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Abstract  

Aim: The rapidly growing industrial and medical use of nanomaterials, especially 

zinc oxide and titanium dioxide, has led to growing concern about their toxicity. 

Accordingly, the intrinsic genotoxic and cytotoxic potential of these nanoparticles 

were evaluated. Materials & Methods: Using a HEp-2 cell line, cytotoxicity was 

tested with the mitochondrial activity and the neutral red uptake assays. The 

genotoxic potential was determined employing the Comet and the cytokinesis-blocked 

micronucleus assays. Additionally, tyrosine phosphorylation events were investigated. 

Results & Conclusion: We found concentration- and time-dependent cytotoxicity 

and an increase in DNA and cytogenetic damage with increasing nanoparticle 

concentrations. Mainly for zinc oxide, genotoxicity was clearly associated with an 

increase in tyrosine phosphorylation. Our results suggest that both types of 

nanoparticles can be genotoxic over a range of concentrations without being cytotoxic. 

 

Keywords: Nanoparticles, zinc oxide, titanium dioxide, cytotoxicity, genotoxicity, 

HEp-2 cells 
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Introduction 

Nanoparticles have become very attractive for commercial and medical products in 

the last decade because of their various properties. Nanoparticles have been widely 

used for manufacturing many consumer products such as electronics, computers, food 

colorants or clothes, arriving on the market at a rate of 3-4 per day [1]. In medical 

fields such as oncology, cardiovascular medicine, molecular diagnostics, drug 

discovery and drug delivery nanoparticles are also increasingly used [2-4]. One of the 

future intended usages of titanium dioxide (TiO2) is for artificial orthopedic implants 

[5]. Most recently, titanium dioxide nanoparticles chemically linked to antibodies via 

bivalent dihydroxybenzene, so-called phototoxic "nanobio hybrids", were used to 

selectively kill glioblastoma multiform brain cancer cells [6]. By conventional 

definition one dimension of nanoparticles has to be < 100 nm, however, due to their 

biological uniqueness not being constrained by this definition the pharmaceutical 

industry uses sizes of 1-1000 nm to describe nanomaterials [7, 8]. Nanoparticle 

properties are rather different from bulk materials and these differences include their 

small size in the nanometer range, a large surface area to volume ratio [9] and unique 

physico-chemical properties. Consequently, nanoparticles can easily pass through cell 

membranes and may show unpredictable toxic effects. The major toxicological 

concern arising from this is that many nanoparticles which cross cell membranes 

become lodged in mitochondria [10] with some of the engineered nanomaterials also 

being redox active [11]. Hence, the increasing applications of nanoparticles in various 

fields may lead to an increase in human exposure which in turn may increase direct 

toxicological effects. Despite apparent advantages of certain nanoparticles and their 

applications, many undesirable side effects of nano-sized particles have been 

documented in previous studies over the last decade [12, 13]. 
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Nanoparticles such as zinc oxide (ZnO) and TiO2 are increasingly used in a variety of 

industrial and medical applications including high-tech materials, plastics, paints and 

production of paper, and also very frequently in cosmetics and sun screens [14]. Zinc 

oxide and TiO2 nanoparticles with sizes between 50–500 nm are employed to increase 

the sun protection factor (SPF) of e.g. sunscreens due to their scattering properties, 

which enables them to act as nano-mirrors reflecting UV light and as UV filters 

against sun radiation. In addition to UV reflection properties, their small size is also 

used as an advantage to improve homogeneity of distribution in cosmetics. However, 

TiO2, in spite of its reflection and scattering properties to UVB and UVA, also 

absorbs about 70% of the total irradiated UV light [15]. 

