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ABSTRACT: Several effects combine to distort the multispectral data that are obtained from push-broom scan-
ners. We develop an algorithm for restoration of such data, illustrated on images from the ROSIS scanner. In
push-broom scanners variation between elements in the detector array results in a strong striping along flight
lines. A non-systematic striping is also present along flight lines. Furthermore, line drop-outs occur, and finally,
various types of electronic noise of salt-and-pepper type are also present. We describe techniques for the cor-
rection for all these types of effects. Line drop-outs are located automatically using line means statistics, and
if present new pixel values are interpolated from the neighbouring lines. Striping along and across flight lines
is corrected for by adjusting the line and column means, respectively. This restoration is carried out in station-
ary parts of the image, for instance over water. Following these initial corrections we use minimum/maximum
autocorrelation factor (MAF) analysis in order to separate the spatially coherent signal components from the
noise components. The MAF transformation is a linear transformation into new orthogonal variables that are
ordered by decreasing autocorrelation. In this way noise channels (with low autocorrelation) can be identified
and cleaned or eliminated. Also, the MAF transformation enables us to isolate electronic or aircraft engine
induced noise components that have a special spatial structure. Subsequent inverse transformation back into the
original spectral space results in noise corrected variables. The noise components will now have been removed
from the entire original data set by working on a smaller set of noise contaminated transformed variables only.
The application of the above techniques results in a dramatic increase in visual image quality.

1 INTRODUCTION

In this paper we will consider the restoration of mul-
tispectral data from pushbroom scanners, illustrated
on images from the ROSIS scanner. In pushbroom
scanners variation across the elements of the detector
array often results in strong striping along flight lines.
Striping across flight tracks may also be present due
to other types of variation in the instrument. Further-
more, line drop-outs occur, and finally various elec-
tronic and aircraft engine noise components are also
present.

2 DATA

ROSIS (Reflective Optics System Imaging Spectrom-
eter) is a compact airborne imaging spectrometer [6].
It is a pushbroom scanner with 500 detector elements
across track. The scanner has two operational modes,
imaging mode and spectral mode. In the spectral
mode 81 channels are available in the range 440 to
852 nm. The sampling interval of the first 12 chan-

nels (440 to 572 nm) is 12 nm. For the remaining
69 channels (580 to 852 nm) the sampling interval is
4 nm. In the imaging mode only 29 of the 81 chan-
nels are available. However, we may obtain full spa-
tial resolution across track in the imaging mode, i.e.
500 pixels. In the spectral mode the resolution across
track is reduced by a factor 3.

In this paper we will illustrate the restoration tech-
niques on a1024 × 167 of a flight track recorded in
spectral mode near Gyllingnæs i Jutland, Denmark.

3 METHODOLOGIES

3.1 Correction for line drop-outs

In Figure 1(a) the first channel is shown. The pixel
counts are scaled linearly between mean±3 standard
deviations. A series of black lines can be seen. From
the line means shown in Figure 1(b) it is seen that the
black lines do not correspond to zero counts. They
do, however, differ signicantly in level from the other
lines. We will use the deviation from the mean of the
line means in a moving window as criterion for detec-
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(a)

(b)

(c)

Figure 1: The defect lines in the original channels are identified by the deviation from the local mean level as
defined by a robust statistic. In (a) the original channel 1 is shown, in (b) we see the line means, and on (c) we
see the identified drop-out lines.

ting the drop-outs. The local means and the standard
deviation are estimated using robust statistics [2].
First the local mean and standard deviation are esti-
mated using all line means. After this all lines that
deviate more from the local mean than 2 standard de-
viations are excluded from the estimations. New es-
timates of local mean and standard deviation are then
obtained. Now all lines whose mean deviate more
than 5 standard deviations from the robust estimate
of the local mean using the yardstick given by the ro-
bust estimate of the standard deviation are defined as
being drop-outs. The result is shown in Figure 1(c).

When the missing lines have been identified they
are substituted by the mean value of the line above
and the line below.

3.2 Correction for horizontal and vertical striping

We assume independence between the horizontal and
the vertical striping. Furthermore, we assume that the
striping is caused by additive row and column depen-
dent terms. Because we only have the data it self to
perform the analysis from, we will estimate the strip-
ing terms for each channel over an area with homoge-
neous signal. This area may be extracted in a number

of ways. One way is to follow the robust statistics
approach from the previous section. In our case we
choose to manually define an homogeneous area that
spans all columns and all rows. Under this area we es-
timate the additive striping terms. In Figure 2(a) the
drop-out corrected channel 7 is shown, and in Fig-
ure 2(b) we see this channel first corrected for the
column striping and in Figure 2(c) also for the line
striping.

3.3 Correction for other noise components

The last procedure we will apply for the restoration
is based on utilizing the redundancy that is present
in hyperspectral datasets. We will extract those lin-
ear combinations that hold the signal variation, throw
away the remaining subspace, and transform back to
the original feature space.

