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1 Introduction

This report describes prototype software for sidescan sonar image segmentation developed for
the Danish Naval Material Command by the DDRE.

The aim is to produce maps of seafloor types from the sidescan sonar images. These maps
can then be used for planning military and mine hunting operations. The current version of
the software should enable the Naval Material Command to judge whether such a tool would
be of value to the Navy.

First an executive summary describing the results of the seafloor type segmentation is given.
This is meant for the general reader as a non-technical self-contained description of the algo-
rithm.

Secondly, sections describing mathematical details of the algorithm are given. Even in these
sections we shall attempt to explain the algorithms in plain language, yet writing some formulae
to support whom they may help.

Finally appendices describing details of mathematical methods. Further methods that were
tested during the development without being applied in the final version of the program are
described here.

2 Executive summary

In sidescan sonar images sand ripples are formed at short scale but constitute textures at
large scale; trawl tracks form textures at large scale only, flat sand forms large scale textures
from small scale characteristics, vegetation can do either of the previous. In order to make a
good textural separation between regions of the images we must therefore analyse the image
“simultaneously” at many scales.

Using sidescan for type-classifying seafloor is a special case of texture classification. The
general texture classification problem is as yet unsolved. One of the main problems in texture
segmentation is caused by the many scales involved in the problem.

In spite of these problems, we show that for some seafloor types, reasonable segmentation
results can be obtained.

Figure 1: Sample sidescan sonar image provided by the Danish Navy shown in slant range. Actually
two images, left and right relative to the tow-fish carrying the sidescan sonar, are shown. The details
of the image resolution and specifics on the sonar type are not reported here, but the resolution is of
order 10 cm. All images analysed in this report have this format.
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2.1 Seafloor types

The initial intention was to make an algorithm that could classify any type of seafloor present
around Denmark. However, this turned out to be too ambitious. First of all we have found it
very hard to distinguish some types of vegetation from e. g. mud using sidescan sonar images.
This is hard, even to the skilled operator: the information is probably not there in the images.
(Sometimes vegetation can be identified from the shadows they cast where they meet flat sand.
Otherwise it can be impossible to distinguish vegetation from mud.) Secondly, if we were to
do such a segmentation, we would need reliable ground truth data, for example from video or
diver inspection of the seafloor.

Instead we have focussed on producing good results on a few types of seafloor that we can
be sure of: Flat sand, sand ripples, scattered stones, and trawl tracks. Types that are not
identified in the current version of the software are: vegetation, mud, and gravel: they all end
up in the “unknown” type. Examples of the different seafloor types are shown in figure 2 and
examples containing elements of unknown type are shown in figure 3.

2.1.1 Flat sand bed

Flat seafloor simply consisting of plain sand grains. Not very soft. Characteristics: Uniform
gray, almost no variation in the picture. Occurs when there is only very little water current or
when the currents are too high for sand ripples to form.

Figure 2: Examples of the different seafloor types classified. Top left to bottom right: Flat Sand Bed,
Short Ripples, Long Ripples, Scattered Stones and two different kinds of trawl tracks.
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2.1.2 Sand ripples

Sand ripples occur where the seafloor consists of freely moving sand grains and as the water flows
at intermediate, possibly oscillatory, currents. Characteristics: parallel ripples perpendicular
to the current. Wavelength from a few cm to many meters.

2.1.3 Scattered stones

“Scatterede stones” are defined as flat sand with small and intermediate sized scattered stones.
The objects are recognised as consisting of a highlight and a shadow zone behind it. However,
the highlight is not always present. Characteristics: stone sizes vary, but we look for stones
typically of the order 10 × 10 pixels. The density of stones required for the region to be
considered as scattered stones is of order 1.5 in a region of 100× 100 pixels.

2.1.4 Trawl tracks

In large regions the seafloor around Denmark is covered with trawl tracks. If currents are low,
they can stay there for months or even years. They are characterised by long almost straight
lines on an otherwise flat seafloor. If they are on soft sand/mud the background can be quite
dark. If on larger-grain sand the background is uniform gray. In either case, a newly formed
trawl track shows up as a dark straight line.

Figure 3: Examples of sea floor containing regions which cannot directly be classified into one of the
categories flat sand, sand ripples, scattered stones, or trawl tracks.
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Figure 4: Flowchart of the algorithm.

2.1.5 Unknown type

If an area cannot be classified into one of the types described above, we denote it as unknown.
This is due to the fact, that we have not yet been able to develop methods that with satisfactory
confidence detects them. Types of seafloor falling into this category include e.g., mud, seaweed,
gravel and larger shadows. Characteristics: Dark areas. Often containing irregular patterns.

2.2 Algorithm

There are two major steps in our classification algorithm.

Feature calculation: The first processing of the sidescan sonar images is the feature calcu-
lation. These features include e.g. mean or variance of gray scale values in a area around
a pixel. The result of the feature calculation is feature vectors, one vector per pixel of the
original image.

