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Abstract — The percentages of wind power penetration in some 
areas of the electric distribution system are reaching rather high 
levels. Due to the intermittent nature of wind power, the voltage and 
frequency quality could be seriously compromised especially in 
case of island operation of such an area of the grid. In this paper the 
impact of wind power in island distribution systems has been 
analysed with respect to voltage and frequency. Possible measures 
for controlling both voltage and frequency are suggested and have 
been analysed. The suggested measures are static voltage controller 
(SVC), dump loads, kinetic energy storage systems, and load 
shedding. It is shown that the measures effectively can bring 
voltage and frequency quality within the normal operation range. 

Index Terms — Dump load, Flicker, Island operation, Kinetic 
energy storage system, Load shedding, SVC, Wind power. 

1. INTRODUCTION 

For many years the power consumption has relied on the 
production of centralized power plants interconnected 
through transmission lines and thereby accomplishing a 
rather stable power system. Nowadays this philosophy is 
changing due to the increase of the embedded generation of 
small combined heat and power (CHP) plants and wind 
farms. This configuration leads to some drawbacks but also 
to advantages. Considering the fact that the electric power 
has to flow through distribution lines instead of transmission 
lines, the losses will be increased in many cases. In addition, 
in the case of wind turbines, the nature of the energy source 
and the use of power electronics in the generation process 
can affect the power quality. Nevertheless, wherever the 
embedded generation capability is able to fulfil the 
consumption, in cases of e.g. disturbances in the grid or 
imminent blackout, the network could be split in autonomous 
grid cells working independent from each other as shown in 
Figure 1. 

 

The arising problem is the possible instability in terms of 
voltage and frequency due to the weakness of such a small 
electric network operated in island. Regarding the frequency, 
the problems are caused mainly because of the rather low 
inertia (H) of the system. As it is shown in the network 
electromechanical equation (1) a mismatch between 
produced power (Pmech) and consumed power (Pelec) generates 
variations in the angular frequency w of the generators and 
thereby the frequency of the system. These variations are 
dumped by the inertia of the system, and since the inertia, in 
this case, is much smaller than in non isolated operation, the 
frequency will be more affected.  
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In the case of the voltage, the reactive power variations of 
the demand and wind generation have a more significant 
impact on the total reactive power balance of the system 
compared with interconnected operation. Considering  that 
the excitation systems of the synchronous generators are not 
fast enough to compensate such variations, the voltage will 
be affected. 

Considering the objections of the isolated operation, this 
paper presents the results of a study on the dynamic 
behaviour of a typical Danish electric distribution network in 
island operation. The study has been realized by use of the 
power systems simulation program PowerFactory by 
DigSilent based on a quite simple grid. The considered 
power system includes a variable demand, a CHP plant and a 
wind farm with variable production. 

The wind power is going to be considered as wind turbines 
of the Danish concept type and without any power control 
capability, i.e. they are fixed speed wind turbines and do not 
have active stall or pitching systems for controlling the 
power output. Under these conditions, the power output of 
the wind turbine will depend mainly on the wind speed; 
hence the wind power production is an uncontrollable energy 
source which, as in the case of the variable demand, might 
generate disturbances in the grid.  

The fluctuating wind power and its penetration percentage 
present a key issue in a grid cell. In order to outbalance the 
frequency disturbances from the wind power in a grid cell, 
the use of dump loads, kinetic energy storage systems and 
load shedding is considered, and in the case of the voltage, 
the application of a SVC is considered. 

 
Figure 1. Split network. 



NORDIC WIND POWER CONFERENCE, NWPC’2007, 1-2 NOVEMBER 2007, ROSKILDE, DENMARK 2 

 

2. STUDIED MODEL 

The analyzed model is representative of a grid cell. It 
consists of three nodes interconnected through a distribution 
line in the level of 60 kV. In one node there is a gas engine 
based CHP plant, in another node there is a wind farm which 
rated power will be modified to study different cases, and in 
the third node variable consumption is located. 

