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Yield curve event tree construction for multi

stage stochastic programming models

Kourosh Marjani Rasmussen∗and Rolf Poulsen†

November 16, 2007

Abstract

Dynamic stochastic programming (DSP) provides an intuitive frame-

work for modelling of �nancial portfolio choice problems where market

frictions are present and dynamic re�balancing has a signi�cant e�ect

on initial decisions. The application of these models in practice, how-

ever, is limited by the quality and size of the event trees representing

the underlying uncertainty. Most often the DSP literature assumes ex-

istence of �appropriate� event trees without de�ning and examining

qualities that must be met (ex�ante) in such an event tree in order

for the results of the DSP model to be reliable. Indeed de�ning a uni-

versal and tractable framework for fully �appropriate� event trees is

in our opinion an impossible task. A problem speci�c approach to de-

signing such event trees is the way ahead. In this paper we propose

a number of desirable properties which should be present in an event

tree of yield curves. Such trees may then be used to represent the un-

derlying uncertainty in DSP models of �xed income risk and portfolio

management.

1 Introduction

One of the main sources of uncertainty in analyzing risk and return prop-

erties of a portfolio of �xed income securities is the stochastic behavior in
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the evolution of the shape of the term structure of the interest rates (yield

curve). This uncertainty is sometimes referred to as shape risk, see for ex-

ample Zenios (2007). Shape risk refers to the risk that interest rates with

di�erent maturities change in di�erent ways as the time goes by. Figure 1

shows how the Danish yield curves have changed in the period 1995 to 2006.

Figure 1: Historical data on Danish yield curves for the period 1995 to 2006.

We can see that the short rates have been more volatile than the long rates.

We also observe that a simple parallel shift assumption does not hold; yield

curves evolve in more complicated manners. Capturing the dynamics of yield

curves in a multi period scenario tree is the purpose of this paper.

Dynamic stochastic programming (DSP) provides a �exible framework for

portfolio and risk management problems. Trade frictions such as �xed costs,

tax a�ects and limits on borrowing and short sale of assets can be incorpo-

rated in such models. Portfolio readjustments may as well be captured. This

is in particular important for �xed income securities due to the usually long

term perspectives of such investments. Finally no assumptions on the under-

lying uncertainty are required. This means that for example heavy tails which
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play an important role in extreme event considerations can be accounted for.

But it also means that special care needs to be taken when it comes to mod-

elling the underlying uncertainty. The event trees should be consistent with

historical data as well as internally consistent with regards to the mecha-

nisms governing the dynamics of the uncertain variables (see Ziemba 2001).

Such consistency criteria include for example the no arbitrage conditions (see

Klaassen 2002).

We suggest the following guidelines for generating an event tree of yield

curves:

1. The distance between the underlying continuous interest rate process

and the discretized event tree should be minimized.

2. The event tree should match the underlying continuous process both

globally, i.e. for any given future period as well as locally, i.e. for any

subtree of the event tree.

3. The actual levels of the generated scenarios should be realistic, for

example the tree should not include any negative interest rates, or

many extreme scenarios.

4. The volatilities of the interest rates of di�erent maturity should be

consistent with the implied volatilities of a market benchmark.

5. There should be no arbitrage opportunities in any of the subtrees of

the event tree.

6. Types of changes in the shape of the yield curve in future nodes of the

event tree should re�ect those observed historically from an economical

regime which is assumed similar to the one the event tree is built for.

7. The model should be mean reversive.

8. No volatility clumping; Volatility clumping refers to the case where a

period of high volatility is followed by another period of high volatility.

Volatility clumping is observable in the equity market, but empirical

studies have shown that there is no volatility clumping for the interest

rates.

There is a vast amount of literature on interest rate modelling. These models

can in general be categorized as being discrete or continuous, normal or a

log�normal, 1�factor or multi�factor and �nally either more theoretically
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or more empirically inclined. What all such models have in common is the

fact that they have been originally developed either for estimating current

prices of interest rate sensitive assets, or for prediction purposes. None of

the standard models therefore are designed in order to construct yield curve

event trees ful�lling criteria 1 to 8 at the same time.

In this paper, we propose an overall framework for building a yield curve

event tree and testing whether or not the consistency criteria are respected.