The cytotoxic effects of TiO2 nanoparticles on human A549 lung epithelial cells were 

accompanied by the active up-take of TiO2 nanoparticles by endocytosis [16]. In 

animals, in vivo studies have also shown that exposure and inhalation of TiO2 

particles can induce cytotoxicity in lung cells with subsequent inflammatory 

responses in lung tissue being directly related to the particle size [17-21]. Garabrant 

and colleagues noted that 17% of the workers exposed to TiO2 were affected by 

pleural diseases, which were proportionate to the duration of work in TiO2 

manufacturing [22]. In vitro studies on human sperm and lymphocytes also showed 

that both nano-sized ZnO and TiO2 (10-100 µg/ml) were genotoxic to both cell types 

within the Comet assay in the absence of toxicity [23], the same was true for bacteria 

and vertebrates [24, 25]. In addition, in vitro studies of ZnO in Chinese hamster ovary 

(CHO) cells and in human epidermal cell lines have revealed clastogenic properties 

[26, 27]. Studies on lymphocytes treated with TiO2 or ZnO nanoparticles showed 

significantly increased DNA breakage and micronucleus formation [23, 28]. Effects 

of TiO2 nanoparticles on non-human mammalian cells were also reported, e.g. 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2636591#b8-ijn-3-533#b8-ijn-3-533�
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2636591#b8-ijn-3-533#b8-ijn-3-533�


 6 

exposure of rat liver cells to TiO2 nanoparticles resulted in cytotoxicity [29]. Titanium 

dioxide also induced apoptosis and micronuclei in Syrian hamster embryo fibroblasts 

[30]. Various nanoparticles have shown some cytotoxicity and/or genotoxicity [14, 

31-34], and different mechanisms of damage induction have been suggested including 

radical oxygen species (ROS) and lipid peroxidation, as well as alteration of signal 

transduction [35], but the exact mechanism(s) has (have) yet to be found. 

 

Signal transduction pathways are important mechanisms through which the cell 

coordinates particular functions. Trans-membrane receptors receive and then deliver 

signals from the extracellular lumen via different mechanisms into the nucleus [36]. 

Tyrosine phosphorylation is the major signaling pathway through which receptor 

tyrosine kinases catalyze the transfer of a phosphate from ATP to the hydroxyl group 

on tyrosine residues of protein substrates in turn mediating cell growth, differentiation, 

host defense, and metabolic regulations [37]. The importance of tyrosine 

phosphorylation events in the presence of toxic nanoparticles was previously reported 

in a study characterizing the anti-bacterial effects of novel silver nanoparticles, which 

were able to penetrate the bacteria and subsequently modulate the phosphotyrosine 

profile [35]. 

 

In this study, we investigated the cytotoxicity and genotoxicity of ZnO and TiO2 

nanoparticles using the human epithelial HEp-2 cell line. We also tried to determine 

the tyrosine phosphorylation events caused by ZnO and TiO2 occurring 

simultaneously independently of cytotoxicity and at the same time as genotoxicity. 
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Material and Methods 

 

Cell culture of the HEp-2 cell line (HeLa derivative) 

HEp-2 cells deriving from human negroid cervix carcinoma were obtained from the 

European collection of cell cultures (ECACC, catalogue No 86030501). Such cells 

have been the mainstay of cancer research for determining the cytotoxic effects of 

different chemicals [38-40]. HEp-2 cells were maintained in continuous culture in 

pre-warmed Eagle's minimal essential medium in Earle’s balanced salt solution 

(EMEM-EBSS) supplemented with 1% non-essential amino acids (NEAA), 2 mM 

glutamine, 10% (v/v) fetal bovine serum (FBS), 100 U/ml penicillin and 100 mg/ml 

streptomycin (P/S) from Gibco, Paisley, UK. The medium was changed every 3-4 

days and the cells were maintained in a humidified atmosphere of 5% CO2 at 37 ºC. 

Cells were passaged upon confluence at a ratio of 1:3. Stocks of cells were routinely 

frozen and stored in liquid nitrogen. 

 

Chemicals 

Zinc oxide nano-powder (ZnO; CAS 1314-13-2), and anatase titanium (IV) oxide 

nano-powder (TiO2, 99.7%, CAS 1317-70-0), low melting-point agarose (LMA), 

normal melting-point agarose (NMA), thiazolyl blue tetrazolium bromide [3-(4,5-

dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, CAS 298-93-1] (MTT) 

dye; neutral red (NRU) dye (CAS 553-24-2); ethidium bromide (EtBr) and Triton X-

100 were purchased from Sigma Aldrich, Poole, Dorset, UK. Phosphate buffered 

saline (Ca2+, Mg2+-free; PBS), Trypan blue dye solution and 10,000 U/ml of trypsin–

EDTA were purchased from Gibco. Acrylamide / bis-acrylamide solution (30%), Bio-

Rad protein assay dye reagent concentrate (CAS 500-0006), buffers, membranes and 
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films were purchased from Bio-Rad, Hertfordshire, UK. Phosphotyrosine mouse 

monoclonal antibody (P-Tyr-100) and anti-mouse IgG-HRP linked antibody were 

purchased from Cell Signalling Technology, Hitchin, Hertfordshire, UK. 

