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Ryvangs Allé 1, DK-2100 Copenhagen O
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1 Introduction

In the MRS radar system at the DDRE there has been a need to perform a rough range
tracking of ships or aircrafts. The purpose is to enable automatic setting of the active
range gate in which data is recorded. Two steps are involved. First a range of the possibly
extended object has to be defined. Secondly the track has to determined.

2 Range

The range to a target is calculated as the amplitude-squared-weighted sum of the ranges
within the open range gate. (This results in flat apparatus noise.) The sums needed to
calculate the amplitude-squared weighted range are

C0(r, t) =
r+s−1∑
r′=r

|A(r′, t)|2 (1)

C1(r, t) =
r+s−1∑
r′=r

|A(r′, t)|2 r′ ∆r (2)

where r is the first active bin, s is the number of active bins, and ∆r is the size of each
active range bin. We allow for an optional subtraction of the local or global background.
The local background sums are calculated in the immediate neighbourhood of the active
bin as

B0(r, t) =
1

2

 r−1∑
r′=r−s

|A(r′, t)|2 +
r+2s−1∑
r′=r+s

|A(r′, t)|2
 (3)

B1(r, t) =
1

2

 r−1∑
r′=r−s

|A(r′, t)|2 r′ ∆r +
r+2s−1∑
r′=r+s

|A(r′, t)|2 r′ ∆r

 (4)
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The resulting local-background-subtracted sums are then

S0(r, t) = C0(r, t) − B0(r, t) (5)

S1(r, t) = C1(r, t) − B1(r, t) . (6)

The range, rmax, which maximizes S0(r, t) is selected and the range calculated as

R(t) =
S1(rmax, t)

S0(rmax, t)
. (7)

In the implementation we allow for a threshold to be applied to S0(rmax, t). If rejected, the
previous range is reused.

3 Moving average

A simple exponentially damped moving average filter is implemented as a means of smooth-
ing the observed track. The latest estimate of the position is then used as a “prediction”
of the next center of the range gate.

Let R(t) be the measured range at time step t. The filter is simply

RS(t) = αRS(t − 1) + (1 − α)R(t) (8)

= (1 − α)
∞∑

τ=0

ατR(t − τ) (9)

where α is a constant close to 1. The damping factor α is related to the characteristic time
τ in the exponential damping and the time resolution ∆t by

α = exp (−∆t/τ). (10)

Finally, we allow for a velocity cut on RS(t).
The “prediction” is taken simply as RS shifted

RT (t) = RS(t − tpred). (11)

For prediction times as small as 0.1 s there is no call for more advanced predictors than
the exponentially damped tracks. For larger prediction times one could consider e. g. the
Kalman filter described in [1].

4 Results

In figures 1-3 examples of detected ranges and exponentially damped tracks are shown for
an aircraft moving at 150m/s and a ship moving at 2.5m/s. The simple method described
in the above clearly solves the “tracking” problem.
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Figure 1: Aircraft. Top: Raw data. Bottom, red: Range detected in a 24m window without
background subtraction. (Cross section threshold 0.1 m2.) Bottom, blue: Exponentially damped
“prediction” with 0.5 s memory, 200 m/s velocity constraint, and shifted 0.1 s.
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Figure 2: Aircraft. Top: Raw data. Bottom, red: Range detected in a 24 m window with local
background subtraction. (Cross section threshold 0.1 m2.) Bottom, blue: Exponentially damped
“prediction” with 0.5 s memory, 200 m/s velocity constraint, and shifted 0.1 s.
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Figure 3: Absalon. Top: Raw data. Bottom, red: Range detected in a 100m window without
background subtraction. (Cross section threshold 300 m2.) Bottom, blue: Exponentially damped
“prediction” with 3 s memory, 3m/s velocity constraint, and shifted 0.1 s.
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