The rest of this paper is organized as follows:

In section 2 we perform factor analysis (also known as principal component

analysis) in order to identify the most signi�cant factors in capturing yield

curve variability. Then in section 3 we describe a simple 3�factor vector auto

regressive model with lag 1 (VAR1) representing the underlying stochastic

process. A non�linear discretization model of the stochastic process is then

suggested in section 4. In section 5 we outline an approximative approach

for solving the discretization model. In section 6 we argue why a simple 1�

factor interest rate model such as the Vasicek model is not appropriate for

stochastic programming applications and why the proposed 3�factor model

provides more reliable solutions. Finally we conclude the paper in section 7.

2 Factor analysis of yield curves

Factor analysis is a statistical technique to detect the most important sources

of variability among observed random variables. It may be used on historic

time series of a multidimensional random variable to decide factors ordered

after how much variability they explain. In linear algebraic terms it is an

orthogonal linear transformation that transforms data to a new coordinate

system in such a way that the greatest source of variance lies on the �rst

factor, the second largest on the second factor and so on. It is used for

reducing the dimensionality of a data set while keeping its characteristics.

This is done by keeping only the main factors while ignoring the ones that

only explain an insigni�cant proportion of the variance.

Litterman & Scheinkman (1991) and Knez, Litterman & Scheinkman (1994)

use factor analysis to show that three factors explain � at a minimum � 96%

of the variability on several American zero coupon yield curves in the period

1985 to 1988. Dahl (1994) shows similar results for the Danish data in the

1980's and Bertocchi, Giacometti & Zenios (2005) repeat the experiments for

American and Italian data during 1990's again with similar results.

These �ndings are used by some practitioners to improve duration hedging
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(immunization) by factor based duration hedging (factor immunization). The

main shortcoming of these hedging techniques is that they are myopic and

do not consider the re�balancing e�ects in long term �xed income portfolio

investments. Rather than using factor analysis for shape risk hedging, we use

factor analysis as a means of �nding a su�cient number of factors to be used

as the underlying factors of uncertainty for the proposed interest rate model

of this paper. We perform factor analysis on the Danish yield curves for the

period 1995�2006. Like in earlier works we �nd that 3 factors are enough to

capture almost all variability (99.99%) for the Danish yield curves. Figure 2

shows the factor loadings as a function of maturities in years.
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Figure 2: Factor loadings of the Danish yield curves for the period 1995 to

2006.

The �rst factor explains almost 95% of all variability. It can be interpreted as

a slight change of slope for interest rates with maturities up to approximately

6 years together with a parallel shift for the rest of the curve. The second

factor, explaining 4.7% of the variability, corresponds to a change of slope for

the whole curve. However the slope change for the �rst 10 years is much more

pronounced. Finally the third factor corresponds to a change of curvature in

the yield curves. This factor explains only about 0.3% of the total variability.

From a statistical viewpoint we could su�ce with level and slope as the main

sources of variability. Nevertheless we do not reject the third factor, curva-
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ture, due to its economical appeal; changes of curvature are observed now

and then, and a model not being able to represent those changes properly has

a potential weakness of not capturing important movements in the interest

rate market.

Inspired by the results found in this section we de�ne the three factors which

we want to use in our interest rate model as follows:

1. Level: An arbitrary rate such as the one year rate,Y1, may be used as

a proxy for level.

2. Slope: A good proxy for the slope would be Y20 − Y1 where Y20 stands

for the 20 year rate. This expression is an approximation of the average

slope of the yield curve. The 20 year bond is chosen as the long rate

here, since we observe in our historical data, that almost all yield curves

�atten at about this maturity.

3. Curvature: The expression Y6 − (ωY1 + (1 − ω)Y20), with Y6 as the 6

year rate, may be used as a proxy for the curvature. ω is the weight

corresponding to the proportion of the distance in between the middle

of long rates. It is chosen so that the curvature would be zero if the

curve is a straight line, negative if the curve is convex and positive if

the curve is concave.

In the rest of this paper we use level, slope and curvature de�ned as above

as the factors of the interest rate model in question.

3 A vector autoregressive model of interest rates

A vector autoregressive model with lag 1 (VAR1) may be de�ned as:

xt+1 = µ+ A(xt − µ) + εt+1

where xt is an n× n matrix, µ is an n× 1 vector and εt+1 ∼ Nn(0,Ω) and Ω
is an n× n matrix. In this formulation of the VAR1 model, µ is interpreted

as the long term drift. A and µ are deterministic parameters which need to

be calibrated based on historical data.

