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Abstract. This paper presents a simulation model to study the robust-
ness of timetables of DSB S-tog a/s, the city rail of Copenhagen. Deal-
ing with rush hour scenarios only, the simulation model investigates the
effects of disturbances on the S-tog network. Several timetables are an-
alyzed with respect to robustness. Some of these are used in operation
and some are generated for the purpose of investigating timetables with
specific alternative characteristics.

1 Background

DSB S-tog (S-tog) is the sole supplier of rail traffic on the infrastructure of
the city-rail network in Copenhagen. S-tog has the responsibility of buying and
maintaining trains, ensuring the availability of qualified crew, and setting up
plans for departures and arrivals, rolling stock, crew etc. The infrastructural
responsibility and the responsibility of safety lie with Banedanmark, which is
the company owning the major part of the rail infrastructures in Denmark.

The S-tog network consists of 170 km double tracks and 80 stations. At
the most busy time of day the network presently requires 103 trains to cover
all lines and departures, including 4 standby units. There are at daily level
1100 departures from end stations and additionally appr. 15.000 departures from
intermediate stations. Figure 1 illustrates the current line structure covering the
stations of the network.

All lines of the network have a frequency of 20 minutes and are run according
to a cyclic timetable with a cycle of 1 hour. The frequency on stations in specific
time periods as e.g. daytime is increased by adding extra lines to the part of
the network covering these specific stations. This way of increasing frequency
makes it easy for to customers to remember the line routing both in the regular
daytime and in the early and late hours.

Each line must be covered by a certain number of trains according to the
length of its route. The trains covering one line forms a circuit. The time of a
circuit is the time it takes to go from one terminal to the other and back.

The network consists of two main segments, the small circular rail segment,
running from Hellerup in the north to Ny Ellebjerg in the south, and the remain-
ing major network. This consists of seven segments - six ”fingers” and a central
segment combining the fingers. A consequence of this structure is that a high
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Fig. 1. The DSB S-tog network according to the 2006 timetable

number of lines pass the central segment resulting in substantial interdependency
between these lines. This interdependency makes the network very sensitive to
delays and it is thus imperative to S-tog to reduce the line interdependency as
much as possible in the early planning stages. The plans of timetable, rolling
stock and crew should if possible be robust against disturbances of operations.
It is, however, in general non-trivial to achieve such robustness.

1.1 Simulation

One way to identify characteristics regarding robustness is by simulating the
operation of the network. Simulation helps identifying critical parts of the net-
work, the timetable and the rolling stock and crew plans. One example is poor
crew planning in relation to the rolling stock plan. It is unfortunate to have too
little slack between two tasks of a driver, if the tasks involve two different sets
of rolling stock.

Simulation also provides a convenient way to compare different types of
timetables on their ability to maintain reliability in the operation. This allows
better decisions to be made on a strategic level regarding which timetable to
implement. Specifically, for the network structure of S-tog the number of lines
intersecting the central segment has proven important to the stability in opera-
tion in the past. It has been a common understanding that an increasing number
of lines passing the central segment will lead to a decreasing regularity.



Time slack is often used as a remedy for minor irregularities at the time
of operation. Time slack can for example be added to running times along the
route, dwell times on intermediate stations and turn around times at terminals.
Common for these types of slack are that they are introduced at the time of
timetabling in the planning phase.

It is common knownledge that time slack increases the ability of a timetable
and a rolling stock plan to cope with the facts of reality, i.e. the unavoidable dis-
turbances arising in operation. Slack in a plan is, however, costly since resources
are idle in the slack time if no disturbance occurs. It is therefore not evident
which type of slack to use, exactly where to use it, and how much to use.

The stability of a network is not only related to the ”inner robustness” in-
troduced through time slack. As noted earlier, slacks in the plans are intended
to compensate for minor disturbances. When larger disturbances occur action
must, be taken to bring the plan back to normal. This process is called recovery.
There are various types of recovering plans. For example, cancelling departures
decreases the frequency of trains on stations, which in turn increases freedom in
handling the disturbance.

The simulation model to be presented is used for testing various timetables
with different characteristics. Also we use the model for testing some of the
strategies of recovery used by rolling stock dispatchers at S-tog. Firstly, in Section
2, related literature on the subject is presented. Recovery strategies employed
at S-tog are described in Section 3. In Section 4 we present the background for
the simulation model, and Section 5 discusses assumptions and concepts of the
model. The model itself is presented in Section 6, and the test setups and results
are presented in sections 7 and 8. Finally, Section 9 gives our conclusions and
suggestions for further work.

