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Abstract. This paper illustrates current research at Informatics and
Mathematical Modelling at the Technical University of Denmark within
biological shape modelling. We illustrate a series of generalizations to,
modifications to, and applications of the elements of constructing models
of shape or appearance. These elements are correspondence analysis,
analysis and decomposition of variability, alignment, and visualisation.

1 Introduction

Statistical models of shape and appearance are estimated from a series of train-
ing examples. These shape examples sometimes come in the form of manually
identified point sets, more often the training examples are provided as delineated
object boundaries. In the latter case we first need to infer the correspondences
of these curves and surfaces. The minimum description length principle has suc-
cessfully been applied to this task [1]. We show how local shape characteristics
of 2D curves can aid in the process. The same principle of regularising the cor-
respondence analysis using local shape characteristics is applied in a Markow
random field formulation of iterative point matching [2].

The next step is to filter out nuissance parameters, e.g. Euclidean similarity
transformations. This is done using generalised Procrustes analysis [3, 4]. This
is a least squares methods and thus not necessarily resistant to outliers. We de-
scribe an alternative based on minimising the sum of absolute deviations. Next
we need tools to analysis and help understand the shape variability. It is com-
mon to decompose shape tangent space variability using principal components
analysis (PCA) [5] and inspect the resulting modes of variations. We show how
canonical correlation analysis [6] and cluster analysis can be used to understand
the interrelations between landmarks.

Principal components is the favored method of decomposing shape variability.
However, in many situations regression type techniques would be more obvious.
We show an example of using partial least squares regression [7] to find modes
of variation that describe bone growth.

In appearance models [8] shape and intensity information is modelled simul-
taneously. We show that it can be advantageous to consider intensity variation
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not in the original pixel domain but rather in a wavelet domain as proposed
in [9]. Furthermore, we introduce the use of wedgelets [10, 11] to represent image
date in triangulated domains. In a final issue regarding shape and appearance
models we show how a mixture of Gaussians can be used to represent multi-
modal distributions effectively in a case of modelling the human heart across
the heart cycle in a MR perfusion imaging experiment. Finally, we present a
case of making 3d shape models of human faces from a series of 3D scannings as
proposed by [12, 13].

2 Optimising landmark correspondence using minimum
description length

Often training data for 2D shape analysis come in the form of delineated ob-
ject boundaries. Prior to shape analysis it is therefore necessary to establish
correspondences between such curves. A successful solution to this problem is
the minimum description length (MDL) approach proposed in [1]. However, this
MDL approach does not always capture important shape characteristics related
to the curvature of the curves, and occasionally it places marks in obvious con-
flict with the human notion of point correspondence. The standard MDL method
seeks compact description of the positions of the shape points. Curvature is pro-
posed as another salient piece of information. By requiring the model to describe
both position and curvature we get a different optimum with point correspon-
dences that matches both positions and curvatures. The correspondences across
the data set are then optimised with respect to the following costs

DL =
∑

λ>λcut

1 + log
λm

λcut
+

∑

λ≤λcut

λm

λcut
[MDL positions cost]

NC =
∑

i

(aaverage
i − a

target
i )2 [Node positions cost]

CC =
∑

i,r

(kir − kmean
i )2 [Curvature cost]

λm are the eigenvalues of a principal components decomposition of landmark
positions, λcut is a preset threshold; a

average
i and a

target
i are average and target

parameters for the ith landmark. The node cost secures that landmark does not
pile up in some regions and dilute in others; kir is the curvature at ith landmark
on rth shape, kmean

i is the mean curvature at the ith landmark across all shapes.
This curvature cost ensures the same curvature signature across shapes. In Fig. 1
we see how the inclusion of the curvature cost let landmarks fall to rest at more
biologically intuitive points.
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(a) (b)

Fig. 1. Correspondences estimated using MDL without curvature cost; (b) correspon-
dences using curvature cost.

(a) (b) (c) (d)

Fig. 2. (a) The correspondence vector field using point to surface projection; (b) re-
sulting mesh representation; (c) the correspondence vector field using using the Markov
random field restoration; (d) improved mesh representation.
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Fig. 3. (a) 10 triangles. (b-c) alignment based on the 3 corner points using the l1 and
l2, respectively. (d-e) aligned as (b-c) but with an additional 19 landmarks distributed
equidistantly on the lower side included.
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Fig. 4. (a) landmarks from 6 individuals projected onto a reference mandibular; (b)
landmark canonical correlations; (c) hierarchical clustering of anatomical landmarks
using single linkage, the canonical correlation are used as similarity measure.