Feature classification: Sequentially we then ask whether a feature (or a few features)
provide evidence for a pixel belonging to a particular type of seafloor.

Figure 5: Left: Example of sidescan sonar image with ripples. Right: Classified image with ripples
(gray).
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Our classification scheme is based on local features calculated from sonar images. The
features are calculated as a statistics in the neighbourhood of a point in the image. The size of
neighbourhood varies, and in the case of the trawl track detector the neighbourhood it is quite
large.

Our approach is to calculate dedicated features designed to detect specifically the types of
seafloor present around Denmark. The seafloor types for which we have been able to make good
detectors for are those shown in figure 2, i. e. flat sand, short sand ripples, long sand ripples,
scattered stones, and trawl tracks. Below we briefly describe the detectors for each of these
types, and show examples of segmentation. A more technical description of the features can

Figure 6: TL: Example of sidescan sonar image with flat sand and some scattered stones. TR: Local
variance of image. BL: Detected shadows of stones. BR: Classified image with flat sand (white),
scattered stones (red), and unknown (black).
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be found in section 3.1. (A different approach, where features are picked from a large set of
wavelet coefficients, has been developed by Grasso and Spina [3].)

The segmentation which follows the feature calculation is performed using simple thresh-
olding on most of the features. In fact, a 2-d thresholding in a combination of gray-level and
type-specific features is used for all features but the trawl tracks. This is a particularly simple
version of more general cluster analysis which shall be discussed in appendix D.

Figure 7: TL: Example of sidescan sonar image with flat sand and a small region with sand ripples.
TR: Short wavelength ripple detector output. BL: Flat seafloor detector, i. e. local variance of image.
BR: Classified image with flat sand (white), ripples (gray), and unknown (black). At the edge of the
sand ripples erroneously detected scattered stones (red) are seen.
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2.2.1 Flat sand detector

Flat sand is detected by the simplest detector of all: a threshold on the local variance of the
image in combination with a threshold on the local average gray value. In figure 6 a sidescan
sonar image with some flat sand regions is shown.

2.2.2 Sand ripple detection

Sand ripples are detected using a dedicated symmetry-detector. This detector measures the
local symmetry of the slopes of the gray-level. If the slopes locally are strongly symmetric the

Figure 8: TL: Example of sidescan sonar image with flat sand and some scattered stones. TR: Local
variance of image. BL: Detected stones. BR: Classified image with flat sand (white), scattered stones
(red), and unknown (black).
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sand ripple type is assigned. Examples of detected ripples are shown in figures 5 and 7.

2.2.3 Scattered stones detection

Stones are detected using using only the shadow they cast. First an algorithm enhancing
connected dark regions is applied to the image. This image is then thresholded and searched
for connected regions. All connected shadow regions within a specified size are then assumed
to be cast by stones. Finally the density of stones is calculated locally. If the resulting density
is above a threshold the type “scattered stones” is assigned. An example with scattered stones
and flat sand is shown in figure 6.

2.2.4 Trawl track detection

Trawl tracks are identified in the sidescan sonar images as long dark straight lines. When both
long lines are sufficiently dark and a specified fraction of shorter lines constituting the long lines
are dark, the trawl track type is assigned to a band around the trawl track. An example with
detected trawl tracks is shown in figure 10.

2.3 Classifier

Once the features are calculated at all pixels, the seafloor is classified using a simple threshold
classifier. Two sets of thresholds are specified for each type: an allowed range for the specific
feature detector, and an allowed range for the locally averaged gray level.

The classification is done in a specific order: 1) trawl track with high confidence, 2) long
wavelength sand ripples, 3) intermediate wavelength sand ripples, 4) short range sand ripples,
5) flat sand, 6) scattered stones, 7) trawl tracks with lower confidence. This means that the

Figure 9: TL: Example of sidescan sonar image with scattered stones. TR: Detected shadows of
stones. BL: Local density of stones. BR: Classified image with scattered stone region marked red.
(The white regions have been detected as flat sand. The gray regions have erroneously been detected
as sand ripples.)
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former have priority over the latter in the classification reflecting the ranking of confidence in
the type assignments.

2.4 Overview maps

The individual classified small sections of sidescan sonar images are not of much help to the
operator who may be in the process of planning a minesweeping operation. He would rather
be requesting an overview at a much larger scale. An example of such a large-scale overview is
shown in figure 11.

It is our feeling that such overviews could be of interest to the military planner. The aim
of the present report is therefore to provide the reader with the impression, that reasonable
quality overview maps are within reach. Yet, not give him the impression that all problems are
solved.

2.5 Discussion and relation to other work

The approach to seafloor segmentation presented in this report differs from those found in the
literature in that we use dedicated detectors selected by hand for each seafloor type. This
has the disadvantage of not being adaptive. On the other hand we have been able to make
good detectors of e. g. scattered stones and trawl tracks. Both types are important around
Denmark, the former because stones often are minelike, the latter because trawl tracks cover a
large fraction of the seafloor.

