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ABSTRACT

A new approach for formulating prior knowledge in struc-
ture from motion is presented, where the structure is viewed
as a 3D stochastic variable, hereby priors are more natu-
rally expressed. It is demonstrated that this formulation is
efficient for regularizing structure reconstruction via prior
knowledge. Specifically algorithms for imposing priors in
the proposed formulation are presented.

1. INTRODUCTION

Structure from motion is a field of research which allows
the reconstruction of the 3D structure and motion of a rigid
body from a sequence of two or more images where 2D fea-
tures of interest have been detected and correlated through
the frames, see e.g. [3]. It is an essential tool in artificial
intelligence and image understanding, applicable in robot
vehicle navigation, content-based searches in video data or
architectural visualization.

However, it is an inherent property of the approach, that
the accuracy of 3D reconstruction is underpinned by the
noise in the images, be it due to quantization or shortcom-
ings of the feature extraction algorithm. Hence, enhancing
the 3D structure via prior knowledge can improve the results
considerably. For instance, knowing that a 3D object pri-
marily consists of planes in right angles to each other, like
eg. buildings, can greatly enhance its reconstruction. One
might also envisage integrating a more sophisticated models
along the line of [1, 2], whereby more complex priors can
be expressed and applied.

Previously, Baker et al. [6] and Torr et al. [5] have ad-
dressed the problem of incorporating prior knowledge into
structure from motion. These approaches identifylayers
in the images and constrain the reconstruction accordingly.
These methods use backprojection onto the image(s) to de-
termine whether regularization with a given prior is proba-
ble. Consequently, the noise is expressed in the 2D image
domain, and it is implied that the camera matrices are deter-
mined perfectly.

In this paper, we address the problem of combining pri-
ors with structure from motion by formulating the estimated
reconstruction as 3D a stochastic variable. This approach

has the advantage of being intuitively accessible, since the
3D structure is computed explicitly. The explicite recon-
struction also allows handling of the uncertainty of the cam-
era motion, since our approach can incorporate that the noise
on a given 2D feature potentially affects all of the 3D fea-
tures. Finally, integration of more complex priors than planes
(eg. splines or deformable templates) is natural.

We establish the mean of the 3D structure by standard
structure from motion methods, see e.g. [3]. The disper-
sion of the resulting structure is then obtained by approx-
imating the 2D to 3D transformation by a linear function,
whereby the relations between noise on the 2D features and
the 3D structure becomes apparent. In order to validate our
approach, we then impose the prior of planar surfaces into
structure from motion, applying a clustering technique.

The organisation of this paper is as follows: section 2
describes the stochastic structure modeling approach, sec-
tion 3 describes the algorithm for fitting a plane to a set
of points given heteroscedastic and anisotropic noise. Sec-
tion 4 concerns the clustering of smaller planes into the final
plane estimates.

2. STOCHASTIC STRUCTURE MODEL

A mentioned, we view the estimated 3D structure as a stochas-
tic variable, derived from the the tracked 2D feature points
in two images. We assume a calibrated pinhole camera:
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where the 2D featurexij , is the projection of the 3D feature
Xj , in imagei. Imagei is described by its calibration matrix
Ai, its rotationRi and translationti relative to the world
coordinate system.

From the tracked 2D features, and this observation model
(1), it is well known that the 3D structure,Xj and the cam-
era motion,Pi, can be calculated via the epipolar geometry,
see e.g. [3].

As such, assuming a well posed problem, the 3D struc-
ture:

X = [X1; : : : ; Xn]
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can thus be seen as a function,F , of the tracked 2D features:

x = [x11; : : : ; x1n; x21; : : : ; x2n]

i.e.
F : x! X

So viewingX and x as stochastic variables with as-
sumed Gaussian noise such that:

Xj 2 N(X̂j ;�j) xij 2 N(x̂ij ;�
2D
ij )

we would like to estimateX givenx. Since we do not have
F in closed form, we approach this problem by linearizing
F , by means of numerical gradients. Hence:
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E(X) = F(x) (4)

denoting the composing features ofx by xk – i.e.k is valid
configurations ofij – and assuming that the noise onx is
independent. Hence from (3) the Gaussian noise structure
ofX can be derived.

