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Geostatistics and Analysis of Spatial Data

Allan A. Nielsen

Abstract—This note deals with geostatistical measures for spatial corre- commercial geostatistical software exists.
lation, namely the auto-covariance function and the semi-variogram, as well This note is inspired by [11], see also [12].
as deterministic and geostatistical methods for spatial interpolation, namely
inverse distance weighting and kriging. Some semi-variogram models are
mentioned, specifically the spherical, the exponential and the Gaussian Il. SPATIAL CORRELATION

models. Equations to carry out simple and ordinary kriging are deduced. This section mentions methods for description of Similarity

Other types of kriging are mentioned, and references to international liter- bet ts of nat | iabl in the 2-D pl
ature, Internet addresses and state-of-the-art software in the field are given. etween measurements or natural variables in the 2-D plane or

A very simple example to illustrate the computations and a more realistic N 3-D space. Specifically the auto-covariance function and the
example with height data from an area near Slagelse, Denmark, are given. semi-variogram are introduced. Also a relation between the two
Finally, a series of attractive characteristics of kriging are mentioned, anda ;. ~:

. . . Aracteristies ¢ s given.
simple sampling strategic consideration is given based on the dependence oﬂ

the kriging variance of distance and direction to the nearest observations. . .
ging A. The Semi-Variogram

|. INTRODUCTION Consider two scalar quantitiegr) and z(r + h) measured
at two points in the plane or in spaeeog » + h separated by

he displacement vectdt. We consider: as a realisation of a

mation with vector and raster data which we may alrea ochastic variable/. The variability may be described b.m.o.

have stored in aﬁ@ogyaph|cameprmat|on7$/.stem (GIS). This the auto-covariance functiofassuming or enforcing first order
can be done by linking the point information to a geogr""phé'tationarity i.e., the mean value is position independent)
cal coordinate in the data base. If we have lots of point data, a T

FTEN we need to be able to integrate point attribute info

tempting alternative will be to generate an interpolated map so C(r,h) = E{[Z(r)—puZ(r+h)—pu]}.
that from our point data we calculate raster data which can be
analysed along with other sources of raster data. Thevariogram 2+, is defined as
This note deals with geostatistical methods for description of
spatial correlation between point measurements as well as de- 2y(r,h) = E{[Z(r) - Z(r + h)]*},

terministic and geostatical methods for spatial interpolation. C .
- ; S . o which is a measure for the average, squared difference between
The basic idea in geostatistics consists of considering ob- : X T
. . Mmeasurement values as a function of distance and direction be-
served values of geochemical, geophysical or other natural vari- . . .
o ; . ween observations. In general the variogram will depend on
ables as realisations of a stochastic process in the 2-D plané or,

in 3-D space. For each positianin a domainD which is a on the displacement vectér as well as on the position vector

T r. Theintrinsic hypothesi®f geostatistics says that tisemi-

part of Euclidian space, a measureable quanti#y) termed a . L " .

. . . i . . .—_variogram ~, is independent of the position vector and that it
regionalised variableexists. z(r) is considered as a reallsa-Ole ends onlv on the displacement vector. i.e
tion of a stochastic variableZ(r). The set of stochastic vari- P y P B
ables{Z(r) | r € D} is termed astochastic functionZ(r) has h) — h

_ y(r,h) V(h).

mean value orxpectation value EZ(r)} = u(r) and auto-
covariance function CdZ(r), Z(r + h)} = C(r,h), where  If Z(r) is second order stationary (i.e., its auto-covariance
h is termed the displacement vector. (dfr) is constant over function is position independent), the intrinsic hypothesis is
D, i.e.,u(r) = u, Z is said to be first order stationary. If alsovalid whereas the opposite is not necessarily true.
C(r,h) is constant oveD, i.e.,C(r,h) = C(h), Z issaid to  If we assume or enforce second order stationarity the follow-
be second order stationary. ing relation between the auto-covariance function and the semi-