Both scattered stones and trawl tracks would be very hard to grasp within a framework of
conventional image analysis tools like Fourier analysis, wavelet analysis, or statistical distribu-
tion analysis (see e. g. Grasso and Spina [3]).

Probably, a combined approach could be fruitful.

Figure 10: TL: Example of sidescan sonar image with trawl tracks. TR: Raw, minimised “Radon”
integrals. BL: Background subtracted “Radon” integrals. BR: Classified image with trawl regions
marked blue.
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2.6 Recommendations

We suggest that the Danish Navy Material Command, SMK, consider seafloor classification
algorithms for inclusion in a more general sidescan sonar analysis and presentation tool. The
present report gives a flavour of what can be done along the directions of automatic classification
of large areas of seafloor: At the 50-100m scale very useful maps of seafloor types can be
generated. At scale below 10m there are significant uncertainties in the sidescan sonar image
segmentation.

Figure 11: Example of large segmented area. The seafloor classifier does a reasonable job in identifying
regions with flat sand (white) and scattered stones (red).
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3 Details of algorithm

3.1 Feature selection

A crucial point in the seafloor classification is the selection of a proper set of features. Several
issues have to be taken into consideration. First, we want to have as few different features as
possible, since the number of calculations needed for a classification grows with the number of
features. Further, introducing redundant or irrelevant features introduces both statistical and
systematic noise to the decision making. Secondly, we need to have enough features to be able
to see a difference between the different seafloor types. As a rule of thumb we need a number
of features equal to the number of seafloor types that we are interested in.

The feature selection is actually the most important step in the whole process. Finding
good features for our special purpose involved close examination of the data. It turned out,
that for each of the seafloor types under consideration, we were able to find a feature, that
could distinguish that seafloor type from the rest.

All features are calculated setting options in the program feature.cpp. A listing of the
options are presented in appendix E.1.

3.1.1 Flat sand detection

Flat sand detection is performed by gating the mean gray value and thresholding the standard
deviation. More specifically: First the image u(x, y) is pre-smoothed by folding with a Gaussian
kernel to ignore fluctuation below scale σ

v = 〈u〉σ = Kσ ∗ u. (1)

Then the mean value at scale ρ is calculated

umean = 〈v〉ρ. (2)

(Really, this is just the average at a slightly larger scale
√

σ2 + ρ2.) Finally the fluctuation of
the pre-smoothed image is calculated at scale ρ

fflat = (〈(v − umean)
2〉ρ)

1
2 . (3)

This used as the primary detector of flat sand. Figure 12:TL shows that this is reasonable,
since fflat separates flat well from other seafloor types. The selection of the presmoothing scale
σ and the fluctuation scale ρ was done such as to optimize the separation between flat sand
and other seafloor types.

3.1.2 Scattered stone detection

A single stone, large enough to be detected, is seen in a sidescan sonar image as a black shadow.
Sometimes, but not always, there is also a highlight coming from the bit of the stone pointing
perpendicular to sonar beam. The slant-range width wslant of the shadow can be translated into
a height of the stone using

h =
d

s
wslant (4)

where d is the distance from the sonar to the seafloor and s is the current slant range. The
along-track dimension of the shadow may be directly interpreted as the size of the stone along
that direction.
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In order to make a clear detection of the individual stones we first enhance the dark regions
over the lighter using a moment-filter

ushade = (〈(〈u〉σ)m〉ρ)1/m. (5)

In order to enhance the lower gray-values a moment of order less than unity is used. A few
experiments led us to chose m = 0.2. In words: the image is pre-smoothed at scale σ, then
lifted to power m, and finally smoothed at scale ρ. As with all other features the scale selection
contained in choosing the parameters σ and ρ is crucial to the performance of the filter.

The image ushade obtained using equation 5 is then thresholded resulting in an image of
shadows. Finally the height and along-path size of each stone is thresholded, and the centre of
mass of each valid stone is kept. If the density of valid stones is above a second threshold, the
region is assigned the type “scattered stones”.
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Figure 12: TL: Distribution of local variance of gray value with scale parameters σ = 4 and ρ = 24.
(Flat sand detector.) TR: Distribution of local average at scale 24. This feature is included in order
to avoid very dark regions typically from mud or larger shadow areas. Note that the trawl data has
two peaks coming from trawl tracks on silt (dark) and sand (lighter) respectively. BL: Distribution
of sand ripple detector Σ2 with scale parameters σ = 2 and ρ = 12. BR: Distribution of sand ripple
detector Σ2 with scale parameters σ = 8 and ρ = 24.
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Figure 13: TL: Sidescan sonar image from the North Sea with sand ripples and some mud/vegetation.
TR: The gradient energy Λ0 with σ = 2 and ρ = 12 applied to the sidescan image. BL: The ripple
detector Σ2 with σ = 2 and ρ = 12. BR: Classified image with sand ripples (gray) and erroneously
detected as scattered stones (red).