In order to get a good approximation to the real network 
behaviour in the studied conditions, the grid components 
models must be as accurate as possible and real data has to 
be used whenever possible. 

The CHP have four groups of 3.5 MW each and is 
modelled considering real data provided by the Danish 
transmission system operator Energinet.dk. The model 
includes a voltage controller, a power controller (speed 
controller), a primary mover unit model and the electric 
generator. The models for both the voltage controller and the 
primary mover unit are realised with the actual values of the 
CHP model. However, since in normal operation this plant is 
not requested to control the frequency, the speed controller 
which was basically a proportional controller was replaced 
by a PID controller which should be able to perform a good 
frequency control since it has no steady state error. 
The wind farm considered consists of 8 wind turbines with a 
rated power of 500 kW each. Since there was not enough 
data available to realise an aggregated model for the wind 
farm, the 8 wind turbines have been modelled separately. 
The model of the wind turbines is done with data from a 500 
kW Nordtank wind turbine [4]. This model uses the 
mechanical power as input along the simulation time, and 
considers the soft coupling of the low speed shaft and the 
electric generator, both with the actual values for the 
parameters. The data used as input for the wind turbine 
models is a key issue. It would not be a real case if all the 
wind turbines had the same input, because the smoothing 
effect, which takes place in the power output of the wind 
farm with respect to a single wind turbine, would be 
neglected [4]. To overcome this problem, 8 measurement 
files of the Nordtank wind turbine were taken in which the 
average wind speed and turbulent value were similar to 
simulate the real behaviour in a wind farm. 

The consumption values used to simulate the dynamic 
behaviour of the load are based on measured values from 
DONG Energy, one of the Danish distribution companies in 
four of its 10 kV feeders. The average active and reactive 
consumption is 7 MW and 4 Mvar, respectively. The 
measurement of active and reactive power was with one 
second resolution which permits to simulate faithfully the 
load profile. In the node where the load is located, the 
corrective measures proposed to help with the frequency and 
voltage control will be placed. 

In the simulations the impact of wind power in both, 
frequency and voltage is analysed. The impact of wind power 
in the grid cell depends on one hand on the wind behaviour, 
as previously mentioned, and on the other hand on the 
penetration percentage of wind power in the network. Hence, 
the influence of five different penetration percentages of 
wind power between 0% (if there is no wind turbine 
connected) and 52% (if all the wind turbines are connected) 
of the total mean demand in the network is going to be 
discussed. 

To analyze the frequency and voltage it is necessary to set 
up the quality standards taken into account. According to the 
Nordic grid code [1] the maximum frequency deviations in 
normal operation must not exceed ±0.1 Hz. The frequency 
data from the simulation results will be presented into 
histogram pictures and tables. By using these tools it is easier 
to evaluate the frequency quality.  

Concerning voltage, the limit considered in this study is set 
by the maximum short term flicker power (Pst) which has to 
be below one according to IEC [3]. In this case, an algorithm 
is applied to the voltage rms values obtained in the 
simulations to compute the Pst. This algorithm is developed 
according to [2]. 

3. CORRECTIVE MEASURES PROPOSED 

 
Due to the reasons explained previously, this paper proposes 
measures to deal with frequency and voltage instability. 
These are, in the case of the frequency dump loads, load 
shedding and systems of kinetic energy storage. On the other 
hand, the use of an SVC will be discussed for the voltage 
control. Hereafter are presented thoroughly these proposals 
and in the appendix are shown the developed models used in 
the simulations. 

3.1. Dump Load 

A dump load is basically a type of load which consumption 
can be controlled quite fast to perform frequency control. 
Dump load is widely used in hybrid wind-diesel systems 
because the diesel engine is not capable to perform a good 
frequency control. In the early days the energy of the dump 
load was wasted in a resistors bank, but now it can be used to 
charge batteries or heating up water. Normally, the dump 
loads are specifically designed for working as such, which is 
an important drawback in this case because most of the time 
they would not be necessary as the network would not 
normally be in island operation.  