The conditional mean and covariance for the error term εt+1 are given as:

E[εt+1|xt] = 0

E[εt+1εt′+1|xt] = Ω
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Given the state of an uncertain variable at time xt, the purpose of the model

is to predict the state of the variable at time t + 1, i.e. xt+1. Based on the

�ndings of the previous section we de�ne the vector xt as the proxies for

level, slope and curvature (lt, st, ct)
T of the yield curves.

An example of the VAR1 model with 3 factors looks like:

lt+1 = µl + all(lt − µl) + als(st − µs) + alc(ct − µc) + εl,t+1

st+1 = µs + asl(lt − µl) + ass(st − µs) + asc(ct − µc) + εs,t+1

ct+1 = µc + acl(lt − µl) + acs(st − µs) + acc(ct − µc) + εc,t+1

To estimate the parameters of the VAR1 model (µ,A,Ω) we can use the

parameter estimation for a general linear regression model of the form:

yi = α + βxi + εi, for all i = 1, · · · , n

Or in matrix form:



y1
...

yn


 =




1 x1
...

...

1 xn




[
α
β

]
+



ε1
...

εn




This can be rewritten as:

Y = Xδ + ε

The VAR1 model can be rewritten in this form. Now we may use standard

least square estimators as follows:

δ̂ = (X
T
X)−1X

T
Y

which minimizes the sum of least squares in the expression ||Y −Xδ||2.
The estimator for the residuals (ε) is given as:

res = Y −Xδ̂

Ω̂ = resTres/(n− 1)
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The estimator δ̂ is then decomposed into µ and A from the VAR1 model and

the estimator Ω̂ can be directly used as the estimator for Ω in the VAR1

model.

The VAR1 model so far may only be used for one�period predictions (same

interval length as in the historical time series). But it may easily be extended

to predict k periods ahead:

xt+k = µ+ Ak(xt − µ) + εt+k

where εt+k ∼ Nn(0,
∑k

i=1A
i−1Ω(Ai−1)T)

The reasons for choosing a VAR1 model as the underlying model of interest

rate uncertainty are the following:

1. One can choose any factors or any number of factors to describe the

variability. This gives us maximum �exibility with respect to our ob-

servations from a factor analysis of interest rates.

2. Time step �exibility. Varying time steps can be easily implemented.

3. Mean reversion is built into the VAR1 model.

The VAR1 model is discrete in time but continuous in states, so in order

to use the model as a scenario generator for stochastic programs we need to

discretize it in states as well. This can be done using a moment matching

model (See Høyland & Wallace (2001)). We propose a yield curve scenario

discretization model in the next section.

4 Scenario generation and event tree construc-

tion

In DSP literature for �xed income securities often simple models of interest

rates are used to represent the underlying interest rate uncertainty. In sev-

eral applications lattice structures are either blown up into unique paths or

sampled from so that to account for the path dependency of DSP problems.

One immediate problem with such approaches is that the uncertainty space

is not covered as e�ciently as possible. This is due to the recombining struc-

ture of the original trees together with the fact that only a very coarse time

step discretization is possible due to the curse of dimensionality when the

recombining trees are blown up.
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Others (Nielsen and Poulsen 2004, etc.) have used continuous interest rate

models. Such models are either continuous both in time and state, or discrete

in time and continuous in states. Discretizing in time is normally straight for-

ward; it is a question of reformulating a di�erential equation into a di�erence

equation. Discretizing in state, however, is often a more challenging issue. A

number of nodes (in our case including yield curve information) have to be

generated for each time point to give a discrete representation of the contin-

uous distribution. There is no general consensus as to the best way of doing

this discretization. In one stream of research the main focus is on generating

discrete distributions which mimic the underlying continuous distribution as

closely as possible. This is either done by sampling (see Shtilman and Zenios

1993) , or moment matching approaches (Høyland and Wallace 2001). In

the other stream of research the aim is not necessarily to get the closest

discrete representation of the continuous distribution, but rather �nding a

discrete representation which results in a closer approximation to the �true�

optimal solution of the stochastic program in question. Here the �true� opti-

mal solution refers to the solution we would get, if we were able to solve the

stochastic program using the underlying continuous process directly. Indeed

if we were able to do that, there would be no need to discretize the process

in the �rst place, but it can be shown (See P�ug 2001) that in general if

the discrete process has the smallest distance (using the transport metric)

to the underlying continuous process, then the SP solutions found will be

guaranteed to be within certain bounds of the �true� SP solutions. (See also

P�ug 2001, P�ug and Hochreiter 2002, Pennanen 2004, Romisch and Heitsch

2003) . Although theoretically appealing, the guaranteed bounds are in many

cases too large in order to have any practical interest, (See Wallace and Kaut

2003) . Comparison and further development of specialized models and so-

lution algorithms for these two streams of scenario discretization approaches

is the subject of future research.

