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Abstract 

Since the development of the wedge splitting test (WST), techniques have been used to 
extract material properties that can describe the fracture behavior of the tested materials.  
Inverse analysis approaches are commonly used to estimate the stress-crack width 
relationship; which is described by the elastic modulus, tensile strength, fracture energy, and 
the assumed softening behavior.  The stress-crack width relation can be implemented in finite 
element models for computing the cracking behavior of cementitious systems. 

While inverse analysis provides information about the material properties of various 
concrete mixtures there are limitations to the current analysis techniques.  To date these 
techniques analyze the result of one WST specimen, thereby providing an estimate of material 
properties from single result.  This paper utilizes a recent improvement to the inverse analysis 
technique, which enables the stress-crack width response to be determined simultaneously 
from multiple experimental tests.  The effect of water-to-cement ratio and aggregate size are 
discussed.  A comparison of epoxy-impregnated cracked WST specimen and material 
properties indicate a relationship between fracture properties and characteristics of load 
induced cracks.   
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1. INTRODUCTION 

The cohesive crack model is commonly applied to quasi-brittle materials such as concrete.  
The concept of the cohesive crack approach deviates from linear elastic fracture mechanics 
and considers that stresses can be transferred across the fractured surfaces.  This transfer of 
stresses was first seen in steel in the form of plasticity [1,2] and was later applied to concrete 
with the concept of strain softening in [3].  The transfer of stresses in cracked concrete is 
illustrated in Figure 1a, and a generic cohesive law, or softening behavior (which can be 
readily applied in FEM programs) is shown in Figure 1b. 

The wedge splitting test (WST) was created in [4] and further developed in [5] as a tool to 
determine the fracture of concrete or other cementitious materials.  More recently, through the 
application of suitable analytical or finite element models, additional information including 
the estimated direct tensile strength, elastic modulus, and the cohesive law can be determined 
[6,7,8,9].  In [9] an analytical solution for the WST was determined using the hinge cracking 
model developed in [10]; however, several limitations existed.  Included in these limitations 
are that only bi-linear cohesive laws could be determined and the inverse analysis could be 
conducted on a single test result.  An iterative approach was developed in [11], which is 
described in greater detail in a following section.  This iterative approach can be used to 
provide N-linear cohesive laws, however the inverse analysis is still conducted on a single 
experimental result. 

The purpose of this paper is to investigate the effect to varying material parameters on the 
fracture behavior as determined by the WST and inverse analysis.  A method to consider 
multiple experimental results in the inverse analysis approach is used.  The effect of aggregate 
size, water-to-cement ratio, and cyclic loading is discussed.  In addition, image analysis of 
cracked epoxy-impregnated specimens provides insight on the effect of changing fracture 
parameters on the characteristics of the cracks formed in concrete. 

 

 
Figure 1.  Illustrations of (a) concrete crack development with a fracture-process zone 

consisting of a bridging and microcracking regions (after [12]) and (b) the multi-linear 
softening behavior of cracked concrete. 
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2. EXEPERIMENTAL DESCRIPTION 

2.1 Mixture Proportioning and Specimen Preparation 
Table 1 describes the mixture proportions used for testing, which included mixtures with 

varying maximum aggregate size and water-to-cement ratio (w/c).  The concrete mixtures 
contained 65% aggregate by volume, with equal portions of graded sand and granite 
aggregate.  The mortar mixture contained identical proportions of aggregate as the concrete 
mixtures, minus the coarse granite aggregate (i.e., 32.5% graded sand by volume).  Aalborg 
Portland Basis© cement designated CEM II/A-LL 52.5 was used for all mixtures. 

A conventional pan mixer was used for mixing 60 liter batches.  The aggregate, half of the 
sand, water and cement were added to the mixer followed by the remaining sand.  Mixing 
took place for 2 minutes, followed by a 2 minute rest period, and finally an additional minute 
of mixing.  After mixing the concrete was placed and vibrated in 100 x 100 x 100 cube molds 
which contained a 20 mm x 30 mm plastic block to create a recess.  The samples were cured 
in laboratory conditions, covered with plastic sheets for 24 hours.  After this time the 
specimen we removed from the molds and were submerged in lime-saturated water at 20°C 
until testing at 1, 3, 5, 7, 14, and 21 days.  Immediately prior to testing a 30 mm deep notch 
was cut into the specimen using a concrete saw.  Figure 2 and 3 provide illustrations of the 
final specimen geometry after saw cutting.  Additional information on the mixing procedure 
can be found in [13]. 