 

Particle preparation and characterization 

Nanoparticles were suspended in 10 ml EMEM-EBBS medium at concentrations of 

10, 20, 50, and 100 μg/ml. Suspensions were probe-sonicated at 30 W for 5 minutes 

on and off, and then allowed to equilibrate for different times: 0, 2, 4, 24, and 48 

hours. The first two times were chosen to look at more immediate effects, the latter 

two time points to evaluated long-term effects. The resulting ZnO and TiO2 

suspensions were measured as a function of incubation time. Prior to evaluation of the 

toxic potential, the mean size (hydrodynamic diameter) of the nanoparticles was 

determined using a high performance particle sizer (Malvern Instruments Ltd., 

Worcestershire, U.K.). Before analysis suspensions were briefly shaken to resemble 

the cell culture incubation conditions. Suspensions were placed in disposable cuvettes 

and three consecutive measurements at 25 ºC each consisting of three runs were 

undertaken. 

 

Mitochondrial activity (MTT) assay 

The MTT assay to evaluate the mitochondrial activity was done according to the 

originally described method [41]. HEp-2 cells were plated in 96-well plates and the 

cell concentration (~1.5x104) was chosen as previously successfully used [42, 43]. 

The cells were incubated for 24 hours at 37° C and 5 % CO2, then incubated for 

different time periods (2, 4, 24 and 48 hours) with ZnO or TiO2 nanoparticles. The 

MTT dye was added 4 h prior to completion of incubation periods. The medium from 



 9 

each well was discarded and resulting formazan crystals were solubilized by adding 

200 μl of dimethylsulphoxide (DMSO) and quantified by measuring absorbance at 

570 nm. 

 

Neutral red uptake (NRU) assay  

The NRU assay was done to determine the accumulation of the neutral red dye in the 

lysosomes of viable, uninjured cells [44].The medium was discarded and 100 μl of 

neutral red dye (50 μg/ml) dissolved in serum free medium was added to each well. 

After incubation at 37 °C for 3 h, cells were washed with PBS and the dye taken up 

by cells was then dissolved in 200 µl of a fixative solution (50% ethanol, 49% ddH2O 

and 1% acetic acid) and added to each well. Absorbance was then taken at 570 nm in 

MRX 11 micro-plate reader (Dynex Technologies, USA), using the software 

Revelation version 4.02. 

 

Cell viability 

Prior to the Comet assay, cells were incubated with ZnO or TiO2 nanoparticles for 4 h 

at different concentrations (10, 20, 50, 100 μg/ml) and assayed for viability using the 

Trypan blue dye exclusion test. The cut-off point was 75% as suggested by Henderson 

and colleagues [45]. 

 

Comet assay 

The sub-confluent monolayer was exposed to four different concentrations of ZnO 

and TiO2, and 2.72 μg/ml (= 8 0 μM) of hydrogen peroxide (H2O2) as a positive 

control. There was also a negative control using untreated cells. After an incubation of 

4 hours, cells were washed with cold PBS and harvested with trypsin-EDTA and 
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followed by a centrifugation at ~180 g for 9 minutes. The pellet was finally 

resuspended in PBS. The Comet slides were prepared by the method as previously 

described [46]. The cell suspension (100 μl) was mixed with 100 μl of 1% LMA, of 

which 100 μl was spread onto microscope slides pre-coated with 1% NMA. The slides 

were kept overnight at 4 °C in freshly prepared, chilled lysis solution (2.5 M NaCl, 

100 mM EDTA, 10 mM Tris, with 1% Triton X-100; pH 10). The slides were 

subjected to freshly prepared cold alkaline electrophoresis buffer (1 mM EDTA 

sodium salt and 300 mM NaOH; pH ≥13) for D NA unwinding, then electrophorized 

for 30 minutes each at 4 °C in electrophoresis buffer. The electrophoresis buffer was 

neutralized with Tris buffer (400 mM, pH 7.4) and stained with 20 μg/ml ethidium 

bromide. Fifty cells from each concentration were scored ‘blindly’ at a final 

magnification of 400x using an image analysis system (Komet 4.0 attached to a 

fluorescence microscope equipped with a CCD camera). The Olive tail moment 

and % tail DNA were used as parameters to measure the DNA damage in each cell. 