A possible solution for this problem would be to use some 
normal consumers as dump loads. The requested power 
could be modified without causing big problems. Some of 
those peculiar consumers could be: 

• Desalination plants. The change on requested power 
in this kind of industry would be realised by 
controlling pumps and would only affect the water 
flow. 

• Heaters. In big installations in which electric energy is 
used for heating up e.g. fluids. 

• Pumping stations. This is a similar case to the 
desalination plant.. 

• Ice making factories. The power consumption 
changes would affect to the time needed to make the 
ice. 

If the power of these loads is momentarily changed, either 
increased (if it is possible) or decreased, the troubles caused 
would be hardly noticeable whenever the averaged power 
consumption stays constant. A so called dynamic grid 
interface could manage these loads to meet the requirements 
of frequency control. In this study, a dump load of 600 kW is 
considered. It is assumed that the dump load has a normal 
operational power of 400 kW and an up-and-down regulating 
capability of ±200 kW. 
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3.2. Kinetic energy storage system (KESS). 

A kinetic energy storage system is a device which stores 
energy in kinetic form in a flywheel. This device can either 
release or absorb energy according to the requirements. It is 
considered to be a useful device in the studied case because it 
could help to the balance between demand and supply due to 
its fast response capability. 

For storing energy another device such as batteries could 
be used, however they would not be so suitable due to the 
operating conditions needed. Since the frequency may flicker 
very fast, the energy storage system has to be charged and 
discharged as well very fast. This cyclic loads upon batteries, 
would lead in the real life to a decrease in their lifetime. 
Nevertheless, a flywheel can stand much better these cyclic 
loads without a big impact on its durability. 

The model made in PowerFactory does not consider the 
interface between the system and the grid, i.e. the power 
converter is not taken into account. This consideration can be 
assumed in this dissertation because the scope is only 
analyzing the frequency control capability of this system and 
not how the power controller works. The data for the model 
was obtained from the characteristics of a real KESS [13], 
which in this case is able to store 18 MWs with a maximum 
power of 300 kW. 

3.3. Load Shedding 

Load shedding consists of load which in cases of under 
frequencies, is disconnected to reach a new balance between 
production and consumption. All major electric power 
systems have certain amount of load able to be shed under 
extreme low frequencies. These loads are typically complete 
distribution feeders including all connected customers. This 
load shedding philosophy has a major impact on consumers 
and it is not supposed to help to the frequency control in 
small deviations. 

In recent years another sort of load shedding philosophy 
[9] has been proposed. It consists of making automatic load 
shedding and is formed by a large number of small loads 
instead of few large loads. These small loads would belong 
to the household and residential consumption in such a 
manner that their partial disconnection from the grid would 
not affect the consumers comfort. Examples of this sort of 
loads are: 

• Refrigeration. For short periods of time it is 
disconnected from the compressor, meanwhile the 
lights are on. 

• Clothes dryers. The heating element is interrupted and 
the rotating drum is not stopped. 

• Water heating. The thermostat is set back temporarily. 
• Cookers. The heating devices of the cookers can be 

intermittently disconnected hardly affecting the 
cooking time. 

• Other heat sources, as i.e. those used for keeping the 
coffee warm once it is made, could also be 
temporarily disconnected. 

In the simulation program, this has been modelled as a 
load which connects or disconnects itself according to the 
requirements of the frequency. Since the frequency is 
permitted to be in the range between 49.9 Hz and 50.1 Hz, 
the load shedding is activated when the frequency goes under 
49.9 Hz and it is not reconnected until the frequency is 
totally recovered to 50 Hz. As the size of the load shedding 

has a major impact on the frequency, results with several 
quantities of load shedding will be presented. 