More details on the topic can be found in the M.Sc. thesis [5] by Hofman and
Madsen.

2 Related work

Related work involves studies on robustness and reliability, simulation and re-
covery. The first subject area, robustness and reliability, focuses on identifying
and quantifying robustness and reliability of plans. Simulation is used for various
purposes within the rail industry, and the models of the various subjects often
have similar characteristics. The area of recovery presents various strategies and
systems for recovery. Systems are often based on optimization models.

2.1 Robustness and reliability studies

Analytical and simulation methods for evaluating stability are often too complex
or computationally extremely demanding. The most common method is there-
fore using heuristic measures. In [1] Carey describes various heuristic measures
of stability that can be employed at early planning stages. Carey and Carville [2]
present, a simulation model used for testing schedule performance regarding the



probability distribution of so-called secondary delays (knock-on effects) caused
by the primary delays, given the occurrence of these and a schedule. The model is
used for evaluating schedules with respect to the ability to absorb delays. In [12]
Vroman, Dekker and Kroon present concepts of reliability in public railway sys-
tems. Using simulation they test the effect of homogenizing lines and number of
stops in timetables. Mattsson [8] presents a literature study on how secondary
delays are related to the amount of primary delay and the capacity utilization
of the rail network. An analytic tool for evaluating timetable performance in a
deterministic setting, PETER, is presented by Goverde and Odijk [4]. The eval-
uation of timetables is done without simulation, which (in contrast to simulation
based methods) makes PETER suitable for quick evaluations.

2.2 Simulation studies

Hoogheimstra and Teunisse [6] presents a prototype of a simulator used for
robustness study of timetables for the Dutch railway network. The simulation
prototype is called the DONS-simulator and is used for generating timetables.
Similarly, in [9] Middelkoop and Bouwman present a simulation model, Simone,
for analysing timetable robustness. The model simulates a complete network and
is used to identify bottlenecks. Sandblad et al. [11] offer a general introduction
to simulation of train traffic. A simulation system is discussed with the multiple
purposes of improving methods for train traffic planning, experimenting with
developing new systems, and training of operators.

2.3 Recovery studies

In [3] Goodman and Takagi discuss computerized systems for recovery and vari-
ous criteria for evaluating recovery. In particular, they present two main methods
of implementing recovery strategies: Either recovering from a known set of re-
covery rules or optimizing the individual situation, i.e. determining the optimal
recovery strategy for the specific instance at hand. A train holding model is pre-
sented in [10] by Puong and Wilson. The objective of the model is to minimize
the effect of minor disturbances by levelling the distance between trains by hold-
ing them at certain times and places of the network. In [7] Kawakami describes
the future framework of a traffic control system for a network of magnetically
levitated high speed trains in Japan. Different recovery strategies are presented,
one of which is increasing the speed of delayed trains.

3 Recovery strategies

When a timetable is exposed to disturbances and disruption occurs, it is crucial
how the operation returns to normal, and how fast the strategy can be imple-
mented. At present, the procedure of returning to a normal state of operation
is manual with support from operation surveillance systems and a system show-
ing the plan of operation constructed in advance. The different manual actions
available are mainly the following:



Platform changes on-the-day It is planned in advance which platforms to
use for the different train arrivals and departures at the time of operation.
If a planned platform is occupied at the time of arrival of the next train, the
train is rescheduled to another vacant platform if possible. For example, at
Copenhagen Central (KH) there are two platforms in each direction. When
one platform is occupied with a delayed train the trains can be lead to the
other vacant platform for that direction.

Trains skipping stations i.e. making fast-trains out of stop-trains If a
train is delayed it is possible to skip some of its stops at stations with minor
passenger loads and few connecting lines. However, two consequtive depar-
tures on the same line cannot be skipped.

Shortening the routes of trains A train can be ”turned around” before reach-
ing its terminal i.e. the remainder of the stations on its route can be skipped,
cf. Figure 2. Again, two consequtive trains cannot be turned.
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Fig. 2. The train movement at early turn around

Swapping the tasks/routes of fast-trains catching up with stop-trains
On some of the segments of the network both slow trains stopping at all sta-
tions and faster trains that skip certain stations are running. Delays some
times occur so that fast lines catch up with slow lines leading to a delay of
the fast trains. Here, it is possible do a ”virtual overtaking”, i.e. to swap the
identity of the two trains so that the slow train is changed to a fast train
and vice versa.