Three repeat experiments were carried out over the dose ranges used. 

 

In vitro cytokinesis-blocked micronucleus (CBMN) assay 

The CBMN assay was performed as described previously [47]. HEp-2 cells were 

grown in 6-well cell culture plates suspended in 2 ml EMEM medium at a 

concentration of 1x105. After 24 hours of culture, either the TiO2 nanoparticles (10, 

20 and 50 µg/ml) or ZnO nanoparticles (10, 20, 50 and 100 µg/ml) or mitomycin C 

(positive control; 0.4 µM = 0.134 µg/ml) were added to the cultures. An untreated 

culture served as the negative control. Following 2 hours of incubation, the culture 

medium was removed and the cells were washed with PBS. After the treatment, 7.5 µl 

cytochalasin B (final concentration 0.01 mg/ml) were added to fresh culture medium 
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and incubated overnight. HEp-2 cells were trypsinized and centrifuged at ~180 g for 8 

minutes. The cell pellet was treated with a cold hypotonic solution (70 mM KC1) for 

15 minutes and centrifuged at ~180 g rpm for 8 minutes; then fixed in methanol / 

acetic acid (3:1), and air-dried. Slides were stained with 5% Giemsa for 10 min for the 

detection of micronuclei in binucleated cells. Micronuclei were scored and 

frequencies were evaluated per 1000 binucleated cells. 

 

Detection of tyrosine phosphorylation in HEp-2 cells 

A sub-confluent HEp-2 monolayer was treated with different concentrations (0, 10, 20, 

50 and 100 µg/ml) of ZnO or TiO2 nanoparticles and incubated for 4 hours. Untreated 

cells served as a negative control. After the treatment, the cells were trypsinized and 

suspended in 10 ml PBS and centrifuged at ~180 g for 9 minutes. The HEp-2 cell 

pellet was resuspended in 200 µl PBS and assessed (10 µl) for viability and 

membrane integrity using the Trypan blue dye exclusion test. Ninety microliters of 

cell suspension were added to 10 ml PBS for Western Blotting, while the rest (100 µl) 

was used for the Comet assay. After centrifugation (~180 g for 9 minutes), lysing 

buffer with protease and phosphatase inhibitors was added to the pellet and the 

resulting cell suspension was briefly sonicated (~5 seconds) at 30 W. Protein 

concentrations were determined in each sample using the Bio-Rad assay [48]. The cell 

lysate was suspended in Laemli sample buffer and 35 µg protein from each sample 

was loaded on SDS gel and detected by the immunoblotting technique using a 

phosphotyrosine mouse monoclonal primary antibody (P-Tyr-100) and an anti-mouse 

IgG-HRP linked secondary antibody. 

 

Statistical analysis 
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The means from MTT and NRU data were compared to the means of the negative 

control data using the one-way ANOVA test. A Mann-Whitney U-test was used for 

the Comet assay. For the CBMN assay, the Chi square test and Fishers exact test were 

used to compare the number of MN in the treated samples to the negative control of 

untreated HEp-2 samples. The threshold of significance was p < 0.05. Values at or 

below this were considered significant. 
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Results 

 

Particle characterization 

Dynamic light scattering (DLS) measurements of ZnO and TiO2 nanoparticle 

suspensions were obtained with a high performance particle sizer. Using DLS, 

particle sizes were observed to be widely distributed. The increase in size 

(aggregation) occurred with increasing dose but remained constant over a 48-hour 

period except at higher doses of TiO2 (Table 1). Although the particle size 

considerably increased as a function of concentration was minimally increased as a 

function of time. 