As opposed to the celebrated principal components
(PC) transformation the minimum/maximum autocor-
relation factors (MAF) transformation allows for the
spatial nature of image data. The application of this
transformation requires knowledge of or an estimate
of the dispersion matrix and the dispersion matrix of
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Figure 2: Vertical and horizontal striping is assumed independent and removed by adjusting the level of each
line and column. In (a) channel 7 corrected for drop-outs is shown, in (b) we see the same channel corrected for
vertical striping, and in (c) corrected for horizontal striping as well.

the difference between the original and the spatially
shifted image.

The MAF transformation minimizes the autocorre-
lation rather than maximizing the variance (PC). In
reverse order the MAFs maximize the autocorrelation
represented by each component. MAF one is the lin-
ear combination of the original bands that contains
minimum autocorrelation between neighboring pix-
els. A higher order MAF is the linear combination
of the original bands that contains minimum autocor-
relation subject to the constraint that it is orthogonal
to lower order MAFs. The MAF procedure thus con-
stitutes a (conceptually) more satisfactory way of or-
thogonalizing image data than PC analysis. The MAF
transformation is equivalent to a transformation of the
data to a coordinate system in which the covariance
matrix of the difference between the spatially shifted
image data and the original image data is the identity
matrix followed by a principal components transfor-
mation. An important property of the MAF procedure
is its invariance to linear transformations, a property
not shared by ordinary PC analysis. This means that it
doesn’t matter whether the data have been scaled e.g.

to unit variance before the analysis is performed.
The MAF procedure was suggested in [5]. PCs,

MAFs and other orthogonal transformations are de-
scribed in [3, 1, 4].

We consider the random variableZ(x) =
[Z1(x), . . . , Zm(x)]T and we assume that

E{Z(x)} = 0 (1)
D{Z(x)} = Σ. (2)

We denote a spatial shift by∆T = (∆1, ∆2). We
are interested in the correlations between projections
of the variables and the shifted variables. Introducing

Σ∆ = D{Z(x) − Z(x + ∆)}
= E{[Z(x) − Z(x + ∆)]

[Z(x) − Z(x + ∆)]T}, (3)

which considered as a function of∆ is a multivariate
variogram, we have
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Corr{aT Z(x), aT Z(x + ∆)} =

1 − 1

2

aTΣ∆a

aTΣa
. (4)

If we want to minimize that correlation we must
maximize the Rayleigh coefficient

R(a) =
aTΣ∆a

aTΣa
. (5)

Let λ1 ≥ · · · ≥ λm be the eigenvalues and
a1, . . . , am corresponding conjugate eigenvectors of
Σ∆ with respect toΣ. Then

Y i(x) = aT
i Zi(x) (6)

is thei’th minimum/maximum autocorrelation factor
or shortly thei’th MAF. The reverse numbering of
MAFs so that the signal MAF is referred to as the
first MAF or MAF1 is often used, also here.

The first five of the odd numbered MAFs are shown
in Figure 3. It is evident that the content of spa-
tially autocorrelated signal is decreasing with com-
ponent number. It should be noted at this point that
in this case the MAF analysis performs satisfactorily
only after the preprocessing steps described in Sec-
tions 3.1 and 3.2. Some of the components that con-
tain signal with high autocorrelation are composed of
natural surface variation, others like MAF7 in Fig-
ure 3(d) contain noise. This particular noise compo-
nent is present in a number of the original bands. The
MAF analysis isolates it very neatly from the rest of
the signal (and noise). The origin of this component
is unknown to the authors. Also, in MAFs 3 and 5 it
is evident that the detector elements in the right hand
side of the detector array have induced some sort of
vertical blurring that is not present in the left hand
side.

In order to use the MAF analysis for restoration
we exclude all noise components before transforming
from the MAF space to the original space. By ex-
cluding all high number MAFs (from number 16 and
up) and also MAF7 in Figure 3(d) and a similar one
in MAF8 prior to transforming back to the original
space all the (noise) variation in these components is
removed.

Examples of the restored channels are shown in
Figure 4

4 CONCLUSION

In this paper we have used a series of techniques for
restoring data from the pushbroom ROSIS scanner.
The data were disturbed by a number of defects. First,
line drop-outs were identified by measuring the de-
viation of the line mean from the local mean of line
means. This was done using robust statistics. Then,

the data were corrected for horizontal and vertical
striping by adjusting line and column means, respec-
tively. This approach is sensitive to correlation be-
tween the signal and the striping. However, by us-
ing areas of signal homogeneity as described by the
operator the adjustment terms may be estimated. Fi-
nally the minimum/maximum autocorrelation factor
algorithm was used to extract the relevant informa-
tion in a lower dimensionality space. It should be
noted here that this subspace potentially also con-
tains noise that expresses high autocorrelation. In the
sample case two components corresponding to some
low (spatial) frequency variation in the system were
isolated. These special noise components as well as
those corresponding to noise of the salt-and-pepper
type were removed before transforming back to the
original space, thus resulting in the final restoration
of the data.
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(a) MAF1

(b) MAF3

(c) MAF5

(d) MAF7

(e) MAF9

Figure 3: Here the first five odd-numbered MAFs are shown. We see that the content of spatially autocorrelated
signal is decreasing.
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(a) CH1

(b) CH7

(c) CH47

Figure 4: Three restored channels.
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