Inserting replacement trains from KH for trains that are delayed Trains
covering lines that intersect the central section run from one end of the net-
work to the other passing Copenhagen Central. Here, a major rolling stock
depot as well as a crew depot is located. If a train is delayed in the first part
of its route, it is often replaced by another train departing on-time from KH.
Thus, a new train is set in operation at KH, which proceeds on the route of
the delayed train. This is on arrival at KH taken out of operation.



Inserting replacement trains for trains that have broken down In case
of rolling stock failure the train is replaced by new unit of rolling stock from
a nearby depot.

Reducing dwell times to a minimum At stations there are pre-decided dwell
times. These vary with the different passenger flows of the stations and with
different special characteristics such as a driver depot. The latter demands
extra time for the releasing of drivers. In the case of a disruption the dwell
times on all stations are reduced to minimum.

Reducing headways to a minimum In the outer ends of the network there
are some slack on the headways. In the case of delays headways are reduced
making the trains drive closer to each other. As the frequency of trains in
the central section is high there is less slack here for decreasing headways.

Reducing running times to a minimum Timetables are constructed given
predefined running times between all sets of adjacent stations. The running
time is always the minimum running time plus some slack. In case of a
disruption, running times between all stations are reduced to a minimum
given the particular context.

Allowing overtaking on stations with available tracks Handling operations
is less complex if there is a predetermined order of train lines. In the case
of a disruption the predetermined order of lines can be broken on stations
with several available platforms in the same direction i.e. where overtaking
between trains is possible. This is for example used when a fast train reaches
a delayed stop train at KH.

Cancelling of entire train lines In the case of severe disruption entire lines
are taken out, i.e. all trains currently servicing the departures on the relevant
lines are taken out of operation. In the case of severe weather conditions such
as heavy snow, the decision is taken prior to the start of the operation.

The main components in recovery strategies are increasing headways or ex-
ploiting slack in the network, called respectively re-establishing and re-scheduling.
The first handles disturbances by employing prescheduled buffers in the plans.
The latter refers to the handling of disturbances by making some changes in the
plan to bring the situation back to normal. The ways of changing the plan are
in most cases predefined.

4 Background of the problem

4.1 Planning and designing timetables

In S-tog the first phase of timetabling consists of deciding the overall line-
structure of the train network. The basis for the decision includes various criteria
such as number of passengers on the different fingers, passenger travel-patterns
and rotation time of lines. Regarding the latter criteria, it is from a crewing
perspective an advantage to keep the rotation time at a level matching a rea-
sonable duration for driver-tasks. In the next phase the stopping patterns are
decided automatically from input such as driving time, minimum headways and



turn-around times. In the third phase, we then verify whether the plan is feasi-
ble with respect to rolling stock. These first three first phases are all carried out
internally in S-tog. The following phases involve various other parties, each of
which evaluates the proposed timetable, including BaneDanmark and the Na-
tional Rail Authority. When all involved parties have accepted the timetable,
the phase of rolling stock planning begins.

The process of designing and constructing a timetable is exceedingly long. It
is made up by the long process of constructing possible timetables that might be
rejected in other phases of the process, thereby forcing the process of timetabling
to be highly iterative. Many stakeholders are involved in the decision of which
timetable to implement in operation, and these may very well have conflicting in-
terests. In all phases of the timetabling process there is an urgent need for being
be able to discuss specific plans both qualitatively and quantitatively. Quantita-
tive information can be obtained by simulation. Often it is an advantage not to
have too many details in the input of a simulation. To compare different timeta-
bles it may e.g. not be necessary to know all details about tracks and signals.
Therefore, a decision regarding the timetable to be developed for operation may
be taken early in the planning process.

4.2 Disturbances at S-tog

The disturbances at S-tog can be classified into categories at several levels leading
to various actions when experienced during operations. First of all, disturbances
are categorized as being the consequence of some specific primary incident as
e.g. rolling stock defects (causing speed reductions), passenger’s questions to the
train driver, illness of a driver, or signal problems (forcing the trains to stop). We
distinguish between primary incidents caused by the rail system (trains, rails,
passengers etc.) and driver related incidents.