An extensive comparative study of di�erent yield curve scenario generation

approaches is outside the scope of this paper. Instead we propose a yield

curve scenario generation model which abides by the criteria 1 to 8 mentioned

earlier in this paper. Note that the following model is single period. It can

be extended to a multi�period model with some minor changes.

We de�ne the following sets, parameters and variables:

Sets:

f : Set of factors (level, slope and curvature), f ′ is alias for f .
i: Set of zero coupon bonds (zcb's).

i′: A subset of the set i corresponding to the zcb�rates which de�ne the three

factors. We have chosen i′ to be the set of 1, 6 and 20 year zero coupon bonds.
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j: Set of parameters of the Nelson Siegel function; 0 to 3.

t: Set of time points.

s: Set of scenarios.

Parameters:

Meanf : The mean value for factor f . This value comes from the VAR1 model.

Covarf,f ′: The covariance matrix of the error term taken from the VAR1

model.

Skewnessf : Skewness of factor f . Assumed to be zero based on the normality

assumption of the VAR1 model.

τ t
i : Time to maturity for zcb i at time t.
PP parent

i : Prices of the zero coupon bonds at the root, The prices are calcu-

lated using initial rates: PP parent
i = e−riτ

parent
i .

ψConst: The martingale probability; assumed equal for all scenarios. It is found

from the equation PP parent

i′′ =
∑

s ψ
Const where bond i′′ matures exactly at

the children nodes of the tree with a price of 1.

Variables:

xf,s: A future estimate of factor f in scenario s given by the VAR1 model.

E(x)f : The expected value of factor f over all scenarios.

σ(x)f,f ′ : The covariance matrix of factors across all scenarios.

E3(x)f : The skewness of factors across all scenarios.

Y
(V AR1)
i′,s : The 3 yields comprising the 3 factors at scenario s.
NSYi′,s: The 3 yields comprising the 3 factors at scenario s as given by the

Nelson Siegel function.

ϕs,j: Parameter j of the Nelson Siegel function at scenario s.
Ri,s: The entire yield curve given by the Nelson Siegel function at scenario s.
CPi,s: Price of bond i at scenario s.

The overall objective of the optimization model is to match the moments of

the underlying stochastic process (the VAR1 model) as closely as possible.

At the same time the parameters of the Nelson Siegel function should be

found so that the yields resulting from Nelson Siegel are as close as possible

to those found by the VAR1 model. We need Nelson Siegel (or some other

yield curve smoothing function) in order to get the rest of the yield curve,

since the VAR1 model is based on 3 yields only.

The objective function is to minimize sums of least squares corresponding to

the overall objective of the model:
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Minimize
∑

f

(E(x)f −Meanf )2 +
∑

f

∑
f ′

(σ(x)f,f ′ − Covarf,f ′)2+

∑
f

(E3(x)f − Skewnessf)
2 +

∑
s

∑
i′

(Y
(V AR1)
i′,s −NSYi′,s)

2 (1)

The moments of the discrete scenarios as found by the optimization model

are de�ned in Equations 2 to 4:

E(x)f =
∑

s

psxf,s for all f (2)

σ(x)f,f ′ =
∑

s

ps(xf,s − E(x)f)(xf ′,s′ − E(x)f ′) for all f, f ′ (3)

E3(x)f =

∑
s(xf,s − E(x)f )

3

(
∑

s(xf,s − E(x)f )2)3/2
for all f (4)

In Equation 5 the 3 yields corresponding to the 3 underlying maturities

used in the VAR1 model are found by the Nelson Siegel model. Note that

the �nal term of the objective function requires that NSYi′,s should be as

close as possible to the 3 yields found by the VAR1 model. So Equation 5

in interaction with the objective function calibrates the parameters of the

Nelson Siegel function. These parameteres are used in Equation 6 to decide

the entire yield curve at each scenario.

