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Abstract 
 

COMPUTATION OF ELECTROMAGNETIC FIELDS IN 
ASSEMBLAGES OF BIOLOGICAL CELLS USING A MODIFIED 

FINITE DIFFERENCE TIME DOMAIN SCHEME 
 

Computational electromagnetic methods using quasi-static approximate version of 
FDTD, modified Berenger absorbing boundary and Floquet periodic boundary 

conditions to investigate the phenomena in the interaction between EM fields and 
biological systems 

 
Chan Hwang SEE 
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There is an increasing need for accurate models describing the electrical behaviour of individual 
biological cells exposed to electromagnetic fields. In this area of solving linear problem, the 
most frequently used technique for computing the EM field is the Finite-Difference Time-
Domain (FDTD) method. When modelling objects that are small compared with the 
wavelength, for example biological cells at radio frequencies, the standard Finite-Difference 
Time-Domain (FDTD) method requires extremely small time-step sizes, which may lead to 
excessive computation times. The problem can be overcome by implementing a quasi-static 
approximate version of FDTD, based on transferring the working frequency to a higher 
frequency and scaling back to the frequency of interest after the field has been computed.  
 
An approach to modeling and analysis of biological cells, incorporating the Hodgkin and 
Huxley membrane model, is presented here. Since the external medium of the biological cell is 
lossy material, a modified Berenger absorbing boundary condition is used to truncate the 
computation grid. Linear assemblages of cells are investigated and then Floquet periodic 
boundary conditions are imposed to imitate the effect of periodic replication of the assemblages. 
Thus, the analysis of a large structure of cells is made more computationally efficient than the 
modeling of the entire structure. The total fields of the simulated structures are shown to give 
reasonable and stable results at 900MHz, 1800MHz and 2450MHz. This method will facilitate 
deeper investigation of the phenomena in the interaction between EM fields and biological 
systems.  
 
Moreover, the nonlinear response of biological cell exposed to a 0.9GHz signal was discussed 
on observing the second harmonic at 1.8GHz. In this, an electrical circuit model has been 
proposed to calibrate the performance of nonlinear RF energy conversion inside a high quality 
factor resonant cavity with known nonlinear device. Meanwhile, the first and second harmonic 
responses of the cavity due to the loading of the cavity with the lossy material will also be 
demonstrated. The results from proposed mathematical model, give good indication of the input 
power required to detect the weakly effects of the second harmonic signal prior to perform the 
measurement. Hence, this proposed mathematical model will assist to determine how sensitivity 
of the second harmonic signal can be detected by placing the required specific input power.  
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Chapter 1  

Introduction  

1.1 Background and Motivations 

 

The interest in diagnostic and therapeutic applications of RF/microwaves in Medicine 

and in the assessment of possible health hazards due to EM radiation have stimulated 

the development of research streams in both modelling and experiments for evaluating 

EM power deposition in the interior of the human body or biological system. In order to 

establish precisely the required safety standard for regulating human exposure to EM 

waves, different aspects of studying the problem such as tissue level, cell level and ionic 

level have been carried out theoretically and experimentally. 

 

At tissue level, the EM properties that describe the biological body properties can be 

studied by considering the geometry structure of each tissue making up the body as a 

scatterer. In experimental dosimetry, tissue equivalent “phantoms” are used instead of 

real bodies on predicted Specific Absorption Rate (SAR) values in biological tissue 

during EMF exposure. Empirically based estimates of the whole-body SAR are 

commonly performed using Dewar flask or twin-well calorimetry [1, 2]. Localized SAR 

values can be determined using temperature changes measured by implanted thermal 
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probes. SAR values could be extrapolated from these temperature changes using [3], 

which is based on the specific heat of the tissue. Surface SAR can be computed using 

the same principle with infrared thermography [4]. Due to high experimental cost, this 

leads to demand for efficient and accurate field modelling tools for electromagnetic 

(EM) scattering problems. Theoretical models are required to interpret and confirm the 

experiment, develop an extrapolation process, and thereby develop a radiation safety 

standard for human. In this research area, either numerical methods or analytical 

methods are used to perform the computation of the problem. Due to the complexity of 

the problems typically encountered, numerical methods must be used since analytical 

solutions (closed form solutions) are only available for a small class of problems. The 

most frequently used numerical technique for computing the EM field is Finite-

Different Time-Domain (FDTD) [5, 6]. With this method, the power absorbed inside the 

head of cellular phone user, due to the field radiated by the phone antenna, has been 

extensively studied [7-12]. 