Incidents with a very long duration and complete breakdowns of the sys-
tem are considered as a separate type of incidents. An example of a complete
breakdown is the fall-down of overhead wires.

Secondary incidents occur as a consequence of primary incidents. These in-
cidents occur because primary incidents have influenced the operation, forcing
trains to stop or to slow down. The slack present in the timetable and the number
of secondary incidents that usually occur during operation are directly related.
That is, when slack is decreased the number of secondary delays increases and
vice versa.

The general measures of disturbances in the S-tog network are termed reg-
ularity and reliability. These refer respectively to lateness and cancellations in
the network. Regularity is calculated as

1 LateDepartures
DeparturesinT otal

) * 100%

Traffic is considered stable when regularity exceeds a limit of 95%. A departure
is late when it is delayed more than 2.5 minutes. Reliability is calculated as



( Actual Departures

1
ScheduledDepartures ) * 100%

Contractually, reliability must be higher than 97% over the day.

4.3 Recovery strategies

Implementing different recovery strategies in a simulation model makes it pos-
sible to evaluate, which actions lead to the quickest recovery and least sizeable
disruption with respect to affected trains. We have chosen to investigate three
specific S-tog strategies for recovery. These have been implemented in the simu-
lation model and are evaluated individually i.e. two different recovery strategies
are not employed at the same time in any of the presented test-cases. The three
recovery strategies chosen were ” Early turn around”, ” Insertion of on-time trains
on KH” and ”Cancelling of entire train lines”. All of these recovery strategies
are frequently used in operation. They each contribute to increased headways
in some segment of the network. Furthermore, these three methods of recovery
are employed both in case of smaller and of medium size delays. Also they have
varying effects on customer service level.

Early turn around increases headways in the part of the network not serviced
because of the early turn around, and the train catches up on schedule in the
following departures. As a result, the number of secondary delays is decreased
as the train is often turned to an on-time departure. The negative consequences
of the recovery strategy are that some departures are cancelled when the train is
turned around before the end station of its route. This decreases the reliability.
Also, it becomes difficult to locate the rolling stock according to the circular
schedule, which must continue the following morning. In reality the trains are
turned without any respect of the line of the train. The train simply turns and
departs according to the first scheduled departure.

In the simulation model the strategy has been implemented with the costraint
that two successive trains can not be turned, i.e. one of them must continue to the
end station to meet passenger demands. Also, a train can not be turned in both
ends of its route. The shortening of routes are, apart from these two constraints,
invoked for each individual train by judging whether it is either more late than a
certain threshold or more late than can be gained by using the buffer at the end
station. In priciple, it is physically possible to turn around trains on all stations
in the S-tog network. However, as only a subset of the larger stations are used
for turn around in practice, these are also the only stations in the simulation
model where turn around is feasible. In the model, a turned around train must
match the departures that was originally planned for that particular train.

Cancelling of entire train lines is invoked by the condition of the regularity
of the line in question. If the regularity of the line is below a certain threshold,
the line or a predefined extra line on the same route is taken out. The line may
be reinserted when the regularity again exceeds a certain lower limit and has
been above this limit for a predefined amount of time. When put into action this



recovery strategy increases the headways on the segment of the network where
the line in question runs. A positive effect of the recovery strategy is that the
number of secondary delays decreases. As entire lines are cancelled, employing
this strategy has a considerable negative impact on the reliability.

Specific characteristics of the recovery strategy are that trains on the line in
question can only be taken out at rolling stock depots and that at the time of
insertion it must be ensured that drivers are available at these depots. As drivers
are not simulated in the model, the latter restriction is not included.

Insertion of on-time trains on KH is the strategy of replacing a late train with
train being on-time from KH. This means that the time the network is serviced
by the delayed train is decreased. Like the recovery strategy of shortening routes,
this strategy is also employed when the relevant train is more than a predefined
threshold late. The threshold limit is set by the duration of the buffer at end
station. The strategy has no impact on the reliability as no trains are being
cancelled. Tt does, though, have a limited positive effect on the regularity. As no
headways are increased the headways are merely levelled out in the part of the
route from KH to the end station. It is assumed in the model that only one train
in each direction on the same line can be replaced at the same time. Hence, at
least every second train services the entire line.