This statistical view is inspired by work carried out byariogram is valid
Georges Matheron in 1962-1963. It is described in for exam-
ple [1], [2]. [3] gives a good practical and data analytically v(h) = €(0)—C(h). 1)
oriented introduction to geostatistics. [4] is a chapter in a cql- 5 . . :
lection of articles which describe many different techniques a g?’ thatC(Ot) *f g Te variance of :h(ihstocha§t|c \{anable.
their application within the geosciences. [5] deals with geosta- 'V?n Iatsz 8 p0|nthmefa|s|ur§men st etseml;]\./arrllogrlan} rtnay
tistics and other relevant subjects in the context of analysis j calculated b.m.o. the lollowing estimator, which caiculates

spatial data. Geostatistical expositions in a GIS context can glf) t?e mean value of the zquared (}j:fferencei zeéwetﬁn al
found in [6], [7]. [8] deals with multivariate geostatistics, i.e.Pal'S Of measurementsry,) andz(ry. + h) separated by the

studies of the joint spatial co-variation of more variablése displacement vectd

International _Association for_Mithematical_@&ology (IAMG) N(h)
publishes i.a. the periodicMathematical Geologwhere many 4(h) = 1 [2(r)) — 2(ri + )2
results on geostatistical research are publish&tate-of-the- 2N (h) =1

art softwaremay be found inGSLIB [9], and Variowin, [10]. _ _ _ B
Other easily obtainable softwares &eo-EASandGeostatisti- V' (h) is the number of point pairs separated/py? is termed
cal Toolbox All these packages can be found at http://wwwtheexperimental semi-variogranOften we calculate mean val-

sst.unil.ch/research/variowin/ (or via a search engine). Al§gs of4 over intervalsh + Ah for both length (magnitude)
and direction (argument) ok. Mean values for the magni-

Allan Aasbjerg Nielsen,_ I_Danish National Space Center, Technical Urigde ofh (h + Ah) are calculated in order to geta sufficiently
versity of Denmark, Building 321, DK-2800 Lyngby, Telephone +4

4525 3425, Telefax +45 4588 1397, E-mail: aa@imm.dtu.dk, |nterr§9@9h N(h) to obtain a low estimation variance for the semi-
http://Awww.imm.dtu.dkt-aal. variogram value. Mean values over intervals af the argument of
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h are calculated to check for possible anisotropy. Anisotropy Z, Z, vAr AR

refers to the characteristic that the auto-covariance function and | | | | | | |
the semi-variogram do not behave similarly for all directions
of the displacement vector between observations. This possi- -2 -1 0 1 2 3
ble anisotropy may also be checked by calculating 2-D semi-
variograms also known as variogram maps, [3], [13], [11], [10],

[9].

B. Semi-Variogram Models

Fig. 1. Simple example with three observations.

C. Examples

To illustrate the calculations Figure 1 shows a very simple
Inorder to be able to define its characteristics we parametergs@mple with three observations, = 1,z, = 3 0g 23 = 2
the semi-variogram b.m.o. different semi-variogram models. Adith (1-D) coordinates —2, —1 og 3. The semi-variogramith
often used modet*, is thespherical mode{here we assume or A, = 1.5 is calculated like thislégs are distance groups de-
impose isotropy, i.e., the semi-variogram depends only on difved byh + Ah)
tance and not on direction between observations, and we denote
by h the magnitude of) lag h N 2

5
0 0<h<3 1 1/21-3)2=2
0 o h=0 1 3<h<6 2 1/4(1-22+(3-2)?)
V'(h) =4 Co+Ci|3h—14] 0<h<R —1/2
Co+ Ch h>R,

As another more realistic example Figure 2 shows a map with
where Cj is the so-callechugget effectand R is termed the sample sites. Each circle is centered on a sample point and its
range of influencer just therange Cy, /(Cy+C) is the relative radius is proportional to the quantity measured, in this case the
nugget effecandCy + C1 is termed thssill (= 02). The parame- height above the ground water in a 10 km10 km area near
tersCy andC; are not to be confused with the auto-covariancglagelse, Denmark. Figure 3 shows a histogram for these data.
functionC(h). Thenugget effecis a discontinuity in the semi-  Figure 4 shows all possible pairwise squared differences as
variogram forh = 0, which is due to both measurement unceg function of distance between observations for the height data
tainties and micro variability that cannot be revealed at the sc@gsuming isotropy). Also an exponential variogram model es-
of sampling. Therange of influences the distance where co-timated directly on this point cloud is shown. Thagget effect
variation between samples ceases to exist; measurements tak@nnt, the effectiverangeis 3,840 m and thaill is 840 n?