 

At cell level, classical cells based on shelled spheres or ellipsoids were initiated by 

Fricke in 1925 [13], then have been used by authors [14] for RF electromagnetic field 

radiation studies. For the sake of simplicity, simple analytical solutions for spherical 

shaped of cell exposed to plane wave are provided by authors [14]. They exclude other 

possible geometric configurations representing more realistic cell shapes such as 

cylinders, rods or ellipsoids for their analysis. Due to analytical solutions are restricted 

to analysis of complex structures of biological cell, hence, it appears that numerical 

methods can sufficiently give a precise estimation of field values in realistic cell 

anatomies. The most difficult part of the numerical modelling of biological cell is the 

huge difference that might be found between the thickness of the cell’s layer, i.e 
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micrometer cell diameter in which the membrane thickness is nanometer. Sometimes, 

the range of the differences can be varied between micrometer to nanometer. Basically, 

a few studies have been reported in this type of modelling. The most commonly used 

numerical technique is Finite Element Method (FEM) with adaptive meshing, to predict 

the electric field distribution in various shapes of the mammalian cell model [15-17].  

 

At microscopic level, the electrical activity of various ionic realistic models of the 

neuronal membrane have been developed [18-23]. These models can be further divided 

into two classes.  The first class of neuronal models was proposed by Hodgkin & 

Huxley (H&H) in 1952 [19]. This type of model is an electrical equivalent circuit based 

on sets of nonlinear differential equations in which each equation represents an ionic 

current flowing through the membrane. As for second class of models, a two-state 

device is used to represent the neuron in which an output spike is generated when a 

threshold is exceeded by the input voltage. The earliest type model was developed by 

McCulloch and Pitts (M&P) in 1943 [18]. Over the years, several additional 

contributions have been invented in addition to the above two models [20-23] . Recently, 

efforts have been made by [24-26] to create a link between the two above-mentioned 

classes of models. These proposed strategies are encapsulating a large amount of single 

ionic channel based on Markov models (MMs) [27] into a global frame work, which 

simulates the behaviour of a cell membrane. At a more microscopic level, classical 

Langevin-Lorentz model [28] and Quantum Zeeman-Stark Model [29, 30] are 

developed to analyse the influence of radiofrequency electromagnetic exposure on 

ligand binding to hydrophobic receptor proteins. 

 

As can be noticed, all the previous analysis of EM interaction with biological entities 
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are only focused on one aspect of cell functions problems in which there were no 

research activities were devoted for EM analysis and modelling process at cellular and 

ionic interaction mechanisms. This gives a great motivation to the present work to be 

carried out.  

 

1.2 Development History of Finite-Difference Time-Domain 

 

The FDTD method was first proposed by Yee in 1966 [5]. It is a simple and elegant way 

to discretize the differential form of Maxwell's equations. Yee used centred finite-

difference (central-difference) expressions for the space and time derivatives that are 

both simply programmed and second-order accurate in the space and time increments. 

In general, Yee used an electric field (E) grid which was offset both spatially and 

temporally from a magnetic field (H) grid to obtain update equations that yield the 

present fields throughout the computational domain in terms of the past fields. The 

update equations are used in a leap-frog scheme to incrementally march the E and H 

fields forward in time. After the publication of Yee, this algorithm was widely used with 

different application in the literature [31-35].  

 

From 1971 to 1994, with the invention of accurate absorbing boundary conditions 

(ABCs) proposed by Merewether [36], Engquist and Majda [37] , Mur [38], Liao [39], 

Keys [40] , Higdon [41] and Berenger [42], support the FDTD techniques to solve open 

regions problems and enhance the feasibility study of the method for wide range of 

applications. It should be noted that most of these proposed absorbing boundary 

conditions are differential equation and nonmaterial based, except for Berenger’s 
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Perfectly Matched Layers (PML) ABCs which are material based. Among these 

proposed ABCs, it was found that Berenger’s PML provides significantly better 

accuracy than most other ABCs [43, 44].   

 

The significant advantages of this method can be summarised as follows: 

 The method implementation is simple. 

 Modularization and parallelisation of algorithm can be easily implemented on 

parallel computers. 

 Wide band applications can be easily performed by applying a different shaped 

time pulses such as Gaussian pulse. 

 

The major disadvantage of the FDTD is found in modelling curved structure in which 

the “staircased” problems arised [45]. This is easily demonstrated in Figure 1.1. As can 

seen, a dielectric sphere is modelled by small cubical cells. Note that the “staircased” 

error can be encountered on the edges of the sphere. In addition, FDTD also introduces 

some errors due to the numerical dispersion [46].  

