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FROM GUNNAR MOHR, DEAN OF STUDIES, DECEMBER 2007

Abstract. We consider a specific function of two variables whose
graph surface resembles a blue lagoon. The function has a saddle
point p, but when the function is restricted to any given straight
line through p it has a strict local minimum along that line at p.

1. Definition and properties

A function f(u, v) is defined in R2 as follows:

f(u, v) =
(
1− (u− 1)2 − v2

) (
4− (u− 2)2 − v2

)
.

The function is zero along the two circles (the red circles in Figure 1):

(u− 1)2 + v2 = 1 and (u− 2)2 + v2 = 4 .

The point of interest is p, where the two red circles meet. This point
has coordinates p = (0, 0). It is a stationary point for f :

∇f |(0,0)
= 0 .

The Hessian of f is positive semi-definite at p :

Hess f |(0,0)
=

(
2 0
0 0

)
.

In the disc domain shown in Figure 1 there are two subdomains, where
the function is positive (the green subdomains), and one subdomain
where the function is negative (the blue subdomain). Every straight
line through p therefore only experiences positive values of f close to
p - except precisely at p, where the value is 0. The point p is thence
a strict local minimum along every one of these straight lines. The
yellow circle marks the location of the local maxima along the respec-
tive straight lines through p. The function (considered as a function
in R2) does not itself have a local minimum at p . For example, the
function is decreasing from p along the blue circle through p in the
blue subdomain in between the two red circles through p in Figure 1
(see the precise analysis on page 5). The point p is thus a saddle point
in the sense that it is a stationary point with the property that every
neighborhood around p contains points where f is strictly larger than
f(p) = 0 as well as points where f is strictly smaller than 0 .

2000 Mathematics Subject Classification. Primary 26.
Key words and phrases. Functions of two variables.

1



2 A BLUE LAGOON FUNCTION

2. Figures
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Figure 1. Straight lines through the stationary point
and descriptive circles in the considered domain for the
function f .
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Figure 2. The graph surface of f looks roughly like the
Blue Lagoon in Iceland, see the picture on page 4.
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Figure 3. The function −f unfolded with ’dual colors’.
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Figure 4. The graph surface of −f (with ’dual’ col-
ors) looks roughly like the Blue Lagoon at Abereiddy in
Wales, UK.
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Figure 5. The Blue Lagoon in Iceland.

Figure 6. The Blue Lagoon at Abereiddy in Wales, UK.

3. Analysis

Any straight line through p = (0, 0) may be parametrized as follows

Lw : r(t) = ( t cos(w), t sin(w) ) for t ∈ R and w ∈
[
−π

2
,
π

2

]
.

When restricting f to Lw we get the restricted function:

g(t) = f(r(t)) = f( t cos(w), t sin(w) ) = t2(8 cos2(w)−6t cos(w)+t2) .

These restricted functions are displayed in Figure 7 for a couple of
w−values. It is clear from this inspection, that at least for w 6= ±π/2 ,
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Figure 7. The line-restricted functions g(t).

every g has a local minimum along Lw at p corresponding to t = 0 .
This also follows precisely from the derivatives of g at t = 0 :

(3.1) g′(0) = 0 and g′′(0) = 16 cos2(w) > 0 .

For the special values w = ±π/2 (corresponding to Lw being the
v−axis), we get g(t) = t4 . This shows that the restriction of f to the
v−axis also has a strict local minimum at p.

The yellow circle in Figure 1 appears as the locus of local max-
ima (on the green ’island’) of g along the straight lines Lw for w ∈
[−π/2, π/2 ]. The blue circle in Figure 1 is correspondingly the locus
of local minima (in the blue ’lagoon’) of g along the lines. Indeed,
g′(t) = 2t(−9t cos(w) + 2t2 + 8 cos2(w)). Thus g′(t) = 0 for t = 0 ,
t = (1/4)(9−√17) cos(w) , and for t = (1/4)(9+

√
17) cos(w) . When

inserted into r(t) this gives the point p and the two circles, respectively.

In particular we note, that the values of f along the blue circle are,
as a function of the direction angle w ∈ [−π/2, π/2 ] from the point p :

h(w) = − cos4(w)(107 + 51
√

17)/32 .

This function is clearly negative, except at p - corresponding to w =
± π/2 - and it is clearly decreasing when w moves away from these
values of w - corresponding to walking (or rather diving) away from p
along the blue circle in Figure 2, as claimed on page 1.
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