NSYi′,s = ϕs,0 + ϕs,1e
−ϕs,3τparent

i′ + ϕs,2τ
parent

i′ e−ϕs,3τi′ for all i′, s (5)

Ri,s = ϕs,0 + ϕs,1e
−ϕs,3τi + ϕs,2τ

parent
i e−ϕs,3τparenti for all i, s (6)

The VAR1 model is de�ned in terms of factors and not yields. Equations 7 to

9 �nd the yields corresponding to the factors estimated by the VAR1 model

at each scenario.

Y
(V AR1)
1,s = x1,s for all s (7)

Y
(V AR1)
20,s = x2,s + Y

(V AR1)
1,s for all s (8)

Y
(V AR1)
6,s =

5

19
Y

(V AR1)
20,s +

14

19
Y

(V AR1)
1,s + x3,s for all s (9)
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The main reason to de�ne the yield curve discretization process as an opti-

mization model is that it enables us to add constraints which give the user

a degree of control over the outcome. One such constraint may be forcing a

lower bound on interest rates, for instance not allowing negative rates:

Ri,s ≥ 0 for all i, s (10)

Another condition may be not to allow arbitrage in the interest rates. In

Equations 11 and 12 we introduce a more restrict condition than the no

arbitrage condition, namely we require that martingale probabilities should

be equal across all scenarios:

CP child
i,s = e−Ri,sτchildi for all i, s (11)

PP parent
i =

∑
s

ψConstCP child
i,s for all i (12)

The model 1 through 12 gives the user a great degree of �exibility over the

outcome of the discretization process. Subjective expert opinion is integrated

with objective econometrical and �nancial theory. The model, however, is

non�linear, non�convex and as such has several local minima. Solving such a

problem fall into the realm of global optimization. The general purpose global

solvers are as of yet underdeveloped. Specialization of existing algorithms is

therefore needed for solving this problem to optimality. This is outside the

scope of the current paper. Instead we propose an approximative approach

to �nd reasonable solutions in the next section.

5 An approximative solution approach

The approximation is in dividing the model into three parts and solving them

in a serial manner instead of solving the entire problem in one go:

1. First we solve a model comprising of the objective function less the 4th

term with constraints 2 to 4. This model results in discretized factors

matching the �rst 3 moments of the underlying VAR1 model one period

ahead. We also add constraints 7 through 10 to guarantee no negative

rates.
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2. Then we solve a second model where the objective function is made

of the 4th term and the only constraint is Equation 5. Finding the

parameters of the Nelson Siegel model we now simply use Equation 6

to �nd the entire yield curves for each scenario.

3. Finally we apply Equations 11 and 12 to remove arbitrage.

The two sub models are non�linear non�convex themselves but it is possible

to �nd optimal solutions to these problems using standard non�linear solvers

which is what we have done using GAMS/ConOpt1.

Wasn't it due to the no�arbitrage conditions then solving the two models

separately would corresponded to solving the entire problem. We therefore

compare the yield scenarios before removing arbitrage with those after ar-

bitrage removal, See Figures 3 to 6. The scenarios in the left are before the

arbitrage removal part of the approximative algorithm has been applied. The

scenarios in the right are after arbitrage removal. The smaller the change is

between the left hand side and the right hand side scenarios the closer the

results of the approximative approach will be to that of solving the entire

problem.

The �rst 2 �gures are from August 2005 when the initial term structure

is rather steep (the stippled curve). In these cases we note that there is

very little di�erence between the rates before and after arbitrage removal,

meaning that the approximative approach generates near optimal solutions

for the entire model. In the last 2 �gures the starting point is May 2007 when

the initial yield curve is essentially �at. In this case we note a considerable

di�erence between the rates before and after removal of arbitrage. In both

cases, however, the solutions found may be used as initial solutions for solving

the entire problem.

We leave solving the entire problem as future work. Instead we replace the

Nelson Siegel function with an a�ne function developed for our 3�factor

VAR1 model of interest rates (See Poulsen 2007) . It is known from interest

rate theory that Nelson Siegel does not produce arbitrage free curves in any

continuous model. Given that, there is little hope that the discretized models

will be arbitrage free regardless of the number of scenarios generated. The

a�ne function is, however, constructed arbitrage free in the continuous set-

ting. So the hope is that by adding scenarios we will satisfy the no�arbitrage

1GAMS/CONOPT is a non linear problem (NLP) solver available for use with General

Algebraic Modeling System (GAMS). See http://www.gams.com/solvers/solvers.htm

13



condition in the discrete scenarios as well. The graphs in the bottom of Fig-

ures 3 to 6 are the result of an a�ne smoothing of the yield curves. Again the

yield curve scenarios before and after removing of arbitrage are considered.