 

Figure 1.1: Stair-cased representation of a dielectric sphere inside FDTD computational 

domain. 
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To circumvent the limitations of FDTD, several alternative variant methods have been 

proposed, including Finite Volume time domain (FVTD) [47, 48] , Higher-order FDTD 

scheme [49, 50], Multiresolution time domain (MRTD) [51], Alternative direction 

implicit (ADI) [52-54], Subgridding methods [55-58]  and Hybrid techniques [59-62].  

 

 

1.3 State of the Art and Original Contributions 

 
Cellular telephones and mobile wireless communication systems are being introduced 

into society at a very rapid rate. This has resulted in public concern about the health 

hazards of RF electromagnetic fields that are emitted from these devices and in turn to 

increase great interest of researcher to carry out a series of experiments and modelling 

works to understand the hazardous interaction between electromagnetic and human 

being. These developments contribute to establish the safety guidelines for human 

exposure to radio waves. As a consequence, this linear problem has been analysed 

thoroughly in various level of definition such as at tissue level, cell level and ionic level. 

In addition, the nonlinear problem on whether biological cells exhibit nonlinearity in the 

radiofrequency (RF) region is also justified. 

 

The present work is devoted to modelling of the interaction between Electromagnetic 

(EM) fields and a cluster of biological cells. Different cell geometries were considered 

such as spherical, cubical and cylindrical cell. The analysis is not only involving the 

study of the interaction of the cells with the EM fields at tissue level, but also 
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investigates the presence of nearby cells at the cell/sub-cell level and cellular membrane 

at ionic level. Moreover, the present works are further extended to find the evidences to 

prove and detect the nonlinear responses in biological samples in RF region. 

 

The significant contribution of this present thesis can be summarised as follows: 

 

1. Since the cell geometry is considerably small compared to the wavelength at the 

operating frequency, therefore, the analysed problem can be treated as quasi-static 

electromagnetic field problem. With the aim of this approximation, the frequency 

scaling scheme (quasi-static FDTD) which is proposed by authors [63] to solve 

numerical dosimetry of anatomically based model at power line frequency can be used. 

The present thesis successfully verifies the works of authors [63] at powerline frequency 

and implements the same concepts to biological cells modelling at mobile 

communication frequency. 

 

2. This present thesis also verifies and clarifies the electric field distribution results of 

existing tissue model from paper [64]. Meanwhile, the thesis proposes the modified 

Perfectly Matched Layer (PML) Absorbing Boundary Condition (ABC) to replace the 

Mur ABC to truncate the FDTD computational domain in order to improve the accuracy 

of the published work in paper [64].  

 

3. The present thesis also successfully validates the numerical results of modelling 

single biological equivalent spherical cell in several of penetrable media such as free 

space, lossless and lossy media, with the Mie series exact solution [65] at powerline and 

microwave frequency when it is excited by a plane wave.  
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4. The interaction mechanism of the biological tissue with the electromagnetic field at 

mobile communication frequencies such as 900MHz, 1800MHz, 2000MHz and 

2400MHz are studied. The tissue was accurately modelled by using Floquet periodic 

theorem [66]. The boundary condition of this theorem was successfully applied on the 

border of a stack of spherical, cubical and cylindrical equivalent biological cells.  With 

this boundary condition, it allows the simulation of the complete tissue at reasonable 

level of computational resources.  

 

5. The present work also includes the equivalent circuit of cell’s membrane developed 

by Hodgkin-Huxley (HH) [19] to the surface of the biological cells. This circuit was 

added to the cell membrane by placing the equivalent normal field component to the cell 

surface [67, 68].  

 

6. Currently, there is no evidence to prove the nonlinearity hypotheses of the biological 

cells exposed to RF energy. The present work elucidates the implementation of doubly 

resonant cavity model in [69-73], to carry out a series of numerical modeling and 

experimental work to verify the nonlinearity hypothesis of the biological preparations. 

 

1.4 Overview of Present Thesis 

 

This work will propose a new approach that combines the high accuracy of the Finite-

Difference Time-Domain (FDTD) method to calculate the EM field inside a biological 

cell and tissue. It is also comprised of electrically excitable cells, in which numerical 
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and experimental solutions can be performed to investigate the possible RF nonlinear 

interactions in living cells. The study includes the application of existing Lumped-

Element (LE-) and Quasi-Static (QS-) FDTD method to bioelectromagnetic problem 

modelling at powerline and mobile communication frequency. Following the 

background and motivation of the problem, the scope of the work and organisation of 

this present thesis will be discussed in chapter 1. It should be noted that a more detailed 

review of existing literature is reported in the beginning of each of the following 

chapters with separate references at the end of each. 