5 Assumptions

One of the difficulties in simulation modelling is to decide on the level of detail
to use, i.e. to decide whether it is necessary to implement a very detailed model
or whether trustworthy conclusions can be made on the basis of more coarse
grained information. In the rail universe we have to determine whether signals
and tracks must be modelled with high precision or whether it is sufficient to
model a network with stations as the nodes and tracks between them as the
edges.

Additional considerations regarding specific details must also be made. Below
we describe the assumptions we have made in modelling the S-tog network.

All experiments are based on the worst case scenario of operating peak hour
capacity throughout the simulation. This will not affect the validity of the results
as stability and robustness are lowest when production and demand are highest.

We assume that the stopping pattern of each lines is constant over the day.
In most cases, each line has a fixed individual stopping pattern over the day.
Deviations do occur, especially in the early morning hours and in the evening. As
we have chosen only to simulate peak hours not intersecting these time intervals,
we assume that the stopping pattern for each line is fixed.

The stopping times of trains in the timetable are given with the accuracy of
half a minute. Therefore, the train in reality arrives at a station approximately
at the time defined by the timetable. Arrivals ”before schedule” may thus occur.
Since we do not allow a train to depart earlier than scheduled, these early arrivals
have not been implemented in our simulation-model.



The circular rail segment has been omitted from the test scenarios. In general,
it has a very high regularity and its interaction with the remainder of the network
is very limited.

In the model, all minimum headways have been set to 1.5 minutes. This
makes the model less exact than if minimum headways are kept at their real
levels, which vary depending on the area of the network. In reality, network
parts where trains drive with high speed have larger minimum headways than
low speed parts. However, due to the heavy traffic the low speed parts constitute
the bottleneck network parts.

In our model delays are added at stations. The alternative is to add delays
between stations describing the track segment between two stations to some
predefined detail. This, however, complicates the model without giving any ad-
ditional benefits regarding the possible comparisons between time tables and
recovery strategies.

Delays are genereated from delay-distributions of historical data. We hence
assume that the delays in the system will occur mainly caused by the same
events as they have done up till now. However, there may be a variation in delay
patterns stemming from the structure of the timetable. Even if no timetable
similar to the timetable in a test scenario have been in operation, the delays
observed at stations in the past still seem to offer the best basis for generating
delays for the test scenario in question.

The probability of delay on a station is set to 50%. This is estimated from
the historical data as a worst case situation. Almost no time registrations are
zero (i.e. the departure is exactly on time).

In our model, regaining time is only possible at stations and terminals and
not while running between stations. Even though time can be gained between
the stations in the outer part of the network, this is insignificant compared to
what can be gained in the terminals. Again, it is clear that the regularity of a
test case in real-life will be at least as good as the one observed in the simulation
model, since extra possibilities for regaining lost time are present.

The single track of 500 m on a part between Vearlgse and Farum is not
modelled. This is the only part of the network with a single track. As the single
track part only accounts for 0.3% of the network this has no measurable effect
on the results.

In the central section there are four junctions in the form of stations where
lines merge and split up. To enable the use of a simple common station model,
these junctions are not explicitly modelled in the simulation model. To compen-
sate for this, virtual stations are introduced in the model. On the hub stations,
where different sections of the network intersect, a station is added for merging
or parting of the lines meeting at the hub. As a result of the extra station, the
model merges and divides at slightly other times than in reality. An example
of this is Svanemgllen (SAM). At SAM the northbound track divides into two.
Hence, the lines that have passed the central section divide into two subsets. In
the 2003 timetable, the subsets are two lines running towards Ryparken (RYT)
and the remainder running towards Hellerup (HL). SAM is modelled as four sta-



tions; two stations where trains run towards respectively come from RYT and
two that run towards respectively come from HL. Going south this means that
when departing from SAM the trains must merge so no ”crash” appears. When a
station has several platforms in each direction, this is also handled in the model
by adding in an extra station for each platform. For example, KH is modelled
as four stations, two in each direction. This means that KH has two platforms
available for each direction and can have up to four trains in the station at the
same time.

The changes in the infrastructure since 2003 mostly concern the expansion
of the circular rail of the network. Therefore, results obtained using the 2003
structure are still valid.

The simulation model is in general coarse grained and contains several minor
modifications in relation to the facts of reality. Nevertheless, the model is ade-
quate for comparing timetables and for evaluating the immediate impact of one
recovery method compared to either one of the two other implemented recovery
methods or no recovery cf. the text sections above.