3.1.3 Sand ripple detection

Even though sand ripples are characterised by a large degree of periodicity we have found that
Fourier methods are not the most efficient way of detecting them. Instead we have developed
a dedicated filter which is described in detail in references [1, 6]. The detector measures the
symmetry of the gradient field of the sand ripples

~v = ∇〈u〉σ. (6)

The gradient vector of the pre-smoothed field is then written in the complex plane as

v = ∇〈u〉σ = vx + i vy = ve i ϕ. (7)

We calculate the gradient in the x-direction using the optimised 3× 3 filter [7] −3/16 0 3/16
−10/16 0 10/16
−3/16 0 3/16

 (8)

and similarly for the y-component.
By coupling v to itself we may construct objects which are invariant under a rotation of π.

vv and vv span the full space of such vector couplings. (Here v is the complex conjugate of
v.) These objects are now averaged locally to form measures of symmetry

Λ0 = 〈vv〉ρ = 〈v2〉ρ (9)

and
Λ2 = Λ2 ei2ϕ2 = 〈vv〉ρ = 〈v2ei2ϕ〉ρ. (10)
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In order to avoid an oscillating symmetry signal, the scale ρ should be larger than the scale of
the structures of interest. The dominant orientation is then given by the angle ϕ2. Note that
the phase of Λ2 is two times ϕ2.

A natural normalised measure of the strength of the 2nd order symmetry is then the ratio

Σ2 =
Λ2

Λ0

(11)

with values in the interval [0; 1]. This is identical to the orientation measure given by Bigun et
al [2].

The gradient energy Λ0 may be seen as a measure of strength of the gradient field, while Σ2

measures how much of the strength comes from line structures.
In figure 13 we show an example of the gradient energy Λ0 and the 2nd order detector Σ2

applied to a sidescan sonar image of seafloor partially covered with sand ripples. In combination,
the detectors show remarkable ability to separate sand ripples from other textures in the image.

3.1.4 Trawl track detection

Trawl tracks are seen in the sidescan sonar images as broad dark lines. In ground coordinates
the line is typically straight on a 100m scale.

In order to detect the long dark lines we calculate the integrals along lines in all directions
passing through a pixel. Apart from the fact that we only integrate up to a finite length, this is
similar to a Radon transform. In order to speed up the calculation of the line integrals passing
through a point we use a method inspired by Jang et al [4]: First short integrals are calculated
in low angular resolution. Then the length is doubled and the angular resolution likewise, and
the new integrals are calculated as a sum of two half-length integrals.

Once the integrals in all pixels at the desired angular resolution are calculated, background
subtracted integrals can be calculated by subtracting the integrals parallel to the current one.

The minimal background subtracted integral is now found and thresholded. If below thresh-
old, the non-background-subtracted integral at the same angle is also thresholded.

Finally, a user-specified fraction of the original-length background-subtracted integrals at
the same angle are required to satisfy the threshold.

An example of the resulting classification is shown in figure 10.

3.2 Classification

After the calculation of features, classes are assigned using a simple threshold classifier. All but
the trawl type are assigned using the type detector in combination with a thresholding on the
local average. As mentioned earlier the classification is performed in a specific order

1. trawl track with high confidence,

2. long wavelength sand ripples,

3. intermediate wavelength sand ripples,

4. short range sand ripples,

5. flat sand,

6. scattered stones,
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Figure 14: Flowchart of the implementations.

7. trawl tracks with lower confidence.

All thresholds are set conservatively. This means that quite large regions of “unknown” will be
assigned, even in regions where the human eye would be able to classify.

The thresholding is done using the program classifier threshold.cpp. The options of
this program are listed in appendix E.2.

3.3 Implementation

The algorithms are implemented as a series of several small programs with limited functionality,
and clearly defined input and output functions written in C++. The small programs are then
glued together by an advanced interpreted script language, Python. All parameters used in
running the compiled C++ programs are set in the Python script file. A pseudo-flowchart for
the implementation is shown in figure 14.

3.4 Algorithm precision

We have examined the results of the algorithm run on a large sonar data set. From the
examination the following successes and issues with the algorithm are noted:

• Sand ripple detection is very precise. Almost all areas with sand ripples are found, and
there are almost no false detections.

• Sometimes, when there is a sharp boundary between two types of seafloor, the algorithm
detects the area as being trawl, or scattered stones.

• A single large stone can sometimes be detected as a single sand ripple.

• Scattered stones are sometimes assigned in regions with many dark spots. This can for
example occur in vegetation or in muddy areas.
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Appendices

A The sonar data

The sidescan sonar images are all obtained with the Danish Navy Sidescan sonars, which are
run by the Standard Flex 300 mine sweepers. The sonar is positioned on a “fish” which is
towed behind an unmanned vehicle sailing in approximately a straight line, then turning 1800,
and sailing back, with a small overlap with the first part of the route. In that way a larger area
is swept, and there is a considerable overlap in the sonar data, which helps avoiding noise. The
images obtained from the sonar are relatively easy to inspect by the naked eye. By a closer
inspection it turns out, that the data has several flaws, which make them rather difficult to
examine by algorithms.