 

(Insert Table 1) 

 

Cytotoxicity 

The MTT assay and the NRU assay 

The results demonstrated a concentration- and time-dependent cytotoxicity as 

measured by optical density (OD) at 570 nm after exposure to ZnO or TiO2 

nanoparticles which was evident for ZnO but not for TiO2 due to precipitation after 

24 h (Figure 1). The percentage (%) cell survival in the MTT assay compared to the 

untreated control was decreased dramatically in 24 and 48 hours in ZnO treated cells 

reaching ~16% at the highest ZnO concentration (100 µg/ml). However, the highest 

concentrations of TiO2 (50 and 100 μg/ml) were precipitated within 24 hours as the 

results for the OD showed higher readings compared to the negative control (> 140%). 
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The NRU assay showed similar results as the MTT assay and demonstrated a 

concentration and time dependent cytotoxicity after exposure to ZnO or TiO2 

nanoparticles for more than 4 hours (Figure 1). 

 

(Insert Figure 1) 

 

Genotoxicity 

Cell viability and membrane integrity 

The cell viability in the Comet assay and immunoblotting assay using the Trypan blue 

dye exclusion assay was between 70-85% for all ZnO and TiO2 samples, with the 

exception of the highest dose of TiO2 (100 µg/ml), which showed 65% viability. All 

doses examined, therefore had high membrane integrity. 

 

DNA damage 

The parameters of Olive tail moment (OTM) and % tail DNA indicated significant 

(p < 0.05) dose-related DNA damage in HEp-2 cells. Exposure for 4 h to different 

concentrations of ZnO or TiO2 nanoparticles showed a 3-fold increase for ZnO and a 

2-fold increase for TiO2 in DNA damage compared to the negative control of 

untreated HEp-2 cells. However, for the lowest ZnO dose the induced damage, 

measured in % tail DNA, did not reach significance levels, but did for the OTM (see 

Table 2 and Figure 2). 

 

(Insert Figure 2 and Table 2) 

 

In vitro CBMN assay 
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We observed the formation of MN after treatment with different ZnO (0, 10, 20, 50, 

and 100 µg/ml) and TiO2 concentrations (0, 10, 20, and 50 µg/ml) for 2 hr (Table 3). 

The Chi-squared analysis of the MN frequencies from HEp-2 cells exposed to 

different ZnO and TiO2 concentrations revealed a significant increase in induced MN 

treated with high concentrations of ZnO (50 and 100 μg/ml) or TiO2 (50 μg/ml) 

compared to the untreated cell control (p < 0.05). However, lower concentrations (<50 

μg/ml) of either ZnO or TiO2 did not induce significant alterations in MN induction. 

The MN frequency increased with ZnO concentration in a specific dose-dependent 

manner (p < 0.05, Chi-squared test) from an average frequency of 11 MN per 1000 

binucleated cells in the control to 28 MN per 1,000 binucleated cells at 100 µg/ml. 

For TiO2, the MN frequencies increased in a similar way reaching 31 MN per 1000 

binucleated cells at a dose of 50 µg/ml. 

 

(Insert Table 3) 

 

Tyrosine phosphorylation 

HEp-2 cells were challenged with different concentrations of ZnO (0, 10, 20, 50, and 

100 μg/ml) and TiO2 (0, 10, 20, and 50 μg/ml) for 4 h, and phosphotyrosine 

expression was analyzed by Western blotting analysis. The level of tyrosine 

phosphorylation was up-regulated by ZnO nanoparticles, which induced an increase 

in phosphorylation of tyrosine residues on 20, 21-22, 25, 30, and ~80 kDa proteins 

(Figures 3). Less effect was seen with TiO2 inducing a fainter effect at 20, 21-22, 25, 

and 30 kDa at the highest dose; however, no effect was observed at ~80 kDa. 

 

(Insert Figure 3) 
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Discussion 

 

Many toxicological studies over the past years have raised concerns regarding the 

safety of nanoparticles as they readily generate oxidative stress through reactive 

oxygen species (ROS). A strong link between nanoparticles and oxidative stress via 

ROS has been documented [49, 50]. Many investigators have shown that ROS play a 

major role in nanoparticle-induced DNA damage [51]. However, detailed molecular 

mechanisms involved in the cellular responses to genotoxic effects are not yet fully 

understood. Oxygen radicals can cause single and double strand breaks. Damaging the 

DNA sugar-phosphate backbone or the bases may then lead to acute DNA damage, 

which triggers cell cycle arrest and leads to prolonged repair time or cell death [52]. 