further apart are uncorrelated. (corresponding to 420 frfor the semi-variogram model).
Two other models often used are the exponential model (se¢Figure 5 shows the corresponding experimental semi-
Figure 4) variogram. Ah is here 100 m and again we assume isotropy.
Traditionally the first lag interval is half the size of the remain-
sy ) 0 h=0 ing lags, here 50 m. The experimental semi-variogram indicates
Yy (h) = { _ __3h . .
Co+C4 [1 exp ( = )} h>0 that a Gaussian model may perform better than the exponential
model in this case. Therefore a Gaussian model based on the
and the Gaussian model (see Figure 5) experimental semi-variogram is shown also. Thgget effect

is 18 n?, therangeis 1,890 m and thsill is 364 n¥.

) 0 h=0
i (h):{ Co+Ch [1fexp<f%)} h>0.

These latter two models never reach but approachitieesymp- S ® o ® % ©
totically. Due to its horisontal tangent faér — 0 the Gaussian § 7 ° 3 o S o % o -
model is good for describing very continuous phenomena. B . S 0% o o 2
Also other semi-variogram models such as linear and power _ - ke o o °od e 3o Oo &0 o 80
functions are some times applied. To allow for so-catiedted § : © &° O OO o
structureswhere the semi-variogram has different structures de- =~ . O
pending on the magnitude and possibly the direction of the dig- . ® oD OO Q o O
placement vector between observations, combinations of magl- 8 | © , o O%) @) O
els may be useful. s 3 B Oq " 9(@)
The model parameters may be estimated b.m.o. iterative, non- © 00 O O o O
linear least squares methods. These minimise the squared differ-8 | - | OO@ O %
ences between the experimental semi-variogram and the modelS | - . = _ O QO
considered as a function of the vector of parametréere Y ; ° cgg @ @ O
0 =1[CoCi R” g | o - O & @
min [4(R) = 7°(6. 1) - s o J®°0

. . . . 644000 646000 648000 650000 652000 654000
For examples on an experimental semi-variogram and differ-

ent models, see Figures 4 and 5. Easting
Note, thatC'(0) is the auto-covariance function for dlsplacel‘:ig. 2. Sample sites, each circle is centered on a sample point, radius is pro-

ment vectorh = 0, and thatCy is a parameter in the semi-  portional to the quantity measured, in this case the height above the ground
variogram model. water in a 10 kmx 10 km area near Slagelse, Denmark.
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number of data
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IIl. SPATIAL INTERPOLATION

This section deals with deterministic types of interpolation
such as inverse distance weighting and statistical types known
under the joint name ddriging. Specifically equations for sim-
ple and ordinaryriging are deduced.

A. Inverse Distance Weighting

Possibly the simplest conceivable way of carrying out inter-
polation consists of assigning the value of the nearest neighbour
to a point where the value is unknown. An potential improve-
ment consists of assigning higher weights to observations closer
to the points to which we interpolate. An obvious way of do-
ing this is to assign weights that are proportional to the inverse
distance from the desired point to &ll points entering into the
interpolation. For théth point we get the weight

1/d;
Zj‘vzl 1/dj

w; = )

Fig. 3. Simple statistics and histogram for height data near Slagelse, Denm:wheredj is the distance from poiryt to the point to which we
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interpolate. This is readily extended to weighting with different
powersp > 0, of the inverse distance
1/d?
S
Other deterministic interpolation methods use (Delaunay) tri-

angulation, regression analysis for determination of trend sur-
faces, minimum curvature etc., [15], [3].

w; =

A.1 Examples

We now wish to interpolate t&, at positionr = 0 in Figure 1
b.m.o. inverse distance weighting; is the distance from point
Z; to Zy. We readily calculate the following weights

rdi 1/d; (1/d;)/ > (1/d;)
2 2 1/2 3/1L (= 0.2727)
1T 1 1 6/1L (= 0.5455)
3 3 1/3 2/11 (=0.1818)