6 The simulation model

The simulation model has been implemented in Arena, which is a general pro-
gramming tool for implementing simulation models. The model is based on the
circulations of rolling stock for each of the lines. Therefore, the main model of
the simulation is built based on the lines. It has an entrance for each line where
entities are created corresponding to the trains necessary to run the line. The
trains circulate in a general station submodel common for all stations. A re-
covery method is given before the entities enter the station submodel and start
iterating over it.

The input to the model is the line sequences, the departures, and various sta-
tion information such as for example whether a particular station is a terminal,
an intermediate stopping station or an intermediate non-stopping station, and
the dwelling time at each station.

6.1 Station submodel

In the station submodel attributes are first updated for the next step and the
next station respectively as these are used in the model relative to the current
step and station. The model iterates over the stations in each line of the network.
Therefore, the model reiterates from the beginning when the final station in the
route is reached. Secondly, the attribute of direction is updated depending on
the arriving train entity. Thirdly, the entity is put on hold if the station of the
current step is occupied by another train. If the station is not occupied, the entity
in question is allowed to enter the station. This is emphasized in the model by
setting an ”occupied” flag on the station. Thereafter, it is decided which type of
station is entered, given the three possibilities.



The next action of the station submodel is handling the train dwelling time
depending on the type of the station. If the train entity is set to stop at the
station, the train is delayed by the predefined dwelling time. The dwelling time
assigned depends on whether the train entity is already delayed from a previous
station. If the train is delayed it should use the minimum dwelling time allowed.
If not, it should use the standard dwelling time. No train can leave earlier than
scheduled.

Next a possible delay is added. Delay is added at 50% of the stations. There
are no delays added in the model before all trains have been introduced. Delays
are added to the trains according to a distribution based on historical data.

The station is now marked unoccupied, as the train leaves the station after
have performed its stop including dwelling time and possible delay. The reg-
ularity and the reliability are updated immediately after the station has been
registered as unoccupied. These are calculated for each train on each of its sta-
tions. The overall regularity and reliability are the final averages of the individual
values.

Now the entity enters some recovery method depending on which method was
chosen initially. The method may be that no recovery action should be taken at
all.

After recovery, the specific case of merging the lines B and B+ is handled
in the submodel merge. If the line of the train entity is either the B or the B+
line and the current station is Hgje Taastrup (HTAA), the trains merge and
drive alternately B and B+ unless recovery has cancelled line B4+. The merge
is handled simply by alternating an attribute on the entity characterizing which
line the train entity runs. If B+ has been cancelled, merging is not possible and
the trains are instead delayed 10 minutes, which is the frequency between B and
B+.

Routing is also handled in the station submodel. In the routing part, the
train entity is routed from the current station to the next. First the train is
held back to ensure sufficient headway. Next the train is held back in a queue
until there is an open platform at the following station. There is a maximum
number on the queue length identical to the space on tracks between stations in
the S-tog network. If the current station is a terminal, the train can gain time
and is routed to the same station in opposite direction otherwise it is routed to
the next station in its line sequence without the possibility of gaining lost time.
Finally, time is updated for the train entity with the driving from one station to
the next.

6.2 Recovery submodels

Early turn-around The basic idea of this recovery method is that if a train
is delayed more than a certain threshold, it will change direction at an inter-
mediate station before it reaches the planned next terminal. This is checked in
the beginning of the model together with a check of whether the line has been
turned on its previous trip in the opposite direction.



If the current station is a possible turn-around station, the turn-around is
performed and the next step and the starting time are decided. By creating a
duplicate of the train entity turned around, it is possible to ensure that the
following train is not also turned early.

Take Out This recovery method cancels specific lines in the network in case
of disruption. The cancellation of lines are initiated by regularity falling below
a certain threshold. When regularity has reattained another certain threshold,
the method reinserts the trains on the cancelled line.

The candidates to be cancelled are predefined. For example, if delays are on
line A, line A+ is cancelled.

Trains can only be taken out on depot stations. We assume the availability
of drivers at the time of reinsertion. The method sets the train entities on hold.
The cancellation of some entity is simply done by setting the train entities to
be cancelled on hold and reinsertion is initiated by signalling. Time and station
are then updated according to the time on hold and the line of the entity, and
the train entity continues to run from that specific station along its planned line
sequence.