Accumulation of mutations which are caused by excessive or incomplete DNA repair 

is a known cause of oncogenesis [53]. Morz and colleagues found that nanoparticles 

produced an effect similar to irradiation by inducing carcinogenesis pathways through 

ROS-induced DNA damage, as well as activating p53 and proteins related to DNA 

repair [54]. The DNA damage may be either primary as a direct effect of the 

nanoparticles or a secondary effect due to generated ROS [55]. Accordingly, ROS 

may be one of the possible modes suggested for ZnO and TiO2 induced DNA damage. 

Oxidative stress is now considered a major cellular signaling regulator and it was 

suggested that genotoxicity mediated by ROS could be further linked to other 

pathways [55]; therefore, we investigated the tyrosine phosphorylation pathway 

additionally to the induction of DNA damage. 

 

In view of the importance of tyrosine kinase activity in the control of cell function and 

the importance of redox mechanisms in regulating the phosphorylation by tyrosine 
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kinases, it was of interest to determine whether the functional changes induced by 

altering the redox status of HEp-2 cells were associated with changes in the pattern of 

tyrosine phosphorylation. The immunoblotting analyses of HEp-2 cells cultured and 

treated with ZnO for 4 hours, then using a monoclonal anti-phosphotyrosine antibody, 

revealed heavily phosphorylated tyrosine residues on a protein with a molecular mass 

of 20 kDa (Figure 3). Also bands at 25 and 30 kDa showed phosphorylation of 

tyrosine residues. A diffuse band of immuno-reactive material could also frequently 

be observed migrating in advance of this protein with a molecular mass of 21-22 kDa.  

This could be highly significant as a correlation was previously found between cell 

transformation and the tyrosine phosphorylation of 22-kDa protein [56]. In addition, 

previous studies showed, that dysregulation of protein tyrosine phosphorylation is 

crucial for cell signaling maintenance with subsequent cell proliferation and the early 

stages of neoplasia [57, 58]. Stimulation of HEp-2 cells with ZnO was also associated 

with a dramatic enhancement in the intensity of phosphotyrosyl proteins. The increase 

in a 20 kDa protein tyrosine phosphorylation induced by ZnO was observed over the 

whole range of concentrations (10-100 µg/ml). Zinc oxide nanoparticles at a dose of 

100 µg/ml additionally had a stimulatory effect on tyrosine phosphorylation of an ~80 

kDa protein (Figure 3). The same dose gave a significant 3-fold increase in the Olive 

tail moment and % tail DNA in the Comet assay when compared to the untreated 

control (Table 2). On the other hand, TiO2 produced fainter bands at 20 kDa and only 

for the 50 µg/ml treatment dose phosphorylation at 21-22, 25, and 30 kDa (Figure 3). 

No effect was seen at ~80 kDa for TiO2. As a result, tyrosine phosphorylation may 

have contributed to the genotoxicity of ZnO but less to TiO2 genotoxicity. 
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We examined the consequences of genotoxic injury to HEp-2 cells by ZnO and TiO2 

to elaborate the signaling events that modulate cell survival after genotoxic exposure. 

Previous studies on HeLa cells showed activation of Cdk1 as a result of etoposide 

treatment lead to cell cycle checkpoint override with subsequent cell death [59]. In in-

vitro studies on human U937 monocytes nano-cobalt increased the transcription of 

matrix metalloproteinases (MMP-2 and MMP-9) and protein tyrosine kinase (PTK) 

signaling pathways were involved through oxidative stress [60]. Previous studies also 

found that sodium vanadate induced protein tyrosine phosphatase (PTP) inhibition. 

This resulted in a bypass of growth arrest that occurred as the result of genotoxic 

exposure which indicates a role for tyrosine phosphorylation in the regulation of cell 

survival [61]. PTP inhibition was also previously reported in primary mammary 

epithelial cells which enhanced cell survival by decreasing apoptosis [62]. 

