture of white and autocorrelated noise.
In both cases we will compare the contextual classifier with a
classical pixelwise linear classifier (e.g. [8]).

For the sake of evaluation the mean values and variances are
estimated from 2/3 of the pixels in the data volume picked at
random. The classification is then evaluated on the remaining
1/3 of the pixels. We will assume equal prior probabilities for
the two classes.

A. Case 1: White noise

In this case we will degrade the dataset with independent,
identically distributed Gaussian noise, with standard deviations
1 and 2, respectively. In Figure 3 the degraded slices from Fig-
ure 2 are shown.



Fig. 2. Slices 4, 12, 20, 28 of the original data volume.

Fig. 3. Slices 4, 12, 20, 28 of the noisy data volumes. The two rows have noise
with standard deviation 1 and 2, respectively.

The misclassification rates for the four classifications are
shown in Table I. For the non-contextual classifier, if the pa-
rameters (µ, Σ) where known, the classification rule should be
a theshhold at 0, which for the two values of the standard devia-
tion,σ, corresponds to1 ·σ and0.5 ·σ. Assuming normality, this
should result in misclassification rates of 15.866% and 30.854%,
respectively. The obtained results agree well with this. When
compared with the contextual classifier, we see that the inclu-
sion of spatial information results in misclassification rates that
for σ = 1 is a factor 8 lower and forσ = 2 is a factor 2.5 lower.

B. Case 2: Autocorrelated and white noise

In this case we will degrade the dataset with independent,
identically distributed Gaussian noise mixed with autocorrelated
noise. The white noise and the autocorrelated noise have the
same variance, and we will use autocorrelated noise with an ex-
ponentially decaying autocorrelation. The autocorrelation in lag
1 is 0.6. Again we will apply the algorithms to two cases with a
pixelwise standard deviations 1 and 2, respectively. In Figure 5
the degraded slices from Figure 2 are shown.

The misclassification rates for the four classifications are
shown in Table I. Again, we see good agreement between the
misclassification rates for the non-contextual classifications and
the theoretical rates derived in the previous Section. With re-
spect to the contextual method we see that the improvement over
the non-contextual method now is reduced to a factor 2.2 and
1.4, respectively.

IV. CONCLUSION

We have described an extension of a 2-D contextual classifi-
cation algorithm by Owen, Hjort & Mohn to the 3-D case. The
algorithm includes contextual information for each pixel by in-
cluding the feature vector of that pixel as well as the feature
vectors of the 6 nearest neighbouring pixels in the decision. A
joint Gaussian distribution for these feature vectors given the
classes of the pixels has been specified. It is assumed that the
noise can be modelled as a sum of white noise and autocorre-

Fig. 4. Slices 4, 12, 20, 28 of the restored data volume. The two top rows are
on the 1 std. dev. dataset, using pixelwise and contextual algorithms respec-
tively. The two bottom rows are on the 2 std.dev. dataset using pixelwise and
contextual algorithms, respectively.

lated noise, where the autocorrelation function is exponentially
decaying with Euclidean distance. Furthermore, a joint prior
distribution of the class variables of a pixel and its 6 nearest
neighbours has been specified. It is assumed that the pixel size
is small relative to the region sizes in the image, thus vastly de-
creasing the number of possible configurations to in principle
four types.

The algorithm is tested on a synthetic two-class 3-D image.
For moderate white noise levels the misclassification rate is a
factor 8 lower than the rate obtained using an ordinary linear
pixelwise classifier. The relative improvement in misclassifica-
tion rate decreases with increasing noise level. In the case of a
mixture of white and autocorrelated noise the improvement in
misclassification rate over the pixelwise method is a factor 2.2
for moderate noise levels.
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Fig. 5. Slices 4, 12, 20, 28 of the noisy data volumes. The two rows have noise
with standard deviation 1 and 2, respectively.



Fig. 6. Slices 4, 12, 20, 28 of the restored data volumes. The two top rows are
on the 1 std. dev. dataset, using pixelwise and contextual algorithms respec-
tively. The two bottom rows are on the 2 std.dev. dataset using pixelwise and
contextual algorithms, respectively.

TABLE I

MISCLASSIFICATION RATES FOR EACH OF THE COMBINATIONS BETWEEN

CLASSIFIER AND NOISE LEVEL.

White noise Autocorrelated noise
σ = 1 σ = 2 σ = 1 σ = 2

Non-contextual 16.0 30.8 15.7 30.9
Contextual 2.0 12.3 7.3 22.2
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