Fig. 4. All possible pairwise squared differences as a function of the magnitude
of the displacement vector; exponential variogram model shown.
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For different powers ofl; we get the weights

r d; p=01 p=20 p=10.0

-2 2 0.3298 0.1837  0.0010
-1 1 0.3535 0.7347  0.9990
3 3 03167 0.0816  0.0000

We see that for low values gfthe weights approach/p for alll
points used. For high values pfve get near a weight of one for
the nearest neighbour.

B. Kriging

Kriging (after the South African mining engineer and profes-
sor Danie Krige) is a name for a family of methods for minimum
error variance estimation. Consider a linear (or rather affine) es-
timate 2, = 2(r() at locationr, based onN measurements
z=[z(r1),...,2(r )] = [z1,...,2n]T

N
S _ _ T
Z0 = W+ Wiz = Wy + W™ 2,
=1

Fig. 5. Experimental semi-variogram as a function of the magnitude of the
displacement vector; Gaussian semivariogram model shown.

wherew; are the weights applied tg andwy is a constant.
We considek; as realisations of stochastic variablgs Z =
(Z(r1),..., Z(rN)T = [Z1,...,Zn]T. We think of Z(r) as
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consisting of a mean value and a residdér) = u(r) + ¢(r) the semi-variogram model for the relevant distance (and possi-
with mean value zero and constant varianéeE{e¢} = 0 and bly direction) between observations. (Alternatively, the kriging

Var{e} = o2. For the linear estimator we get system may be formulated b.m.o. the semi-variogram; to avoid
. zeros on the diagonal &' we prefer the covariance formulation
Zy = wo+w'Z. (2) for numerical reasons.) Hef&, must not be confused with the

. _ . semi-variogram parametet andC.
The estimation errog, — 2, is unknown. But for the expec-  The minimised squared estimation error termed the simple

tation value of the estimation error we get kriging variance is
E{Z— Zo} = E{Zy—wo—w'Z)} o = o’ +w'(Cw—2Cov{Zy, Z})
= po—wo—w'p, (3) = o2 —w'Cov{Z,, Z}.
whereuy = u(ro) is the expectation value df, andp is @  In SK the mean valug(r) is known. In practice it is often
vector of expectation values f&f assumed constant for the entire domain (or study area), or we
must estimate it before the interpolation (or we must construct
n(r1) H1 an interpolation algorithm which does not require knowledge of
no= : = : ) the mean field, see the next section.
u(ry) 1N

B.2 Ordinary Kriging

We want our estimator to be unbiased or central, i.e., we dedn ordinary kiging (OK) we assume that the meair) is
mand §Z, — Zo} =0or constant and equal {@, for Z, and theN points that enter into
the estimation o¥/y. From Equations 3 and 4 we get
po—wo —wlp = 0. (4) X
E{Zo— 20} = po(l—w'l)—wo = 0
The variance of the estimation error is
A for any . 1 is a vector of ones. This is possible onlyif = 0
0% = Var{Zy,— Zy} andw®1 = 1.
= Var{Z} + Var{w, + w? Z} The weightsw; are found by minimising%, under the con-
—2CoV{ Zy, wy + w' Z} straintw®1 = 1. A standard technique for minimisation under
0, Wo S . . .
) p under a constraint is introducing a functiéhwith a so-called
= o +w (Cw—2Cov{Z, Z}), Lagrange multiplier (here-2X) which we multiply by the con-

. . . . . . straint set to zero and then minimising
whereC is the dispersion or variance-covariance matrix of the

stochast_ic variaplesZ, Qntering into the_ estimation. . F = o%+2\(w™1-1)

What is said in Section IlI-B so far is valid for all linear es-
timators. The idea ikriging is now to find the linear estimator without constraints. Again the partial derivatives are set to zero
which minimises the estimation variance.