 

In our study, cytotoxic and genotoxic effects of ZnO and TiO2 were tested in HEp-2 

cells. Cytotoxicity was measured using the MTT and NRU assays; genotoxicity was 

assessed by the Comet and CBMN assays to measure the DNA damaging and 

genotoxic potential. Our data showed a cytotoxic effect of ZnO in mitochondrial 

activity (MTT assay) and the ability of lysosomes to retain neutral red stain (NRU 

assay) in HEp-2 cells after treatment for 24 and 48 hours with different ZnO 

concentrations with the exception of the lowest dose (10 µg/ml) which showed no 

cytotoxicity even after 48 hours treatment (Figure 1, Table 1 and 2). The treatment 

times used for cell cultures extended well beyond the 4 h treatment times used for the 

Comet assay. On the other hand, 100 µg/ml of TiO2 proved to be significantly toxic 

after 2 hours on HEp-2 cells (Figure 1). For both doses, 50 and 100 µg/ml, TiO2 

precipitated in the wells after 24 hours. Hence, treated cells showed an OD which 
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was > 140% when compared to the untreated control in the MTT and NRU assays. 

The TiO2 concentration of 20 µg/ml was cytotoxic to the cells in both assays to 

different extents in 24 h treatment assays.  

 

Aggregation of nanoparticles observed in our study has been reported previously for 

TiO2 [63] as well as for ZnO [64] and is considered as an inherent property of 

uncoated oxide nanoparticles which occur in aqueous conditions from distilled water 

to complex biological media. Although, previous studies have shown that the particle 

solubility of a range of metal oxide nanoparticles like ZnO with release of free 

hydrated zinc ions (Zn2+) strongly influenced cytotoxicity compared to extremely less 

soluble metal oxides like TiO2 [65-67]. In our study, as the particle size increased 

with the concentration, the aggregation did not change over a time period of up to 48 

hours for ZnO and 24 hours for TiO2. Despite increasing in size our particles stayed 

well below the pharmaceutical size definition for nanoparticles [7, 8]. For the 

phosphorylation studies, exposure was only 4 hours for both nanoparticle compounds. 

Therefore, we assumed that the rate and quantities of dissolution was either negligible 

or of little significance for our experiments.  

 

Our results demonstrated the DNA damaging potential of different concentrations of 

ZnO or TiO2 with significant increases in the tail moment and % tail DNA in the 

Comet assays (3-fold for ZnO) at the highest dose and (2-fold for TiO2) at the highest 

dose compared to untreated control (Figure 2). The DNA damaging and mutagenic 

potential of ZnO or TiO2 at various concentrations was also seen for the CBMN 

assays. Our result regarding the genotoxic potential of ZnO or TiO2 is supported by a 

previous studies conducted by Gopalan and colleagues [23], which showed a 
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concentration-related increase in Olive tail moment in lymphocytes and sperm. Also, 

an increase in chromosome aberrations in CHO cells treated with ZnO has been 

previously reported [26]. PTP inhibition [61] or increased transcription of matrix 

metalloproteinases (MMP-2 and MMP-9) and PTK signaling pathways [60] could 

explain our findings of increased tyrosine phosphorylation as the result of genotoxic 

insult of ZnO and the highest concentration of TiO2. 
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Conclusions 

 

The present investigation conclusively provides further evidence for the genotoxic 

effect of ZnO and TiO2 nanoparticles in both the Comet assay and the micronucleus 

assay with induction of chromosomal damage at high, but non-cytotoxic (according to 

Trypan blue exclusion) concentrations of ZnO (50 and 100 µg/ml) and TiO2 (50 

µg/ml). It also provides evidence of significantly increased chromosomal mutations at 

the highest concentrations which showed no cytotoxic effects in the NRU and MTT 

assays. Furthermore, ZnO increased tyrosine phosphorylation of five proteins at 20, 

21-22, 25, 30, and ~80 kDa with less effect of TiO2 which showed increased 

phosphorylation compared to the negative control at 20, 21-22, 25, and 30 kDa for the 

highest dose but not at ~80 kDa. Thus, tyrosine phosphorylation is modified by both 

ZnO and TiO2 while causing genotoxic damage seen for two different end points in 

the Comet and CBMN assays in the absence of cytotoxicity. 
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Future perspectives 

 

Nanotechnology holds great promises for medicine, manufacturing and for the 

environment including efficient water purification and removal of toxic waste. 