 
Table 1.  Mixture Proportions and Descriptions 

Mixture ID w/c Description Max. Size Aggregate (mm) 
A 0.42 Large Aggregate Concrete 16 
B 0.42 Small Aggregate Concrete 8 
C 0.42 Mortar 4 
E 0.34 Paste -- 
G 0.50 Large Aggregate Concrete 16 
H 0.30 Large Aggregate Concrete 16 

2.2 Wedge Splitting Test and Inverse Analysis 
The WST experimental setup is shown in Figure 2. During testing, a splitting load is 

applied to a concrete specimen through a rigid wedge and bearing plates with low-friction 
rollers.  The specimen consists of a 100 x 100 x 100 mm cube with a 20 mm deep by 30 mm 
wide recess, which allows for application of the splitting load.   

The WST can be used, through inverse analysis (e.g., minimizing the difference between 
the model calculations and experimental results by altering mechanical parameters), to 
determine the cohesive law for cementitious composites. Figure 3 shows the implementation 
of the hinge model developed in [14,10] to the WST geometry. The hinge model simulates the 
area directly surrounding a propagating crack, which are attached to rigid boundaries. The 
rigid boundaries of the cracked hinge are allowed to translate and rotate as indicated in Figure 
3b. The rigid boundaries seamlessly join the bulk (uncracked) specimen, where the behavior 
is controlled by the classical elastic theory (i.e. Hooke’s Law).   
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Figure 2.  Schematic of WST geometry: Specimen is placed on line support, two roller 

bearing loading devices are mounted, and wedge applies splitting load [9]. 
 
The stresses transferred in the hinge model are controlled by Equation 1 
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where E is the elastic modulus, ε is the elastic strain, σw(w) represents the cohesive law, and ft 
is the uniaxial tensile strength. Figure 1b illustrates a general g(w) curve, which 
mathematically is given by  

 
 ( ) Nwwwabwg iii →=<<−= 1i  and    w  where 1-i . Equation 2 
 

w

 
Figure 3. (a) The wedge split testing specimen with the hinge model applied, (b) Loading and 

deformation of the hinge (after [10]), and (c) the assumed stress distribution (after [10]). 
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The term wi is the intersection of two consecutive lines and is computed by 
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and the critical crack width (width at which g(w) = 0) is calculated by 

N

N
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bww ==  

where N is equal to the number of lines in the cohesive law. The deformation of the hinge is 
determined by the angular rotation, ϕ and the location of the neutral axis, y0 (see Figure 3). 
The mean value of longitudinal strains, ε*(y) is calculated by Equation 3. 

 
 ( ) ( ) syyy /2* 0 ϕε −=  Equation 3 
 

The deformation of an incremental strip of the hinge is then given by ( ) ( )ysyu *ε⋅= , where s 
is the length of the hinge (s = 0.5h). Once cracking occurs, u(y) can be computed as the sum 
of the elastic deformation and the crack opening, as shown in Equation 4. 
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By combining Equation 3 and 4 the stress distribution as seen in Figure 3c is mathematically 
written as follows in Equation 5 
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and by introducing the cohesive law (Equation 1) and solving with respect to w(y) and σw 
(w(y)) the following solutions are obtained: 
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where the dimensionless factors βi and ζi are defined by 

 
E

sbf
E

saf it
i

it
i == ζβ    and   . Equation 7a 

Additional information on the development and implementation of the hinge model can be 
found in [10] and [9,15,11], respectively. 

In [9] the hinge model was applied to the WST geometry and an analytical solution was 
utilized to determine a bilinear cohesive law. An iterative approach was developed in [11] 
which allows for determination of N-linear cohesive laws. The following section provides an 
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overview of the iterative inverse analysis technique for determination of N-linear cohesive 
laws.  

The inverse analysis proceeds based upon the following two main equations: 
 
 0   and   0 expexp =−=− HingeHinge CMODCMODMM  Equation 8 
 

where Mexp is the bending moment applied during experimental testing, MHinge is the bending 
moment applied in the hinge model approach, CMODexp is the observed CMOD from 
experiments, and CMODHinge is the CMOD computed from the hinge model.  The 
experimental bending moment, Mexp is computed by 

 ( ) mgedPydPM vsp 2
1

2
1

102exp ++−=  Equation 8a 

where 
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which accounts for the wedge angle, αw and the friction in the roller bearings, μc; m is the 
mass of the specimen and g is the acceleration of gravity. The bending moment applied in the 
hinge model, MHinge is computed by 