Replace This recovery method inserts an on-time train from KH to replace a
train delayed along its route, which is then taken out. It is activated when a
train is more late than a certain threshold and the previous train was allowed
to continue along its entire route.

The model of the method is divided in two. One handling the take out of
trains at KH and one handling observation of delay at all other stations and
scheduled insertion on KH. In the latter of these, a duplicate of the train entity
is created to ensure that the train is taken out when it reaches KH.

It is at all times assumed that rolling stock is available at KH for inserting
trains.

7 Test Cases

For the purpose of testing the simulation model 7 timetables has been used, some
of which are run in several versions to make results more comparable. Two of the
timetables are actual timetables of respectively 2003 with 10 lines intersecting
the central section and 2006 with 9 lines intersecting the central section. They are
both of the structure seen in Figure 1 Three timetables are potential timetables
for years to come. They have respectively 10, 11 and 12 lines intersecting the
central section. See Figure 3 and Figure 4. Finally, two artificial timetables have
been constructed especially for the test session. The first of these has 19 lines on
the fingers and 1 central metro line in the central section. The other has in total
17 lines, with a combination of circular and drive through lines in the central
section. See Figure 5.



Fig. 4. Networks with respectively 11 and 12 lines through the central section

Fig. 5. Network on the left has one central metro line. Network on the right is a
kombination of metro and through-going lines



The purpose of the test session with so different timetables is to test the
effect of different characteristics such as a varied number of lines, different stop-
ping patterns, line structures, cycle times, homogeneous use of double tracks,
homogeneous scheduled headways and buffer times at terminals.

To make results comparable, changes have been made to some of the timeta-
bles. For example, lines have been extended and headways have been evened
out.

The recovery methods have been tested with varying thresholds for activa-
tion of the methods. The Early Turn around and Replace methods have been
tested for activation when the train in question is more late than respectively
2.5 minutes, 5 minutes, and “the amount of buffer time” at the terminal. For
the Cancellation method, activation has been set at regularity falling below 80%
without reinsertion, or 90% both with or without reinsertion. Reinsertion takes
place when regularity increases above 95%. The recovery methods are not tested
on the artificial timetables as these are so different from the timetables of today
that recovery results are incomparable.

A series of tests were run with varying buffer time at terminals.

Tests with small and large delays are performed. In these test cases we have
added respectively small delays, large delays and both large and small delays.
The definition of small and large delays are derived from the historical data.
The delays divide the stations into two subset of respectively 80 stations with
small delays and 81 stations with large delays. For the first two of the three test
scenarios, delay can hence only occur occur at 50 % of the stations. The tests
are run with no recovery and 100% probability of delay on the relevant stations.

8 Computational Results

A variety of tests have been carried out with the simulation model. We have
chosen to present specifically test results regarding the comparison of timetables,
the effect of large versus small delays on operation and varying sizes of terminal
buffer times. The complete set of tests is described in [5].

The main measures used for evaluating results are regularity and reliability.
The registration in the simulation model starts when the start-up period is
completed, i.e. when all trains has been inserted in the current model run.

When evaluating the results, it is also interesting to evaluate the cost of a
timetable with respect to the number of trains necessary to maintain circulation.
An optimal solution is a robust timetable operated by as few trains as possible.
This is an obvious trade-off since fewer trains in a solution implies that the
times of circuits for lines are decreased. The result is less “room” for slack in the
timetable and therefore generally less robustness.

8.1 Comparing Timetables without recovery

A total of 12 different timetables has been tested with and without recovery.
Figure 6 shows a plot of the regularity of different timetables run without recov-
ery.
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Fig. 6. Regularity of the 12 tested timetables where no recovery is applied

In general the number of lines have a high impact on regularity. Fewer lines
implies an increase in regularity. It is, however, possible to improve timetables
that has a high number of lines by increasing buffers on terminals. The results
show that increased buffers improve the ability to “cope with” delays. An ex-
ample of this is the timetable with 10 lines, cf. Figure 3.

8.2 Comparing Timetables using Turn-Around Recovery

The regularities of the timetables run with the turn-around recovery method are
shown in Figure 7. The threshold for invoking the method has been set to the
terminal buffer time used in the time tables.