Currently, nanoparticles like ZnO and TiO2 are already widely used in many 

consumer products. The variety of applications ranges from using nanoparticles 

within sunscreens, pigments, tooth pastes, antiseptic coatings, paints and the coating 

of spectacles to make them unbreakable and scratchproof. As a result, the evaluation 

of the toxic potential of nanoparticles within their substrate is imperative. However, in 

many cases detailed toxicological evaluation of nanoparticles including their 

genotoxic assessment is lagging behind the technological application of medical and 

consumer nano-products. Thus, in the very near future the focus will shift from 

nanotechnology towards nanotoxicology. Recent studies and our study have shown 

that under certain conditions nanoparticles can increase genotoxic damage within cells 

and potentially lead to adverse effects. 
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Executive summary 

 

• Cytotoxicity of ZnO  

The mitochondria and lysosome activity tests (MTT assay and NRU) indicated 

cytotoxicity of ZnO to HEp-2 cells treated beyond 4 h reaching cell survival of < 16% 

after 48 hours.  

• Cytotoxicity of TiO2 

The highest TiO2 concentration (100 µg/ml) was cytotoxic to HEp-2 cells in less than 

2 hours. 

• Genotoxicity of ZnO  

Genotoxicity of ZnO in HEp-2 cells was seen within the Comet assay showing a 3-

fold increase in DNA damage. For the CBMN assay, an increase in the formation of 

micronuclei was found after treatment with different concentrations ZnO. 

• Genotoxicity of TiO2  

The genotoxic potential of TiO2 in HEp-2 cells was confirmed in both cytogenetic 

assays, for the Comet assay showing a 2-fold increase in DNA damage after treatment 

and for the CBMN assay revealing a dose-dependent increase in MN formation. 

• Tyrosine phosphorylation of HEp-2 cells treated with ZnO 

The level of tyrosine phosphorylation was up-regulated after exposure to ZnO 

nanoparticles, significantly increasing phosphorylation events of tyrosine residues on 

20 kDa, 21-22 kDa, 25 kDa, 30 kDa, and 80 kDa proteins. 

• Tyrosine phosphorylation of HEp-2 cells treated with TiO2 

TiO2 showed less effect on tyrosine phosphorylation at the higher doses. There was 

some effect on 21-22, 25, and 30 kDa proteins but not at ~80 kDa.  
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Figure legends  

 

Figure 1: 

Cytotoxicity of ZnO (upper two graphs) and TiO2 (lower two graphs) nanoparticles on 

human HEp-2 cells treated for different times for ZnO (2, 4, 24, and 48 hours) and  

for TiO2 (2, 4, and 24 hours), was measured using the MTT and the NRU assays. 

The % cell survival compared to the negative control of untreated HEp-2 cells was 

evaluated for different concentrations of ZnO and TiO2 nanoparticles. The values 

represent the mean of three separate experiments. 

 

Figure 2: 

The effect of TiO2 or ZnO nanoparticle exposure is shown on DNA damage in HEp-2 

cells as measured by the Comet assay. Cells were exposed to TiO2 or ZnO at 

concentrations of 0, 10, 20, 50, and 100 μg/ml for 4 hours. The positive control was 

treated with 2.72 μg/ml H2O2 also for 4 hours (significance values are shown in Table 

2). The values represent the mean of three separate experiments. 

 

Figure 3: 

Effects of ZnO and TiO2 on HEp-2 receptor signaling are shown. An increase in 

phosphorylation of tyrosine residues can be seen in a Western blot of equal amounts 

of total proteins (Bio-Rad method) from HEp-2 cells treated for 4 h with different 

concentrations 10, 20, and 50 µg/ml as well as 100 µg/ml (only for ZnO). Untreated 

HEp-2 cells served as a negative control (Con). Panel A illustrates for ZnO that all 

bands at all doses are phosphorylated at 20 and 21-22 kDa, but also at 25 and 30 kDa 

and to some extent at ~80 kDa. For TiO2, there is less of an effect at the three doses 
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examined at 20 and 21-22 kDa. Also at 25 kDa was some small increase above 

control values at 20 and 50 µg/ml and at 30 kDa at 50 µg/ml. There was no increase 

in phosphorylation found for TiO2 at ~80 kDa. The values represent the mean of three 

separate experiments. Panel B shows as an example the effect of GAPDH as an 

internal control seen alongside ZnO at 50 and 100 µg/ml to confirm equal protein 

loading. 
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