A precision issue is, that the data are only described by 4 bits corresponding to only 16
gray-tones per pixel. Further, there is no description given of the way the measured values
decrease with distance from the sonar. Clearly, some correction is done on the data, but the
form is not easily found by inspection of the data. Other problems with the data are described
in the following.
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Figure 15: Histogram of the values present in a very large amount of data. Notice the non-uniformness
of the histogram - apparently every second value is less likely to occur compared to its neighbours.
The histograms show statistics for data in pixel positions 1590 (full line), 1000 (dotted line) and 600
(dashed line) from the sonar
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A.1 Value uncertainty

Unfortunately the data presented to us from the Danish Navy Sidescan sonar has been pre-
processed. Probably this preprocessing serves to optimise the 4-bit (16 gray tones) images for
viewing. This however has the disadvantage, that processing the data by computer is made
harder, since we are not dealing with the raw data. We have not been able to acquire knowledge
of the exact form of the function, that has been applied to the data.

By analysing a very large amount of data and making histograms of the 16 possible values in
the data, it turns out, that some of the 16 values are preferred to others, and the less preferred
values are not just the max and min values. An example of such a histogram can be seen in
figure (15). This calculation has been done on data from several of the navy sonars and the
result is the same.

A.2 Spatial uncertainty

Occasionally the fish “wobbles” a little while it is dragged forward. The x-direction from
scan to scan are therefore not exactly parallel. The sidescan sonar, holding an array of 8
hydrophones, scans for eight positions in the y-direction simultaneously. Because of this, there
is a tendency in the data to have a “period-8” structure, meaning, that for every 8th line in the
sonar images, there is a discontinuity in the intensities, which does not reflect anything physical
on the seafloor. This means that the gradient is quite noisy when passing from one 8-block to
the next. It reality, the period 8 does to a large extent reduce the resolution of the data in the
sailing direction with a factor of 8. We have tried several methods to exclude the effect of this
periodic noise. We have found it possible develop a method to remove the periodic noise in a
way so the periodical structure is not as apparent when the images are examined by the naked
eye. However, the noise is still disturbing the calculations performed on the images, e. g. the
gradient. We have therefore chosen not to use any form of correction of this periodic noise.

B Preprocessing, filtering

All features are calculated using at least one preprocessing: a presmoothing of the image at a
scale usually called σ. The scale is unique to the feature in question.

Figure 16: Close-up of a sonar data recorded over a flat sand bed. Both the noise in the data as well
as the periodical nature of the data is apparent
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Further a distance correction of the intensity of the slant range intensity of those features
that are sensitive to this is performed. In particular, for the trawl track features and the mean
value this is of importance.

We did some testing on the use of median filtering for the trawl track an scattered stones
features. However, we were not able to get any improvements out of those attempts. Thus they
are not included in the final version of the algorithm.

C Examined features

Several possible candidates for features for the classification algorithm have been examined in
this work. Even though, only a few of them are used in the final product, we think that some
of the other features are worth mentioning. A few of these features perform at the same quality
level as those used in the final algorithm. The simpler is then preferred over the more complex.

C.1 Jacobian characteristics

If the (sonar) image is regarded as a function depending on the image coordinates, it is possible
to calculate the Jacobian matrix J(x, y), in each point (x, y) of the image. The Jacobian is
a 2 × 2-matrix holding the three possible second derivatives of the image. The eigenvalues
and eigenvectors tells something about the local curvature of the image values. Sand ripples,
e. g., holds one large eigenvalue, with the corresponding eigenvector being perpendicular to the
ripples, while the smallest eigenvalue is close to zero. The Jacobian features turned out to
perform just as well, but no better, than the symmetry measures. Being simpler, the latter
were then chosen to be used in the actual algorithm.

C.2 Unser features

Apart from mean and variance, also higher moments, inverse moments and features inspired
by statistical mechanics (entropy, energy, ... ) can be calculated. One such set of features is
described by Unser [9]. We have tested them. But they do not lead to improved classification
compared to what we already can do.

D Examined classification methods

The set of features constitutes a vector space. This multi dimensional space is then examined
for clusters. When the classification is supervised, volumes corresponding to specific types
are given a priori (from the training set) in the feature space. It is then a matter of testing
whether a given pixel is positioned inside one of the volumes, and if this is the case, that pixel is
designated the type corresponding to the volume in question. There are several ways to do this
volume division in feature space listed in the literature. Apart from the simple thresholding
of subsets of features used in the final version of the algorithm, we have tested a covariance
method, or maximum likelihood method and a simple thresholding method. Finally, a cluster
analysis algorithm called “isodata” has been given consideration for inclusion in the algorithm.
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Figure 17: The principles of the covariance method (left) and the thresholding method (right). The
ellipses show the area of interest for the covariance method in the left figure, while lines marking the
threshold values for each type for the thresholding method are seen in the right figure.
.