3 Markov Random Field Correspondences

A method is developed for building statistical shape models based on a train-
ing set with an initial sparse annotation of corresponding landmarks of vary-
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ing confidence [14]. A model mesh is aligned to all shapes in the training data
using the thin plate spline (TPS) transformation based on a few anatomical
landmarks. From the deformed model mesh and a target shape we derive a
dense registration field of point correspondences. Applying a Markov random
field (MRF) restoration we obtain a dense, continuous, invertible registration
field (i.e. a homeomorphism) [15]. The stochastic restoration acts as a relaxation
on the TPS constrained model mesh with respect to the biological landmarks.
The landmarks are identified with varying confidence and the MRF relaxation
allows for a data driven enhancement of the object correspondences. Using a
site-prior, the algorithm converges to the most simple deformation field which
has a tendency to match points of similar geometry since the field otherwise
must be more complex. In comparison to applying point to surface projection
the MRF regularization provides i) improved homogeneity of the target shape
polygonization free of surface folds, ii) better reconstruction capabilities, and
iii) a more compact Active Shape Model description of all the training data.
The MRF regularization produces a reduction of the total variance contained
in shape tangent space. The reduction is explained by increased collinearity be-
tween semi-landmarks distributed over the entire shape.

4 L1 Generalized Procrustes 2D Shape Alignment

Using linear penalty instead of the quadratic penalty of least squares is a stan-
dard way of achieving resistance to outliers. Let there be given L training ex-
amples represented by (xij , yij), i = 1, . . . , L, j = 1, . . . , k. The alignment prob-
lem consists of estimating a modal shape, µ = (µ1, . . . , µk, ν1, . . . , νk)T , and a
set of Euclidean similarity parameters for each shape. Let these parameters be
scale: βi ∈ IR+, rotation: ψ ∈ [0; 2π[, and translation: γi = (γxi, γyi)T ∈ IR2.
This is conveniently formulated as the minimisation of a vector function wrt. all
Θi = [βi cosψi, βi sin ψi, γxi, γyi]T and µ.

F(φ) =




Z1 0 . . . 0 −I
0 Z2 . . . 0 −I
...

. . .
...

0 . . . . . . ZL −I







Θ1

Θ2

...
ΘL

µ




where Zi =




xi1 −yi1 1 0
...

...
...

...
xik −yik 1 0
yi1 xi1 0 1
...

...
...

...
yik xik 0 1




(1)

Necessary linear restrictions to avoid degenerate solutions are
∑L

i=1 γxi = 0,∑L
i=1 γyi = 0,

∑L
i=1 βi cos ψi = L and

∑L
i=1 βi sin ψi = 0. Minimising the L2-

norm of F results in the usual least squares 2D GPA. Using the L1-norm results
in the minimization of the city block distance between corresponding landmarks
of all examples and a reference shape. This minimisation can be formulated
as finding bounds of the values of F , such that the sum of these bounds is
minimized. Expanding the indices can be stated as the following additional linear



Biological Shape Modelling 5

constraints

−oxij ≤ xij(βi cosψi)− yij(βi sin ψi) + γxi − µj ≤ oxij

−oyij ≤ yij(βi cos ψi) + xij(βi sinψi) + γyi + νj ≤ oyij .

This is an LP (linear programming) problem. However, the use of the city block
distance obviously introduces dependence of the orientation of the chosen coor-
dinate system. Rotational independence is achieved by using a linear approxi-
mation to Euclidean distance based on averages of city block distances in equi-
angularly rotated coordinate systems.

In Fig. 3 the alignment of triangles in the L1 and L2 norms is shown based
on the 3 corners points only, and using an additional 18 points added by linear
interpolation between the to lower corner points. We see that the L1 as well as
the L2 norm alignment are sensitive to the chosen representation, In the case of
densely sampling the lower side the L1 alignment regards the top corner point
as an outlier and disregards it thereby achieving perfect alignment of the the
lower sides. Initial work on L1 Procrustes is presented in [16].

5 Analysis and visulization of landmark distributions

The intercorrelations of landmark coordinates may be visualized by showing
the correlation matrix of the coordinates of all landmarks across the dataset.
However, this representation is not invariant with respect to rotation of the
frame of reference. Such a rotation will shift the correlations between the x, y,
and z coordinates. Also, it is convenient to study the correlations in terms of
landmarks. In order to express the correlation between a univariate quantity and
a set of covariates we use the multiple correlation coefficient, and to express the
correlation between two sets of multivariate quantities (i.e. point coordinates) we
may use the canonical correlation. The canonical correlation is determined by use
of a canonical correlation analysis [6]. This procedure rotates the scattering of to
sets of variables (in casu landmarks i and j across the dataset) individually, such
that maximum correlation is obtained along a projection axis. This correlation
is the canonical correlation.