oF
B.1 Simple Kriging ow 20w —2Cov{Zy, 2} + 271 =0
In simple kriging (SK) we assume thai(r) is known. From or = 2w’1-1)=0,
Equations 2 and 4 we get 2
. . which results in the OK system
Zo—po = w' (Z—p).
i . . . Cw+)1l = Cov{Zy,Z}
The weightaw; are found by minimising the estimation variance T B
o2. This is done by setting the partial derivatives to zero Pw =1
% = 2Cw —2Co¥W{Z,,Z} =0 eler
ow eer= Cn -+ Civ 1 wq Co1
which results in the SK system s : : N :
Cy1 -+ Cnn 1 wN Con
Cw = Cov{Zy,Z} 1 ... 1 0 A 1
or The values requested faf;; are found as described in the pre-

vious section on SK.

Cu o Gy w1 Con The minimised squared estimation error termed the ordinary
: : : = : ) kriging variance is
O Onw ] L ww Cow o = o +wl(Cw—2Cov{Zy, Z})
whereC;;, i,5 = 1,..., N is the covariance between poirits = o2—wl'Cov{Zy,Z} — A
andj among theN points, which enter into the estimation of
point 0. Cyp;, j = 1,..., N is the covariance between point ~ OK implies an implicit re-estimation qi, for each new con-

and point 0, the point to which we interpolate. We get these cstellation of points. This is an attractive property making OK
variances from the semi-variogram model (remembering Equeell suited for interpolation in situations where the mean is not
tion 1, v(h) = C(0) — C(h)) as the sill minus the value of constant (i.e., in the absence of first order stationarity).
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B.3 Examples
Let us consider the data in Figure 1 again. We now wish 1 80.0
interpolate to the position = 0 b.m.o. ordinary kriging. To 72.0
carry out the calculations we use a stipulated semi-variogra 64.0
based on the spherical model with = 0,C; = 1 andR = 6.
Remembering Equation T(k) = C(0) — ~(h), this gives the 560
auto-covariance function (in this case whéfg+ C; = 1 this 48.0
is the same as the auto-correlation function) 20.0
h] A CH) 320
0 | 0.0000 1.0000 24.0
11]0.2477 0.7523 16.0
21 0.4815 0.5185
3106875 0.3125 80
4 10.8519 0.1481 0
51 0.9606 0.0394
6

1.0000 0.0000

Therefore the OK system looks like this

1.0000 0.7523 0.0394 1 wy
0.7523 1.0000 0.1481 1 Wy
0.0394 0.1481 1.0000 1 w3

1 1 1 0 A

0.5185

0.7523

0.3125 |’
1

where the values fo€;; come from theC'(h) table. The so-
lution is w; = —0.0407, we, = 0.7955, w3 = 0.2452 and
A = —0.0489, which gives a kriging variance @f.3949. We
see that even though; is closer toZ, than Z3, the weight on

Fig. 6. Kriged map of heights above the ground water (unit is m).
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Z, is much smaller than the weight dfy. This is an attractive
characteristic of kriging, which allows for possible clustering o
the sampling locations. We say th#t screensfor Z;. This ._
screeningeffect becomes weaker for higher nugget effects and

it disappears for pure nugget effect (i.€3, = 0 for the models
shown here), where all weights become equal.

In a more realistic example Figure 6 shows a kriged (OK) map

over heights above the ground water for the area near Slagef@npled on fewer locations than other correlated variables.
sal krigingis a method for the case where the mean value is

The interpolation is based on the isotropic Gaussian model ¥t"

the experimental semi-variogram in Figure 5 (nugget effect figscribed by linear combinations of known functions ideally de-
m2, range 1.890 m and sill 364%h We have kriged to 100 by termined by the physics of the problem at hand. Also methods