In the rest of this work we use the scenario trees based on the a�ne model.

In the next section we will compare interest rate scenarios generated by our

VAR1 model with the well known 1�factor Vasicek model.

6 Vasicek versus VAR1 for event tree construc-

tion

A central theme in this paper is to convince the reader that simple 1�factor

interest rate models do not capture the dynamics of historic rates as indi-

cated by a factor analysis of historic interest rates. Even though that does

not necessarily have an in�uence on how well such models are in pricing �xed

income securities here and now, that does have an impact on estimates of

prices of assets in future nodes. That is why using simple models of interest

rate as the underlying source of uncertainty in a stochastic program might

result in misleading solutions to the asset allocation and risk management

problems that are formulated based on such interest rate scenario trees. How

wrong the solutions of such stochastic programs will be is problem depen-

dent and need to be studied for individual applications. In this section we

show how we can get a graphical feel of how well an interest rate scenario

tree mirrors what we expect interest rates to behave based on the criteria

mentioned in the introductory part of this work.

Figures 7 to 9 show interest rate trees for 1, 6 and 20 year maturities start-

ing on the 1th of May 2007 and running over 5 years once using the 1�factor

Vasicek model as the underlying source of uncertainty and twice using our

VAR1 model. The only di�erence between the VAR1 representations is the

manner in which discretization takes place. We use our approximative dis-

cretization approach described in the last section iteratively to the future

nodes of the tree to produce these multi period tree structures.

It is obvious from the �gures that the trees using the Vasicek model have

almost no volatility for the long rates. Looking at historic yield curves in

Figure 10 this seems very unrealistic. On the other hand the VAR1 trees

branched in a 4�4�4�4 fashion seem to produce overly large volatilities for

all maturities. This is better seen in Figure 11 where we only consider the

yield curves 5 years from May 2007. The initial yield curve is presented using

a solid line. Note, however, that in the Vasicek model the initial yield curve
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is not the observed curve but reproduced by the model. By only looking at

these graphs there is little room for suspicion left as for the insu�ciency of

a 1�factor Vasicek model in capturing future dynamics of interest rate, in

particular the long rates.

Obviously we do not wish for our model of choice to reproduce historical yield

curves exactly. That said, it is desired that the model captures characteris-

tics seen in historic data. Our VAR1 model with a 16�4�2�2 discretization

seems to produce a good approximation to the real world data from 1995�

2006 as seen in Figure 12. Whether or not this is a good historical period

which characteristics to mimic is a subjective question, but it is a subjective

question at a high level of abstraction; we do not choose how the yield curves

should exactly look like, but we make a decision as to which historic period

we believe gives rise to a good approximation of future yield curve scenarios.

7 Conclusions

We have set up a number of qualitative conditions with which a yield curve

scenario generation method should comply. We have shown that the 1�factor

Vasicek model, even though suitable for option pricing, is unable to capture

future dynamics of interest rate, which disquali�es this model as a source

of uncertainty for stochastic programs. We have tailored a 3�factor VAR1

model using the 3 factors, level, slope and curvature, describing over 99% of

variability in historical interest rates and we have introduced a discretzation

scheme on top of that. We have presented graphs which give the user a feel

of whether or not the scenarios generated are representative of what is ob-

served in historical data as well as what is prescribed by econometrical and

interest rate theory. Our VAR1 model with a 16�4�2�2 discretization gives

rise to a reasonable representation of uncertainty over a 5�year period with a

modest number of scenarios, 256. The three major types of yield curve shifts

are present in representative quantities and the volatility of the last 10 years

historic data is captured properly. There is also reversion towards the long

term drifts. No negative rates or extremely low rates are observed. There are,

however, some gaps in between the extreme scenarios and the main bulk of

scenarios in the high end of the scale in particular for long rates. The gap

can be closed if we generate more scenarios for example 32�4�4�4, but this

results in 2048 scenarios which is probably about the highest number of sce-

narios most realistic linear stochastic programming applications can handle

on a standard pc. Given that the stochastic programming problems we have

in mind have 0�1 constraints we �nd the trees of approximately 200�300
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scenarios more appealing. Whether or not this leads to serious solution de�-

ciencies as compared to using 2000-3000 scenarios is subject of future work.