This visualization is performed for a set of 32 anatomical landmarks identified
on the mandibular bone of 6 patients CT scanned 3-4 times from age 1 months
to 14 years. In Fig. 4(a) the landmarks identified on the oldest mandible of each
patient are projected onto a reference surface model using correspondences found
by geometry constrained diffusion [17]. The scatter of each landmark is small
and serves as a clinical validation of geometry constrained diffusion. In Fig. 4(b)
the inter-(canonical)-correlations of the 32 landmarks are shown. We see that
the landmarks are organised in 3 clusters. This is further revealed by a formal
cluster analysis based on using the canonical correlations as similarity measure
in a single linkage hierarchical clustering of the 32 landmarks, see Fig. 4(c). The
3 clusters are related to 1) the chin; 2 and 3) the ramus, the condylar and the
coronoid processes of the left and right side of the mandible.
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6 Shape modelling using partial least squares regression

A set of biological landmarks annotated of mandibular bones is applied in a
statistical shape analysis in pursuit of a growth model. An ASM is typically
constructed based on a principal components (PC) analysis of the Procrustes
aligned shapes. Figure 5 shows a pairs plot of the subject, centroid size, and
PC1–3 component scores. PC1 correlates to centroid size with a coefficient of
76%. By PC we solely focus on obtaining a basis that has the maximum likelihood
of reconstructing the training data. In the present case, PC correlates to growth.
However, this is not by design. Instead, we propose to decompose the dynamics in
shape space by turning to regression based techniques. In particular, we wish to
search for dominating shape variations that show high correlation to growth mea-
sured by centroid size. The method of partial least squares (PLS) thus becomes
a natural choice for shape variation decomposition. In PLS R = Cov{aT x, bT y}
(here x is an observation in the tangent space and y often a scalar response
variable) is maximized with the following constraints: aT a = bT b = 1 leading
to

R2 =
aT Σ12Σ21a

aT a
=

bT Σ21Σ12b

bT b
, (2)

[18]. The first pair of canonical variates (or latent variables) are calculated and
the response CV is regressed on the predictor CV. If more information is present
in the residuals these are subtracted from the original response variables by
means of multiple regression, and the predictor variables are projected into a
subspace orthogonal to the solution found, and more iterations are performed,
see also [7, 19]. In Figure 5 the scores for the PLS based decomposition is shown
using centroid size as the dependent variable in the regression. Notice that PLS1
has almost a one-to-one correspondence to PCA1, but possesses slightly higher
correlation to centroid size of 77%. The PLS study thus confirms that growth
of the mandible is primarily contained in a one-dimensional linear component
in Procrustes tangent space. This is in agreement with the findings in [20] and
does not conflict with the non-linear growth observed in biological coordinate
references systems, [21]. A novel Active Shape Model is thus proposed targeting
growth modelling by applying Partial Least Squares regression in decomposing
the Procrustes tangent space. Here shape centroid size is applied as dependent
variable but the method generalizes to handle other, both uni- and multivariate,
effects probing for high covariation wrt. shape variation.



Biological Shape Modelling 7

Subject

160 240 −0.04 0.04 −0.10 −0.02 0.03

2
6

10

16
0

24
0

Size

PCA1

−
0.

10
0.

10

−
0.

04
0.

04

PCA2

PCA3

−
0.

03
0.

03

−
0.

10
PLS1

PLS2

−
0.

03
0.

02

2 6 10

−
0.

02
0.

03

−0.10 0.10 −0.03 0.03 −0.03 0.02

PLS3

Fig. 5. Pairs plot of the patient index, the centroid size, the PCA1–3 and the PLS1–3
components.
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Fig. 6. (a) AAM synthesis; (b) Wavelet AAM synthesis, compression ratio 1:10; (c)
Selected wavelet coefficients, ratio 1:10; (d) Segmentation accuracy using orthonormal
wavelets (full), weighted wavelets (dashed) and a normal AAM (straight lines).
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Fig. 7. (a) dyadic representaions; (b) triangle representations; (c) triangulated base
representation of a simple neighbourhood.
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Fig. 8. Facial triangulated wedgelet quadtree representation derived using penalized
residual sum-of-squares. (a) original triangulation; (b) wedgelet representation; (c) es-
timated edges.

b
g,1

b g,
2

class 1
class 2
class 3
class 4
class 5

(a) (b)

Fig. 9. (a) Unsupervised classification of perfusion texture vectors obtained from five
subjects; (b) Registration of heart ventricles in two frames during the bolus passage.