3.4. Static Var Compensator (SVC) 

Since the only reactive power source in the network is the 
CHP generators which excitation systems are not fast enough 
to perform a rapid control of the voltage, a system with 
capability to deal with the sudden reactive power variations 
is needed. That is provided by an SVC; it consists of a three-
phase capacitor directly connected to the network in parallel 
with a three-phase reactor connected through thyristors. This 
configuration leads to a fixed reactive power injection caused 
by the capacitor bank and a controllable reactive power 
consumption by the reactor. The reactive power control is 
performed by setting the appropriate firing angle for the 
thyristors which is the reason for its fast control. 

PowerFactory itself contains a model for this device, so it 
was only needed to setup its governor. The work philosophy 
of the SVC, in this case, consists of keeping the rms value of 
the voltage in the consumers node constant to avoid the 
flicker problems. 

 

4. NETWORK OPERATION WITHOUT CORRECTIVE MEASURES 

The frequency histogram is depicted in Figure 2. Each 
colour corresponds to a wind power penetration percentage 
in the network which varies from 0% to 52% in 13 % steps 
of the total average power consumption of 7 MW. 

 

 

Reminding the normal operation limits of 50 ± 0.1 Hz, it is 
possible to notice in Figure 2 that the frequency goes out of 
its normal operation limits under all wind power penetration 
levels. The frequency deviations are quite remarkable and for 
rather big percentages of time. In almost all the cases, the 
frequency is out of limits for approximately the half of the 
simulation period as it is shown in Table 1. Carrying out a 
deeper look into the results for the different wind power 

 
Figure 2. Frequency histogram for different wind power percentages. 

Table 1. Impact on frequency and voltage with several percentages of 
wind power penetration 

% of wind power % time inside limits Pst 

0 47 3.73 
13 53 2.91 
26 51 3.01 
39 50 3.1 
52 51 3.28 

 



NORDIC WIND POWER CONFERENCE, NWPC’2007, 1-2 NOVEMBER 2007, ROSKILDE, DENMARK 4 

 

percentages, the case with no wind power in the network 
leads to the worst frequency results. The reason for this can 
be explained by (1) which links the balance between 
produced and consumed power with the system frequency. 
When a mismatch between produced and consumed power 
takes place, the system frequency is affected. Since the 
system inertia (H) is dividing the power mismatch, the bigger 
the inertia is, the smaller is the influence in the frequency. 
Due to their really big rotors, wind turbines have a big inertia 
meaning an important part of the total inertia in isolated 
systems as is the case. Nevertheless, there is not a linear link 
between the inertia increase caused by wind turbines and the 
frequency improvement. In fact, increasing the wind power 
percentage level makes the frequency worse. The reason why 
this happen is because on one hand, wind turbines increase 
the inertia of the system which helps the frequency, but on 
the other hand, due to the variable nature of the wind and to 
the types of wind turbines used, the wind fluctuations are 
transformed into power fluctuations and generating power 
imbalances. In short, in terms of frequency, the wind power 
in the grid cell has a positive effect due to the inertia increase 
but also a negative one due to the power perturbations it 
generates. 

To study the voltage quality a flicker analysis, which 
results are shown in Table 1, is performed. Considering that 
the limit for short term flicker power (Pst) is set to 1 by the 
IEC standard [3], the results are rather poor in all the cases. 
These flicker levels would result in being annoying for the 
consumers. 

5. NETWORK OPERATION WITH CORRECTIVE MEASURES 

Next the simulation results will be presented and analysed 
considering the different measures proposed. Since those 
taken to improve the frequency can hardly improve the 
voltage, the SVC system will be used in all cases studied. 

5.1. Dump load and SVC 

The use of the dump load together with the SVC should 
improve respectively the frequency and the voltage in the 
network. In addition to the frequency and the voltage study, 
it will be discussed how the dump load will be operated 
along the simulation to get an idea of how the end use of the 
load would be affected. 