Results show again that the number of lines significantly influences the level
of regularity, however, the effect decreases with increasing number of lines. This
is a consequence of more trains reaching the threshold and hence being turned,
cf. Figure 8, where regularities of timetables are shown with a threshold for the
turn-around recovery set to 5 minutes. The ranking of timetables with respect to
level of regularity is here different from that of Figure ??. In addition, an overall
better regularity on lines when using buffertimes as threshold can be observed.

8.3 Comparing Timetables using Cancellation of Lines Recovery

As expected, the results show that the cancellation of lines has a very positive ef-
fect on regularity. Corresponding to the positive effect on regularity, the recovery
method has a negative effect on reliability. That is, the majority of departures
may be on time but only when a substantial part of the planned departures have
been cancelled. The results for all timetables are given in Figure 9.
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when delay is higher than 5 minutes
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8.4 Comparing Timetables using Replacement of Trains Recovery

This recovery method does not cancel any departures. Therefore the reliability
is 100% in all test results. This also means that the headways are not increased
when the recovery method is invoked. As expected this shows that the positive
effect on regularity is less than for the other recovery methods.

8.5 Comparing the Effectiveness of Recovery Methods

If we compare the results of the “turn-around” with the “line-cancellation” re-
covery method, we see that the regularity of the “tun-around” is at the same level
as the one of “line-cancellation” for timetables with a low number of lines. For
timetables with high numbers of lines, only “line-cancellation” recovery brings
up the regularity to a sufficiently high level.

Comparing recovery by replacement with the two other recovery methods, it
is evident that the method does not have the same level of effect on the regularity
as the two others when it comes to the timetables with many lines.

8.6 Testing the Effect of Large and Small Delays

The test results of running with small and large delays separately are shown in
Figure 10 for timetables with 12 lines. Similar results were observed for other
timetables.

The figure shows a clear tendency: Small delays have almost no effect on
the regularity when no large delays are present. The size of buffers are relatively
large compared to the delays in the system. Large delays have a significant effect
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Fig. 10. Regularity when respectively only small delays, only large delays and all delays
are applied

on the regularity as expected. When small delays are introduced in addition to
the large delays, they have a much larger effect on propagation of delay than
hen they occur on their own. It is, however, still obvious that larger delays has
the largerst effect on regularity and that these if possible should be eliminated.
Nevertheless, a substantial increase in regularity can be achieved through the
removal of small delays, which is a much easier task.

8.7 Terminal Buffers

The terminal buffers has a substantial effect on regularity. There is often more
available time at end stations than on intermediate stations with respect to the
size of buffers. As buffers are larger on terminals, there is a better possibility to
decrease an already incurred delay. Regarding the size of terminal buffers it is
expected that increasing buffer times at terminals in general implies decreasing
delays in the network. Test were run with increasing buffer times to confirm
this. The increase in buffer time necessitate that one additional train is set into
rotation on specific lines. Hence the number of trains necessary to cover the line
increases as the buffers on terminals are increased, cf. Table 1.

The results show that in general regularity improves when buffers are in-
creased, but also that there is an upper limit on the amount of buffer time,
beyond which no extra regularity is gained, cf. Figure 11 and 12.

The improvement of regularity depends heavily on the timetable in question
for each individual test. The timetable with 12 lines improves considerably more
than the timetable with 9 lines.
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|Timetable |Trains Needed|

2003, 10 lines 73
2003, 10 lines and improved buffers on terminals Iy
Constructed, 10 lines 67
Constructed, 10 lines and improved buffers on terminals 71
Constructed, 12 lines 93
Constructed, 12 lines and improved buffers on terminals 100
Combination 82
Combination, Improved buffers on terminals 88

Table 1. Number of trains running simultaneously in the tested timetables

9 Conclusions and future work

We have presented a simulation model for testing timetable robustness and the
effect on robustness of three different recovery strategies. The main results from
our tests are that there is a upper limit on the amount of buffer time leading to
positive effect on the regularity, and that small delays though insignificant on
their own have a significant additional effect when occuring together with large
delays. Finally, there is a clear tendency that the recovery methods rendering
the largest increase in headways result in the best robustness and thereby the
best increase in regularity.

Further work on the simulation model is to implement various others of the
presented recovery methods. Also, simulating the operation during non-peak
hours including the implementation of rules for change of train-formation is of
ovbious interest. Furthermore, including the train drivers in the simulation will
enable analysis of the dependency between timetables and crew plans, but will
also require substantial additions and changes to the underlying model.
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