 ( )( )dyyyyM
h

Hinge ∫ −=
0 0σ  Equation 8c 

where σ(y) is the cohesive law from Equation 1. The CMOD calculated by the hinge model, 
CMODHinge is the sum of the elastic deformation, δe; the deformation caused by the crack, δw; 
and the deformation caused by geometrical amplification, δg. The calculation of the elastic 
deformation, δe is found in [16] as 

 2υδ
Et
P

e = . Equation 8d 

Here t is the specimen thickness and υ2 is computed by [16]: 
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The deformation caused by the crack, δw can be directly calculated from Equation 7 at y = h. 
Finally, the deformation caused by geometrical amplification, δg is computed by 
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where ϕe is defined as the maximum elastic angular deformation of the hinge and d is the 
depth to which the crack has propagated through the hinge. 

An analytical solution to Equation 8 cannot be obtained and therefore an optimization 
process has been implemented using MatLab. This process minimizes the difference between 
the observed load applied in experiments, Pexp and the load predicted by the hinge model, 
PHinge using the following error normalization function: 
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This normalization function is applied to various stages of the load response curves, including 
the elastic portion for determination of E, the peak load for determination of ft, and the 
softening branch for determination of ai and bi.  Additional information on this optimization 
process, including a parametric study and method of implementation in Matlab can be found 
in [11].   

Previously, this and similar inverse analysis approaches have been used to fit results from 
single experimental data [9,15,11], however experimental results tend to vary slightly from 
test to test. Therefore, in order to allow for fitting from multiple specimen the following 
modification has been made, which minimizes the difference between the hinge model curve 
and a multitude of experimental curves. 
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for i=1 to Nexp, where Nexp is the number of experimental curves and for j=1 to Np where Np is 
the number of data points in the individual experimental curve. By dividing by the number of 
data points, Np in the individual curves, the data is normalized by the number of points; 
therefore, not overemphasizing the effect of a single curve on the overall fitting of the hinge 
model.  Figure 4a shows multiple experimental WST results from a single concrete batch 
along with the results of the inverse analysis.  It can be seen that the inverse analysis is 
averaging the behavior of the multiple tests. 
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Figure 4.  Results of inverse analysis of multiple WST specimen 

2.3 Crack Impregnation and Image Analysis 
A fluorescent dye epoxy was used for impregnation of cracked WST specimen at varying 

crack mouth opening displacements (CMOD).  The WST specimens were loaded to a specific 
CMOD and then epoxy impregnated under vacuum.  After hardening of the epoxy the 
samples were cut using a diamond saw. Images were taken of the impregnated samples under 
a UV-light source which causes the epoxy to illuminate, simplifying the image analysis 
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process.  A semi-automated image analysis technique was used to convert the images into 
black and white (solid concrete presented in black, crack(s) in white) and various masks were 
applied to determine geometrical characteristics of the cracks.  Additional information on the 
epoxy impregnation and semi-automated image analysis techniques can be found in [17] and 
[18], respectively. 
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       (c)         (d) 
Figure 5.  The effect of aggregate size on the (a) cohesive law and (c) fracture energy, and the 
effect of w/c on the (b) cohesive law and (d) fracture energy for all mixtures at age of 14 days. 

3. RESULTS AND DISCUSSION 

3.1 Inverse Analysis Results 
The results of the inverse analysis of the various concrete mixtures are presented in Figure 

5.  In this case the results of a bi-linear cohesive law inverse analysis are presented.  Figure 5a 
illustrates the effect of increasing the maximum aggregate size on the transfer of stresses 
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across a crack.  The paste mixture transfers only minimal stresses after cracking, while the 
stresses transferred across the crack increases with an increase in the size of the maximum 
aggregate.  The effectiveness of the aggregate to transfer stresses can be quantified by the 
critical crack width, or the crack width where stress transfer ceases.  The critical crack width 
of the paste is approximately 0.02 mm, while the concrete with 16 mm aggregate has a value 
of approximately 0.27 mm.  The increase in stress transfer and critical crack width is typically 
attributed to aggregate interlock and friction between the fracture surfaces [19].  Figure 5c 
shows the effect of the maximum aggregate size on the fracture energy (paste is assumed to 
have maximum aggregate size of 0 mm).  The effect of aggregate size on increasing the 
fracture energy is clearly illustrated.  The fracture energy increases from 13.7 J/m2 for the 
cement paste to 166 J/m2 for the large aggregate concrete.  It should be noted that the paste 
used in this investigation had a different w/c than the concrete and mortar mixtures.  The 0.34 
w/c paste was selected, based on the estimations in [20], to assess the properties of the paste if 
the effects of the interfacial transition zone were not considered.  However, as presented 
below, the effect to of w/c is relatively minor; therefore it is reasonable to assume a similar 
result would be obtained from a 0.42 w/c paste. 