 
The results of the frequency are shown in Figure 3. The 

improvement with regard to the case of no corrective 
measures is very large. The frequency still goes out of the 
limits, but just for very small percentages of time. It seems 
that the deviations are bigger when the wind power 

penetration is increased, this is more clearly shown in Table 
2. In all the different wind power penetration percentages the 
frequency is within the permitted range more than the 90% 
of the time, reaching values as high as 99% in the case of 
13% of wind power penetration in the grid. The reason for 
this great improvement is that the fast and relatively small 
power changes are dumped by the dump load, meanwhile the 
CHP only has to deal with the long term power changes 
which are usually quite slow and not causing big problems. 
Since the consumption range of the dump load is between 
200-600 kW, the total amount of power able to be dumped is 
400kW which means less than the 6% of the average 
consumption in the simulated situation. This is a very good 
advantage, because with a few percentage of power dumping 
capability the improvement in the frequency is very high. In 
Table 2  the mean values of the power consumption of the 
dump load are shown, Pdl. These values increase slightly 
with the percentage of wind power penetration in the grid 
cell. 

In Table 2 the values of the short term flicker power (Pst) 
are shown. For all cases the flicker levels are below the limit 
set by the standard at Pst = 1, but with the maximum wind 
power penetration considered (52%) the value is quite close 
to the limit. Under these conditions, the addition of more 
wind power to the grid would probably lead to annoying 
flicker levels.  

5.2. Kinetic energy storage system and SVC 

The kinetic energy storage system can supply or consume 
either active power or reactive power. The active power is 
absorbed or released by a flywheel according to the 
requirements set to control the frequency. The reactive power 
can be controlled by the power electronics which connect the 
flywheel with the grid, however, in these simulations, that 
task is performed by an SVC. 

 
 In Figure 4 the frequency histogram for different wind 

power percentages penetration is illustrated. It seems that the 
frequency is quite well controlled, and stays within the limits 

 
Figure 3. Frequency histogram with the use of the dump load and the SVC. 

Table 2. Impact on frequency and voltage with the use of the dump load 
and the SVC. 

% of wind power % time inside limits Pst Pdl[MW] 
0 98.7 0.53 0.41 
13 99.2 0.62 0.43 
26 97.5 0.69 0.44 
39 96.5 0.77 0.45 
52 94.2 0.91 0.47 

 

 
Figure 4. Frequency histogram with the use of the KESS and the SVC. 



NORDIC WIND POWER CONFERENCE, NWPC’2007, 1-2 NOVEMBER 2007, ROSKILDE, DENMARK 5 

 

most of the time. The deviations in the case of no wind 
power in the grid are almost completely eliminated. In the 
histogram it is also possible to notice that the higher the 
percentage of wind power in the network is, the higher are 
the deviations from the permitted range. However, 
comparing this result with the case of no corrective measures 
taken, the over and under frequencies are much attenuated. 
The values of the percentage of time, in which the frequency 
is within the permitted range, and the short term flicker 
power values are presented in the Table 3. Here it is possible 
to note that in all the cases of wind power penetration 
studied, the kinetic energy storage system is able to keep the 
frequency within the range of 49.9-50.1 Hz for more than 
90% of the time. It is even reaching values as high as 99% 
for the cases of no wind power in the network and 13% of 
wind power penetration.  

 
In terms of voltage, the improvement is very remarkable. 

All the values of short term flicker power are below one, 
which is the maximum permitted level. It can as well be 
noticed that the values in this case are smaller than the values 
with the dump load. The reason for this could be related to 
the different response from the KESS and the dump load. 
While the KESS simply modify its active power exchange 
with the grid, the dump load changes both, active and 
reactive power. These reactive power changes are another 
source of voltage disturbances which the SVC system has to 
deal with.  

5.3. Load shedding and SVC 

Since the load shedding only has been set up to be able to 
help with the under frequency problems, it is more 
interesting to examine the percentage of time where the 
frequency drops below 49.9Hz. The possible impact in the 
consumers comfort due to the load shedding is discussed as 
well by mean of computing the percentage of time that the 
load is connected. 