D.1 Covariance method

This method is based on the calculation of the distance in feature space from the mean of
the manually selected training set for each seafloor type. The covariance matrix is used to
determine how many standard deviations a given point in feature space is from the centre of
the distribution in feature space. The principles behind the division of feature space is seen
from figure 17 left.

Let Ωj be the training set for type j. Given a feature vector f , the mean mj and covariance
matrix σj for a specific type j are then calculated as

mj = 〈f〉Ωj
(12)

σj = 〈(f −mj)(f −mj)
T 〉Ωj

. (13)

The 〈·〉Ωj
denotes averaging over the training set Ωj for seafloor type j. For a given point f in

feature space to be classified, the distance to the type j in units of standard deviations is then
given as

Sj = (f −mj)
T σ−1

j (f −mj) (14)

for all types using the corresponding covariance matrices and mean positions. The point is then
classified as belonging to the class with the smallest distance.

Note that one should calculate the statistical significance of the hypothesis of compatibility
with a given type. If neither of the types are accepted, “unknown” should be assigned. Using
this procedure, one may actually use different feature vectors for each seafloor type.

D.2 Thresholds

A conceptually simple method, based on giving an upper and a lower threshold for each type
in each feature dimension in the feature-vector space. The principle is easily seen from figure
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Figure 18: 2-d scatterplot of short ripple detector, σ = 2, ρ = 12, versus the fluctuation in the image
on scale ρ = 24.

17 right. In figure 18 a scatterplot of the short ripple detector output versus the variance is
plotted for the different seafloor types.

D.3 Classification quality check

One of the problems when using a supervised classification algorithm is the selection of suitable
training sets in feature space. These training sets have to be clearly enough in feature space for
the classification algorithm to be able to uniquely distinguish between the classes. If there is
an overlap in feature space between the different training classes one may select supplementary
features which allow a better separation.

D.3.1 Jeffreys-Matusita distance

One method, implemented in the DDRE product for this test is calculation of the so called
“Jeffreys-Matusita distance”, J [5, 8]. J is a measure of how well two densities, p1(x) and
p2(x), in a multi dimensional space are separated. Here x is a point in the multidimensional
space.

J =
∫

X

[√
p1(x)−

√
p2(x)

]2

dx (15)
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This can also be written as
J = 2(1− p), (16)

where p is given as

p =
∫

X

√
p1(x)p2(x) dx. (17)

The centre of the density pi(x) is Ui and the covariance matrix of the density is Σi. If p1(x)
and p2(x) are multivariate Gaussian densities, then J can be written

J = 2(1− e−α), (18)

where

α =
1

8
(U1 − U2)

TΣ−1(U1 − U2) +
1

2
loge

[
det Σ

det Σ1 · det Σ2

]
(19)

and

Σ =
1

2
[Σ1 + Σ2] . (20)

J ranges from 0 to 2, where 2 is infinite separation and 0 are coinciding densities. These
equations are easily implemented and used as quality testing of the separation of the training
classes in feature space.

D.3.2 Using isodata for quality checking of supervised classification

ISODATA is an unsupervised algorithm used to automatically divide a set of points positioned
in an n-dimensional space into clusters. The algorithm uses an initial guess on cluster as seed
for the algorithm, and then, based on given threshold for maximum distance between clusters
and the maximum allowed variance of the points in each cluster, it divides or merges clusters
in each iteration, until a steady state is reached. We have done several studies involving the
isodata algorithm. We have not tested the algorithm thoroughly enough to include the isodata
algorithm in the first version of the DDRE algorithm.

We propose a new method to test whether the types for a supervised training set are
separated enough in feature space. The principle behind the algorithm is to first select the
proper training set, and calculate the corresponding points in feature space. Then isodata is
used on the set of all these training values for the different types. If the class division, that
isodata comes up with of this set, corresponds to the supervised types, the supervised data set
is probably uniquely determining classes. If there is a large discrepancy between the training
classes, and the isodata classes, the training sets for the different types in feature space, are
probably overlapping.
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E Programs and their parameters

E.1 feature.cpp

feature.exe [flags] <filename>

-o arg output filename (without extension), output --> fno.##.tif

-f arg number of first output file (0 is also a number!)

-F dy:dx[:sigma] preceed feature calculation by median filter

median filter using box of size dy*dx, where dy and dx are odd

if sigma>0 preceeded by Gaussian presmothing

-b w:m Background subtraction to minimise x-dependence of gray level

w <int> width of background subtraction area

m <float> maximal background subtraction

Note: Background subtraction is done after downsampling. Thus

the width should be given in downsampled coordinates.