The effect of w/c on the cohesive laws and fracture energy are shown in Figure 5b and d, 
respectively.  Figure 5b shows that the w/c has a relatively minor effect on the cohesive law 
as compared aggregate size.  The effect of w/c on the fracture energy is plotted in Figure 5d.  
The fracture energy increases 24% by decreasing w/c from 0.50 to 0.30.  Similar results have 
been seen previously (for example [6,19]).  The same reduction in w/c caused a 49% increase 
in stiffness and a 45% increase in tensile strength.  Additionally, the effect of age was 
investigated.  Results indicated increases in elastic modulus and tensile strength with time; 
however, fracture energy varied only slightly with time.   

  Figure 6 shows the results of the epoxy impregnation of the cracked WST specimens.  
The area of the crack was determined using image analysis software, and has been plotted 
versus the CMOD for the 0.42 w/c concrete with small and large aggregate (8 mm and 16 mm 
maximum size aggregate).  Figure 6 shows that the small aggregate concrete developed cracks 
with a larger crack area for a particular crack width than the large aggregate cracks with a  

 
Figure 6.  The resulting crack area from varying CMOD’s for the 0.42 w/c concrete with 8 

mm (small) and 16 mm (large) maximum sized aggregate (MSA) [21]. 
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larger crack area for a particular crack width than the large aggregate concrete.  As shown in 
Figure 5a and c the stress transfer and fracture energy increase as the maximum aggregate size 
increases.  The ability of the larger aggregate concrete to transfer stresses at larger crack 
widths allows this material to restrict the opening of the crack, and therefore maintaining a 
smaller crack area.  

3.2 Unloading Stiffness of the Wedge Splitting Test 
Figure 7 shows the result of cyclic load application to a single wedge splitting specimen of 

Mixture A. The specimen was unloading in both the pre- and post- peak portions of loading, 
and the load and CMOD have been normalized to the peak vertical load (1500 N) and the 
corresponding CMOD (0.042 mm).  The slopes of the individual unloading responses 
converge on a common point, referred to as the focal point (σ0,ε0), which is shown in Figure 
7a.  As discussed at greater length in [22,23] the focal point allows for the determination of 
the stiffness at any point along the envelope of the load-CMOD response.  Figure 7b shows 
the degrading effect of increasing crack width on the original stiffness, EOriginal.  A 1% 
reduction in stiffness occurred after loading to 47% of the peak load.  The degradation of 
stiffness then increases rapidly, resulting in a 38% reduction in stiffness at peak loading (i.e., 
normalized CMOD equal to 1).  The stiffness continues to degrade with increasing crack 
width. 
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Figure 7.  (a) Cyclic loading of the WST indicates a focal point, and (b) the unloading 
stiffness degradation  

4. SUMMARY  

This paper has shown that the wedge splitting test specimen geometry can be used to 
determine material properties that can describe the fracture behavior of concrete.  It has been 
shown that: 
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• The use of the normalization function presented in Equation 10 makes it possible 
to perform a simultaneous inverse analysis on multiple test specimens. 

• The inclusion of aggregate resulted in an order of magnitude increase in fracture 
energy.  The critical crack width and the fracture energy increased with the 
maximum aggregate size.  The fracture energy for the large aggregate concrete 
was 12 times higher than for cement paste.  This increase is attributed to the 
increase in aggregate interlock and friction between fracture surfaces. 

• While varying the water-to-cement is typically thought to have a major influence 
on mechanical properties, the fracture energy and cohesive laws are only slightly 
affected by such variations.  The fracture energy varied only 24% for the water-to-
cement ratios used. 

• Epoxy impregnation of cracked WST specimen indicates links between the 
fracture properties and the geometric characteristics of the cracks.  It was seen that 
increasing the fracture energy results in a less tortuous crack geometry.   

• The slopes of the individual unloading responses from a cyclic wedge splitting 
test converge at a focal point, similarly to compression and direct tension results 
from previous investigations.  The focal point allowed for the determination of the 
stiffness at any point along the vertical load-CMOD curve.  The stiffness of the 
wedge split test specimen rapidly degraded after reaching approximately 47% of 
the peak load. 
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