(a) (b) (c) (d)

Fig. 10. (a) The template shape next to an unregistered face; (b) Landmarked face;
(c) Thin-plate spline warped template (red) over face to be registered (blue); (d) Two
registered faces

(a) PC1 (b) PC2 (c) PC3

Fig. 11. Extremal 3D faces corresponding to +/- 2 standard deviations of the three
principal modes of variation.
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7 Wavelet Enhanced Appearance Modelling

Generative methods such as the Active Appearance Models [8] establish dense
correspondences by modelling variation of shape and pixel intensities. Explicitly
modelling the value of every pixel covering an object is feasible for low-resolution
2D images. Alas, for high-resolution 2D images, 3D images and 3D time-series,
this approach is rendered infeasible due to excessive storage and computational
requirements. This is very unfortunate due to the many information-rich medical
imaging modalities emerging and maturing these days. We address the problem
by modelling wavelet coefficient subsets rather than pixel intensities. Figures 6(a-
c) show that even moderate compression ratios leaves the wavelet AAM synthesis
almost unaffected, since emphasis is put on perceptual important structures, in
this case of face images. When localising unknown faces, Figure 6 (d) shows that
the segmentation accuracy degrades gracefully with increasing compression ratio.
Further, when utilising the frequency seperation of the wavelet decomposition
by weighting the wavelet filters, we see that the model size can be decreased
while increasing segmentation accuracy. For further details see [22].

8 Wedgelet compresion of triangulated domains

As an alternative to wavelets we propose to use wedgelets [10] to represent
textural components in the training set of an active appearance model. Due to
the nature of the AAM the challenge is to move from a dyadic domain to a
triangulated domain. The basic idea of wedgelets is illustrated in Fig. 7(a), i.e. a
dyadic square is represented by its mean value, an edge and two mean values, or
4 squares at higher resolution, leading to a quadtree representation. We define
an equivalent triangular representation as shown in Fig. 7(b). For each triangle
we run through all possible divisions of that triangle by a line connecting two
points on the sides and compare the resulting representations to a simple mean
over the entire triangle, and a subdivision into four triangles. The comparison is
carried using a penalized residual sum-of-squares

PRSS =‖ y − µ ‖2 +λ ·#P,

where y are original pixel values in the triangle, µ the model, and #P a
complexity term. An example of this triangulated wedgelet representation is
shown in Fig. 7(c). In Fig. 8 an example of representing a face from an initial
Delauney triangulation of a series of landmarks is shown.

9 Multimodal Appearance Models

Within the last decade magnetic resonance imaging has been proven able to
assess myocardial perfusion. By injecting a bolus of contrast the myocardial per-
fusion mechanism can be quantified, which is essential in ischemic heart diseases.
As the contrast agent tags the blood stream and amplifies the MR signal, areas
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of the myocardium served by diseased arteries show a delayed and attenuated
response. To quantify such areas, corresponding points need to be determined
for all frames of a perfusion time sequence. The Active Appearance Model holds
great promise for carrying out such a task for many reasons. However, the radi-
cal changes in intensity during the contrast uptake violate the assumption that
image intensities (texture) are well modelled by a multivariate Gaussian. This
yields a less specific texture model, potentially leading to false positives during
tracking of perfusion sequences. We propose to replace the AAM texture model
by an ensemble of local models estimated from a training set using unsupervised
clustering. The result of such a clustering carried out on five subjects is shown
in Figure 9 (a). A corresponding registration of an unseen perfusion sequence is
shown in Figure 9 (b). For further details see [23, 24]

10 Statistical Shape Model from 3D Face Scans

In the face analysis examples above models have been built based on 2D pro-
jections. A more natural modelling is attained using 3D scans. Using a Minolta
Vivid 900 laser scanner 15 individuals are scanned. The face shapes are repre-
sented by meshes consisting of approximate 20000 points. We register each face
(study) to a template face following [12], i.e. by thin plate spline warping a tem-
plate using a set of 9 manually identified landmarks, projecting the template
landmarks to each of the studies, discarding the old study landmarks, and in-
verse thin plate spline warping these new landmarks to the original space. This is
shown in Fig. 10. As a by-effect the pruning of the template is transferred to the
studies. After a generalized Procrustes alignment a principal component analysis
of tangent space coordinates reveals the principal modes of variation shown in
Fig. 11. The Minolta scanner also provides a texture scan. Following [13] this
will be included to generate a 3D facial appearance model.
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