-D arg dy:dx[:save]

dy:dx downsampling factors. Note that all features are

calculated using the downsampled image. Thus the scales

for the feature flags are implicitly multiplied by these

factors, i.e. feature -d1 -e4:12 and feature -d2 -e2:6

are scale-equivalent.

save: 1 => save downsampled images feature.dwn.##.tif (default)

0 => don’t

-G depth[:flag]

slant --> ground range conversion

depth <int> depth from surface to seafloor

0 => depth is estimated

>0 => depth is value read

depth should be given in original coordinates,

typical value: -G170

flag <int> 0 => slant-->ground NOT performed, but value of depth

is read/estimated (to be used in -T flag)

-e s:r[:#,...,#]

s:r scales for linear diffusion of image and exp(i*m*phi)

0 <|v|^2>

1 |<v*|v|>|/<|v|^2>

2 |<v^2>|/<|v|^2>

3 |<v^3/|v|>|/<|v|^2>

4 |<v^4/|v|^2>|/<|v|^2>

5 |<v^5/|v|^3>|/<|v|^2>
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6 |<v^6/|v|^4>|/<|v|^2>

7 |<v*|v|>

8 |<v^2>|

9 |<v^3/|v|>|

10 |<v^4/|v|^2>|

11 |<v^5/|v|^3>|

12 |<v^6/|v|^4>|

-j s:r Jacobi features:

s scale for presmoothing of image

r scale for diffusion of features tr(J), det(J), and tr(J)^2

-m s:r[:#,...,#]

s:r scale for presmoothing and averaging in calculation of variation

0 aver <<u>_s>_r

1 vari <u_s^2>_r - <u_s>_r^2

-M s:r[:#,...,#]

s:r scales for linear diffusion of moments

0 <(v-min)^1>^(1/1)

0 <(max-v)^1>^(1/1)

.

.

9 <(v-min)^10>^(1/10)

9 <(max-v)^10>^(1/10)

-r s:r scales for presmoothing of image and diffusion of structure tensor

-p s do a Gaussian preesmoothing at scale <s> before specific feature

algorithm

-R r:m:M:w:d:[t0,t1]:[t2,t3]:f

r int resolution

m int initial integration length, must be power of 2

M int final integration length, must be power of 2

w int width of integration band, must be an odd number

d int distance between foreground and background bands

t float thresholds

[t0:t1] float bounds on raw line integrals

[t2:t3] float bounds on backgroundsubtracted line integrals

f float fraction of initial length pieces that must satisfy

threshold separately
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Calculates integral of length maxlinelength starting at minlinelength

multiplying the length in each step by 2

The angular rsolution is set such that the outermost point is within

the specified resolution.

Typical values: -v -G170 -D4 -b100:20 -R1:8:128:3:4:[-1000,-.035]:[0,.34]:.75 -f13

Calculates 4 features:

0 Minimal backgroundsubtracted integral along line of length M.

1 Minimal integral without background subtraction

2 [t0,t1] && [t2,t3] thresholded version of 0 and 1

1 added if [t0,t1] OK, 2 added if [t2,t3] OK, 4 added if fraction of

initial pieces satisfying threshold satisfies threshold

3 Number of lines through point satisfying all criteria larger than f,

i.e. 1+2+4=7.

-T s:r:M:t:f:[L0:L1]:[H0:H1]:g:S Threshold in moment + counting of objects

s <float> presmoothing scale

r <float> postsmoothing scale

M <float> moment (e.g. 0.2)

t <float> threshold in moment to identify regions

f <int> 0 => regions where below threshold

1 => regions where above threshold

L0 <float> minimal length of object (shadow/highlight)

L1 <float> maximal - - - -

H0 <int> minimal height an object (shadow/highlight)

H1 <int> maximal - - - -

g <float> scale for counting objects

S <int> 1 => create shadow shifted image, i.e. image where

shadow length is contracted to just-below-sonar and

shifted to the expected position of the corresponding

highlight

Calculates 3 or 4 features:

0 Moment: <(<u>_s/(max-min))^M>_r^(1/M)

measures tail of distribution

1 <threshold(S0,Moment,S1)>_g

calculates the density of regions of size within boundaries

2 Simple threshold image of first image

3 Shadow shifted image

Typical set of parameters:

feature -v -g170 -d2 -D -b200:20 -T1:2:0.2:0.28:0:5:1000:20:1 -f6 feature.tif

feature -v -g170 -d2 -D -b200:20 -T0:1:5.0:0.65:1:3:1000:20 -f10 feature.tif

-u s:r[:#,...,#] selected Unser features

s:r scale for presmoothing and averaging

do Unser features with Gauss aver at scale r

0 aver mean(y,x)

1 vari (u(y,x) - mean(y,x))**2
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2,3 corr (u(y,xp) - mean(y,x)) * (u(y,xm) - mean(y,x))

4,5 cont (u(y,xp) - u(y,xm))**2

6,7 homo 1/(1+(u(y,xp)-u(y,xm))**2)

8,9 shad (u(y,xp) + u(y,xm) - 2*mean(y,x))**3

10,11 prom (u(y,xp) + u(y,xm) - 2*mean(y,x))**4

-v increase verbosity level by 1

Input is read from filename.tif.

E.2 classifier threshold.cpp

classifier_threshold.exe -d dymin:dymax:dxmin:dxmax -T [T0,T1]:[T2,T3]...

-t <type> -z <feature.##.tif> [feature.##.tif ...] <file.best.tif>

Simple threshold classifier.