 
In the Table 4 the values of percentage of time in which 

the frequency is below 49.9Hz are shown. Cases of 0kW, 
50kW, 100kW, 150kW of load shedding are shown. The 
average power consumption is 7MW, so the cases of load 

shedding correspond to 0%, 0.71%, 1.4% and 2.1% of the 
total consumption. Those percentages are quite small in 
comparison with the very noticeable improvement they 
generate in terms of under frequencies. The improvement is 
illustrated by comparing the column for 0% load shedding 
with the following, in which the load shedding is applied. As 
it could be expected, the higher the load shedding amount is, 
the smaller is the percentage of time with under frequencies. 
With 150kW of load shedding capability the under-
frequencies are highly reduced leading the frequency to go 
below the limit for small percentages of time.  

 
To check the impact in the consumers comfort it is 

necessary to look at the percentage of time along the 
simulation in which the load is connected. In Table 5 such 
percentages are shown. The percentage of time each load 
shedding capability is connected does not change much by 
rows. It can be approximated that with 50kW the load is 
consuming 72% of the time, with 100kW it is consuming 
75% of the time, and with 150kW it is consuming 77% of the 
time. In all the cases, there would be some impact on the 
customers. The consequence of this could for some loads 
concern the time needed for carrying out their task (e.g. 
water heaters), or slightly affect their duty cycles 
(refrigerators, space heating or freezers 

 
In Table 6 it is possible to take a general view of the 

improvements in frequency and voltage in the conditions 
discussed in this section. In terms of frequency, the 
improvement is not as noticeable as with the dump load or 
the KESS. This is, as mentioned before, due to the fact that  
the load shedding is only able to overcome problems with 
under frequencies and not able to react to over frequencies. 
Regarding voltage, the SVC manages to keep the voltage 
quite stable and all the flicker power values are below the 
limit of one. 

6. CONCLUSION 

The operation of a grid cell (average load: 7 MW) separated 
from the interconnected power system has been analysed 
under several different scenarios of wind power percentage 

Table 3. Impact on frequency and voltage with the use of the KESS and 
the SVC. 

% of wind power % time inside limits Pst 

0 99.4 0.47 
13 99.2 0.55 
26 96.2 0.65 
39 94.7 0.74 
52 90.7 0.87 

 

Table 4. Underfrequency percentages with different amounts of load 
shedding. 

% of wind power 0 kW 50 kW 100 kW 150 kW 

0 25.5 17.2 11.4 4.1 
13 22.9 16.2 9.8 3.4 
26 22.2 16.8 12 6 
39 21.9 17.2 11.7 6.4 
52 20.8 17.4 13.3 8.5 

 

Table 5. Percentages of time that the load is connected. 

% of wind power 50 kW 100 kW 150 kW 

0 71 76 77 
13 72 75 78 
26 72 75 77 
39 72 75 77 
52 73 75 76 

 

Table 6. Impact on frequency and voltage (% time inside frequency limts 
and Pst, respectively) with the use of different amounts of load shedding 
and the SVC. 

% of wind power 50 kW 100 kW 150 kW 

0 64 0.65 73 0.68 83 0.70 
13 65 0.67 42 0.70 83 0.73 
26 62 0.75 71 0.77 79 0.79 
39 62 0.83 72 0.87 79 0.86 
52 57 0.89 67 0.93 74 0.95 
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penetration from 0% to 52%. The grid cell is representative 
for a Danish distribution system with respect to 
characteristics for local CHP, wind turbines and 
consumption. Without introduction of any specific measures 
simulation results unveiled that the variable load is able to 
cause considerable deviations in frequency (49.5-50.5 Hz) 
and very wide variations in the voltage; leading to annoying 
flicker levels (Pst=3.73). The normal consumption variations 
in active and reactive power cannot be compensated fast 
enough by the local CHP. With 13% of wind power in the 
network a slightly improvement in the frequency quality 
takes place. The reason for this is the system inertia increase 
with the addition of wind turbines. The higher the inertia of 
the system is, the smaller the frequency deviations are.  