We need special purpose algorithms and/or parallel routines to perform the

comparison. Super computers may as well provide su�cient computing power

for these tests. Our preliminary trials on LP�relaxed version of our optimiza-

tion problems at hand show, however, that the �rst stage solution structures

stabilize already at about 200�300 scenarios despite the gaps in between the

high extreme scenarios and the main bulk of scenarios. Another idea that

we leave to future work is trying another moment matching approach where

the �rst four moments (kurtosis being the fourth) are matched simultane-

ously at each period conditioned on the root, and that only the �rst 2 or 3

moments are matched for the sub�trees in between the periods. Likewise ap-

plying the ideas of P�ug (2001) and Hochreiter and P�ug (2006) on optimal

discretization to our problem remain as future work.
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Figure 3: Each graph includes the observed yield curve on the 1th of August 2005 (the

stippled curve). Four yield curve scenarios one year ahead are included as well. In the top

�gures the Nelson Siegel method is used to smooth the curves. In the bottom �gures an

a�ne function is used. Figures to the left are before removing arbitrage from the yield

curves and �gures to the right are after removal of arbitrage.
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Figure 4: Each graph includes the observed yield curve on the 1th of August 2005 (the

stippled curve). 16 yield curve scenarios one year ahead are included as well. In the top

�gures the Nelson Siegel method is used to smooth the curves. In the bottom �gures an

a�ne function is used. Figures to the left are before removing arbitrage from the yield

curves and �gures to the right are after removal of arbitrage.
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Figure 5: Each graph includes the observed yield curve on the 1th of May 2007 (the

stippled curve). Four yield curve scenarios one year ahead are included as well. In the top

�gures the Nelson Siegel method is used to smooth the curves. In the bottom �gures an

a�ne function is used. Figures to the left are before removing arbitrage from the yield

curves and �gures to the right are after removal of arbitrage.
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Figure 6: Each graph includes the observed yield curve on the 1th of May 2007 (the

stippled curve). 16 yield curve scenarios one year ahead are included as well. In the top

�gures the Nelson Siegel method is used to smooth the curves. In the bottom �gures an

a�ne function is used. Figures to the left are before removing arbitrage from the yield

curves and �gures to the right are after removal of arbitrage.
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Figure 7: Scenario trees for 1�year rates over 5 years as produced by a 1�factor Vasicek

model with a 3�3�3�3�3 discretization (top), our 3�factor VAR1 model with a 4�4�4�

4 discretization (middle) and our 3�factor VAR1 model with a 16�4�2�2 discretization

(down). The green circle shows the average level of scenarios. Note that there is a jump

from year 3 to year 5 in the VAR1 trees.
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Figure 8: Scenario trees for 6�year rates over 5 years as produced by a 1�factor Vasicek

model with a 3�3�3�3�3 discretization (top), our 3�factor VAR1 model with a 4�4�4�

4 discretization (middle) and our 3�factor VAR1 model with a 16�4�2�2 discretization

(down). The green circle shows the average level of scenarios. Note that there is a jump

from year 3 to year 5 in the VAR1 trees.

23



0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

20 years rate Vasicek 3−3−3−3−3

2007 2008 2009 2010 2011 2012

R
at

e

Years

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

20 years rate VAR1 4−4−4−4

2007 2008 2009 2010 2012

R
at

e

Years

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

20 years rate VAR1 16−4−2−2

2007 2008 2009 2010 2012

R
at

e

Years

Figure 9: Scenario trees for 20�year rates over 5 years as produced by a 1�factor Vasicek

model with a 3�3�3�3�3 discretization (top), our 3�factor VAR1 model with a 4�4�4�

4 discretization (middle) and our 3�factor VAR1 model with a 16�4�2�2 discretization

(down). The green circle shows the average level of scenarios. Note that there is a jump

from year 3 to year 5 in the VAR1 trees.
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Figure 10: Historic yield curves from 2001 to 2006 (top) and from 1995 to 2006 (down).
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Figure 11: Yield curves generated 5 years from now (May 2007) using the 1�factor

Vasicek model with a 3�3�3�3�3 discretization (top), our VAR1 model with a 4�4�4�4

discretization (middle) and our VAR1 model with a 16�4�2�2 discretization (down). The

initial yield curve is also presented using solid lines for comparison.
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Figure 12: Comparison of the historic yield curves from 1995 to 2006 (top) with Yield

curves generated 5 years from now (May 2007) using our VAR1 model with a 16�4�2�2

discretization (down).
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