100 points in a 100 m by 100 m grid using a moving windoPr non-linear kriging exist such dsgnormal kriging multi-

to include the points from which to interpolate. The search raussian krigingrank kriging indicator kriging and disjunc-
dius of the moving window was 2,000 m and the estimation f8€ kriging References here are [1], [3], [9], [14].
each point was based on minimum 4 and maximum 20 points.
We see that the interpolated map shows a good correspondance
with the map of sample sites in Figure 2. Figure 7 shows theThe above sections and examples demonstrate the following
corresponding OK variances. We see that the kriging varianaeperties of kriging:
is large where the distances to the nearest samples are large, Kriging is a type of interpolation that gives us both an estimate
based on the spatial structure of the variable in question as ex-
pressed by the auto-covariance function (or the semi-variogram)
If we wish to estimate average (also known as regularisea well as an estimation variance which is minimised.
values over an area or a volume rather than point values, w&he kriging estimator is thedst inear nbiased stimator
may useblock krigingwhich can be combined with several othe(BLUE) in the sense that it minimises the estimation variance.
forms of kriging. Also it is exact, i.e., if we interpolate to a point which coincides
If more variables are studied simultaneuously the above mettith an existing sample point, kriging gives the same value as
ods for description of spatial correlation may be extended tiee one measured and the kriging variance is zero.
handle the spatial covariation between all pairs of variablesdnThe kriging system and the kriging variance depend on the
the form of cross semi-variograms or cross-covariance furadto-covariance function (or the semi-variogram) and the spatial
tions. Also more variables may be interpolated simultaneuoushyout of the sample locations only and not on the actual data
usingcokriging Cokrigingis most useful when one variable isvalues. If an auto-covariance function (or a semi-variogram)

Fig. 7. Kriging variance corresponding to Figure 6 (unit i5)m

IV. CONCLUSIONS

B.4 Other Types of Kriging



is known (or assumed or imposed) this has important potential
for minimising the estimation variance in experimental design
(i.e., in the planning phase of the spatial lay-out of the sampling
scheme). [5]
« The solution of the kriging system implies a statistical dijé]
tance weighting of the data values which enter into the inter-
polation. Also for OK, the weights are scaled so they add fd
one. Furthermore, possible redundancy in the form of clusteriféﬁg
of the sample locations is accounted for; the above mentiorjgd
screening effect is due to this de-clustering.

« Because of the implicit re-estimation of the mean value f
each new point constellation, OK is well suited for situations
where the mean is not constant over the study region, i.e., whEde
we don’t have first order stationarity.

Further, the kriging system has a unique solution if and only if
the covariance matri€ (Section I1I-B) is positive definite; this [12]
also guarantees a non-negative kriging variance.

The strength of kriging may be attributted to a combinatio3]
of the above characteristics.

If we choose to formulate the kriging system in terms of thgg4)
auto-covariance function which is done in this note, we must as-
sume (or impose) second order stationarity, i.e., the same aLEJIS]-
covariance function over the entire study area. The system nizgy
also be formulated in terms of the semi-variogram and in this
case we must assume the intrinsic hypothesis, i.e., the same
semi-variogram over the entire study area.

These assumptions may seem to be a drawback of kriging l,é}
if deterministic methods are applied, we implicitly make similal
assumptions. It is hardly a drawback of geostatistical methods
that we are forced to consider the timeliness of such assump-

tions. [19]

A sampling strategy may be based on the dependence of{t%?)
kriging variance on the distance to the nearest samples. If j
auto-covariance function (or the semi-variogram) and the saf#]
ple locations are known, we can determine the kriging weig 5]
and the kriging variances before the actual sampling takes place.
If the variances become too large in some regions of our stué@§l
area we may modify the sample locations to obtain smaller vari-
ances. Also, to obtain a good estimate of the nugget effect whighy
is an important parameter for the outcome of the kriging process,
it may be an advantage to position some samples close to each
other. [25]

In multivariate studies where the joint behaviour of several
variables is investigated, rather than interpolating the original
variables we may interpolate combinations of them. For in-
stance we may interpolate principal components of factors re-
sulting from a factor analysis or a spatial factor analysis, [16],
[17], [11], [18], [19]. Generel references to multivariate statis-
tics are for example [20], [21]. [22] is written especially for
geographers, [15] for geologists.

Lately there has been some interest in temporal aspects in
connection with the application of data that vary in both space
and time. Spatio-temporal semi-variograms and spatio-temporal
kriging are dealt with in for example [23], [24]. A GIS for han-
dling of temporal data is described in [25].

V. FINAL REMARKS
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