For improving the frequency control the use of a dump 
load and a kinetic energy storage system has been examined. 
Testing these devices gave very satisfactory results and the 
frequency deviations were highly reduced. With 400 kW of 
dumping load capability the frequency is kept within limits 
more than 94% of time, and with a 300 kW KESS more than 
90%. This kind of devices are very helpful for controlling 
short term frequency deviations, but the long term deviations 
have to be controlled by other means. 

The effect of different amounts of automatic load shedding 
has also been considered. This operation is useful for cases 
of under frequencies, and the results were quite good. The 
under frequencies were reduced, and the frequency 
improvement increased with increasing amount of load shed. 
The possible impact on the customers was also analyzed by 
calculating the percentage of time the loads would be 
connected. 

For improving the poor voltage quality, the use of a Static 
Var Reactor (SVC) has been considered. This device is able 
to control the voltage in the consumers’ node eliminating the 
flicker problems due to its capability of controlling the 
reactive power very fast. 

7. DISCUSSION 

Even though it might seem like the use of these devices are 
not feasible to apply in the actual grid, due to the need of a 
large amount of such devices spread along the whole 
network, the application could be feasible if the following 
considerations are taken into account: 

• There are a lot of loads spread in the electric grid 
which potentially can be used as dump loads. For 
becoming a dump load a Dynamic Grid Interface 
(DGI) is needed, which would control the power 
according to requirements for frequency. The DGI 
could also be used in a cost-effective operating 
philosophy in non isolated operation. In that operation 
mode, the dump load would be controlled for example 
to avoid the penalty fares of large power peaks in the 
consumption of a large factory. This could encourage 
the use of these devices.  

• The kinetic energy storage systems could have two 
different purposes, on one hand they could perform 
the task exposed here, but nowadays they are already 
being used as Uninterrupted Power Supply (UPS). 
These two possible applications of the KESS could 
make their use in the electric grid suitable. 

• The SVC is a quite expensive system and large scale 
use would probably not be affordable. However, the 

task realised by this system could be done by other 
devices. For example, the power converters of the 
KESS or DGI could perform the task of a SVC in a 
small scale. In fact, in the datasheet for the used 
KESS model, its capability for voltage support by 
reactive power control is explained. 

APPENDIX 

 
Dump load model in PowerFactory 

In Figure 5 the blocks diagram of the model is depicted and 
the values used for the parameters are shown in Table 7. 

 

KEES model in PowerFactory 

The model used for the kinetic energy storage system is 
depicted in Figure 6. That figure does not show the PID 
controller which transform the frequency deviation in the 
signal at, but in the Table 8 the values of its parameters are 
shown. 

 
Figure 5. Blocks diagram of the dump load model built in PowerFactory. 

Table 7. Parameter values of the dump load model. 

Definition Parameter Value 
Frequency reference fref 1 [pu] 

PID Gain K 80 
PID integral constant Ti 0.005 

PID differential 
constant 

[α, TD] [0.5, 2] 

Power reference Pref 0.4 [MW] 
Maximum power Pmax 0.6 [MW] 
Minimum power Pmin 0.2 [MW] 

Time delay constant Tr 1.5 [s] 
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Figure 6. Blocks diagram of the kinetic energy storage system.in 
PowerFactory. 

Table 8. Parameter values of the energy storage system model. 

Definition Parameter Value 
Frequency reference fref 1 [pu] 

PID Gain K -50·106 

PID integral constant Ti 0.01 
PID differential constant [α, TD] [0.25, 4] 

Energy reference Eref 13.7 [MJ] 
Charge-Discharge power Pc ±20·103 [W] 

Friction constant Kf 2.9·10-4 
[W(s/Rad)3] 

Efficiency η 0.94 

Max. power absorption Pmax 300 [kW] 
Max. power supply Pmin -300 [kW] 

Max. rotational speed wmax 345 [Rad/s] 

Min. rotational speed ωmin 188.5 [Rad/s] 

 