Applies thresholds (given by -T flag) to the a set of (feature) image

files. If all features are within their corresponding thresholds, the

class pixel in the feature.best.tif is set to the value given by the

-t flag.

Input:

-d arg dxmin, dxmax minimal distances from boundary of image

dymin, dymax minimal distances from boundary of image

-T arg thresholds between which signal must be to be assigned

the type given by the -t arg. [T0,T1] is applied to the

first feature.##.tif file, [T2,T3] to the next, ...

-t type type number to be assigned if thresholds given in -T

arg are met. Default: 255.

-z reset <file.best.tif> to 255 before new assignments

<feature.##.tif> feature in which to set threshold

<file.best.tif> best type file 0,1,...,255. Only points in != 255 in

this file are assigned a new value.

Output:

<file>.best.tif (modified) best type file

<file>.classified.tif color version of <file>.best.tif using colors in

atppalette.h

E.3 classify threshold.py script

Since all parameters for the programs feature.exe and classifier threshold.exe are con-
trolled by the a python script we simply give a listing of what it does here. Given an input

28



file feature.tif, first a number of features are calculated and placed in files feature.##.tif.
Then the classification is performed using the features files as input. The output of the classi-
fication is placed in feature.class.tif and feature.classified.tif.

feature -v -G170 -D2 -e 1:6:2 -f0 feature.tif

feature -v -G170 -D2 -e 2:9:2 -f1 feature.tif

feature -v -G170 -D2 -e 4:12:2 -f2 feature.tif

feature -v -G170 -D2 -b200:20 -u 2:12:0,1 -f4 feature.tif,

feature -v -G170 -D4 -b100:20 -R1:8:128:3:4:[-2,-.05]:[0,.29]:0.875

-f13 feature.tif

feature -v -G170 -D4 -b100:20 -R1:8:128:1:4:[-2,-.07]:[0,.32]:0.9375

-f23 feature.tif

feature -v -G170:0 -D1:2 -b200:20 -T0.5:1.5:0.2:0.20:0:[2,20]:[1.5,10]:40

-f17 feature.tif

# Simple threshold classification:

# simple classification into

# 0 white flat sand {255,255,255} v

# 1 gray short ripples {127,127,127} v

# 2 gravel { 0,255,255}

# 3 dark gray scattered stones {255, 0, 0} v

# 4 green vegetation { 0,255, 0}

# 5 blue trawl { 0, 0,255} v

# 6 gray long ripples {127,127,127} v

# 255 not classified { 0, 0, 0} v

classifier_threshold -d40:40:250:400 -T[0.5,10000]

-z -t5 feature.16.tif feature.best.tif

classifier_threshold -d40:40:250:400 -T[.8,1]:[80,135]

-t6 feature.02.tif feature.04.tif feature.best.tif

classifier_threshold -d40:40:250:400 -T[.6,1]:[80,135]

-t1 feature.00.tif feature.04.tif feature.best.tif

classifier_threshold -d40:40:250:400 -T[.7,1]:[80,135]

-t1 feature.01.tif feature.04.tif feature.best.tif

classifier_threshold -d40:40:250:400 -T[100,135]:[0,42]

-t0 feature.04.tif feature.05.tif feature.best.tif

classifier_threshold -d40:40:250:400 -T[85,130]:[.00030,.020]

-t3 feature.04.tif feature.18.tif feature.best.tif

classifier_threshold -d40:40:250:400 -T[0.5,10000]

-t5 feature.26.tif feature.best.tif
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[2] Josef Bigün, H. Granlund Gösta, and Johan Wiklund. Multidimensional orientation esti-
mation with applications to texture analysis and optical flow. IEEE Transitions on Pattern
Analysis and Machine Intelligence, 13:775, 1991.

[3] Raffaele Grasso and Francesco Spina. Unsupervised sea bottom classification from sides-
can sonar images using multi-resolution transform features. SACLANT UNDERSEA RE-
SEARCH CENTRE REPORT SR-372, 2003.

[4] Jeong-Hun Jang and Ki-Sang Hong. Fast line segment grouping method for finding globally
more favorable line segments. Pattern Recognition, 35:2235–2247, 2002.

[5] H. Jeffreys. Theory of Probability. Oxford, Oxford University Press., 1948.

[6] Thomas Sams and Finn Thomas Agerkvist. Coherence enhancing diffusion filtering of
sidescan sonar images. DDRE report F-38/2002, 2002.

[7] H Scharr, S Körkel, and B Jähne. Numerische isotropieoptimierung von fir-filtern mittels
qerglättung. In E. Paulus and F. M. Wahl, editors, Munstererkennung 97, pages 367–374,
Braunschweig, 1997. Springer.

[8] P.H. Swain and R. C. King. Two effective feature selection criteria for multispectral remote
sensing. LARS Technical Note, 042673, 1973.

[9] M. Unser. Sum and difference histograms for texture analysis. IEEE Trans. Pattern analysis
and Machine intelligence, 8:118–125, 1986.

30