As noted, this derived noise structure ofX, is based on
the approximation of (independent) Gaussian noise, and of
linearizingF . These assumptions seam reasonable, in that
the approach i capable of capturing, how variations in the
image data,x, affects the estimated structure,X. These
affects on the estimated structure,X, are all what is reason-
able to expect, since the noise structure on the 2D features
is rarely known and as such all distributions – e.g. Gaussian
– are approximations.

Our assumption of a calibrated camera –Ai known – is
by no means necessary, as seen in [3], except if the imposed
priors are non invariant to protective transformations, which
they will seldom be.

3. ESTIMATING THE PLAN (PRIOR)

In order to test if a set of given 3D features lie on the same
plane, and if so enforce that plane upon the the structure, we
need to estimate the most likely plane. In this case it is non–
trivial, since the 3D features have different or heterosced-
stisk anisotropic noise. Implying that the Mahalanobis dis-
tance measure or norm for each 3D feature is different.

Hence givenm 3D featuresfX1; : : : ; Xmg, and cor-
responding Gaussian variance structuresf�1; : : : ;�mg we
want to find the plane that minimizes the distance between
3D featureXj and the plane, in the norm induced by��1

j .
Let a plane be denoted by its normal vector,�, and its offset
from origo,�0, then any point,X , on the plane satisfies:

�T �X + �0 = 0

The most likely plane is estimated by iteratively approxi-
mating the noise structures by heteroscedasticisotropicnoise,
until convergence is achieved. In this isotropic case, the
most like plane is given by:
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where�j denotes the isotropic variance of�j . Given a
plane, the�j are given as the ratio between the length of
the minimum distance between 3D feature and plane,~rj , in
the induced norm relative to the minimum distance in the
2-norm,rj , i.e.

�j =
~rTj �

�1

j ~rj

rTj rj
(6)

In short, the algorithm is, whereq denotes iterations:

1. Initialize q = 0 ; 8j �0j = det�j .

2. Estimate Plane�q ; �q
0
with isotropic noise, for (5).

3. Update Isotropic Noise�qj via (6)

4. If not Stop, q = q + 1, goto 2. The stop criteria is

max
j

(�qj � �
q�1
j ) < tolerance:

It is seen, that the�j are updated such that the given
plane has the right likelihood, with the original heterosced-
stic anisotropic noise. So if8j �

q
j = �

q�1
j then the op-

timal plane with the isotropic noise is also optimal in the
anisotropic case.

4. IMPOSONG THE PRIOR

As mentioned, we validate our approach by imposing the
prior of planar surfaces onto our structure. This is done by
first triangulating the estimated 3D structure, whereby a set
of three–point planes are constructed. A recomended meth-
ods for triangulation is [4] by Morris and Kande.

As such, this triangulation does not reguaralize the 3D
structure, but it serves as a initialization for an algorithm
where neighboring planes (e.g triangles) which are likely to
be the same plane are merged. A statistical test for copla-
narity is described below.

4.1. Test for Coplanarity

Given a set of 3D features, as described above, located on a
plane, and this plane is estimated optimally as described in
Section 3, then the residuals are realizations of the respec-
tive noise,N(0;�j), as estimated in Section 2. Hence a test
of two sets of 3D featuresX1;X2 being located in the same
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Fig. 1.

plane is to compare the residuals for the plane fitted to one
of the sets and the plane fitted to the two sets combined.

More formally, the entities that should be compared are
the residuals,~rj between a 3D feature and the plane, normed
with the respective variance,�j . Since, if the assumption
of coplanarity holds, these residuals should be elements in
a N(0; 1) distribution. Hence a F-test can be used, or for-
mally if the assumption thatX1 andX2 are part of the same
plane holds, then:
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where ~r1 are then residuals fromX1 and ~r12 are them
residuals fromX1 [X2.

4.2. Clustering Algorithm

The algorithm for combining neighboring planes is a greedy
clustering algorithm in that at any given time, the two neigh-
boring planes with the must likelihood of being the same
plane are combined, if this likelihood is above a given thresh-
old. Hence the triangles achieved by triangularization, are
clustered into planes.

When these clusters have been calculated, the derived
planes are enforced upon the 3D features, and the 3D fea-
tures moved onto the plane, whereby the prior of planar
structures is imposed. See??
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