 

Chapter 2 describes the basic principles of the FDTD algorithm which includes the 

derivation of update equations, parameters that control the stability and accuracy of 

FDTD method, the issue of introducing the electromagnetic wave excitation into the 

FDTD lattice, the concept of the plane wave source modelling that was implemented by 

applying an equivalent surface and the implementation of Berenger’s Perfectly Matched 

Layer (PML) absorbing boundary conditions for 2D and 3D structures. From all the 

aspect of FDTD that is mentioned above, a three dimensional Fortran FDTD code is 

developed and ready to be used as a tool to analyse the complex bioelectromagnetic 

problems.  

 

Chapter 3 elucidates the fundamental principles of lumped element FDTD for hybrid 

EM systems with active and passive lumped-element modelling. This chapter 

demonstrates the conventional FDTD method and then according to the circuit theory to 

derive the relationships between the E and H fields and voltages and currents that are 

used to extend the general equations to include the active and passive lumped elements 
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inside the FDTD lattice. Further, the update equations for passive lumped elements such 

as resistor and capacitor will be briefly derived respectively. Moreover, the presence of 

the intrinsic capacitor was also discussed in the context. 

 

Chapter 4 introduces a Quasi-Static approximate version of FDTD for solving the 

problem of modelling electrically-small regions (much smaller than a wavelength).This 

approach is based on transferring the working frequency to a higher frequency, to 

reduce the number of time steps required. Then, the generated internal field at the higher 

frequency can be scaled back to frequency of interest. The equations of this frequency 

scaling approach are briefly derived and explained in this chapter. In the other hand, the 

formulation for plane wave solution in free space, lossless and lossy penetrable media 

are shown. Moreover, Mie series exact solution for describing the characteristics of 

electromagnetic radiation scattered by a homogenous sphere when it is excited by a 

plane wave will also be demonstrated. At last, in order to prove the validity of the quasi-

static approach four examples of modelling the bioelectromagnetic problem with 

structures whose dimensions are a few wavelengths are given and the numerical results 

are compared with the Mie series exact solution. Numerical results were shown to be 

well agreed with the analytical results. 

 

Chapter 5 is devoted to modelling of interaction between EM fields and a tissue, 

represented with spherical, cubical and cylindrical cells.  Different EM approaches have 

been used to analyze this problem, in particular, the lumped-element FDTD has been 

implemented to model the cell’s membrane represented with the Hodgkin-Huxley (HH) 

model and the Floquet theorem is implemented in order to mimic the infinite model of 
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the tissue and in turn to reduce the computational time. Due to the analysed structure 

under consideration is considerably smaller than the wavelength of mobile 

communication frequency GSM900/GSM1800 and the time steps required for 

GSM900/GSM1800 frequency involves some millions of iterations, therefore, quasi-

static FDTD is exploited to perform the computation of the analysis. The electric field 

distribution along the centre of the analysed structures will be shown and the 

implementation of LE-FDTD to model the equivalent circuit of the cell’s membrane 

(HH model) will be explained. 

 

Chapter 6 demonstrates an efficient way to test the unsymmetrical nonlinear response of 

biological tissue samples exposed to a 0.9GHz signal to observe the existence of the 

second harmonic at 1.8GHz. A series of experiments and numerical modelling were 

carried out to calibrate the performance of nonlinear RF energy conversion inside a high 

quality factor resonant cavity with a known nonlinear loading device. Preliminary tests 

for the proposed detection systems were completed and initial obtained results from the 

test with biological sample will be shown and discussed. 

 

Chapter 7 presents the conclusions and suggestions for further work on related topics. 
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Chapter 2  

 

The Finite-Difference Time-domain 
(FDTD) Technique for Computational 
Electromagnetics 
 
 
 

2.1 Introduction 

 
Due to the simplicity, robustness, and potential for great volumetric complexity afforded 

by FDTD modelling, FDTD method is arguably the most popular numerical method for 

the solution of problems in electromagnetics. Currently, tremendous amount of FDTD-

related research activity is going intensely, hundreds of papers related to extensions and 

enhancements to this method are published which further extends its appeal worldwide 

each year. Electromagnetics research areas such as bioelectromagnetics, geophysical 

imaging, antennas, radars, wireless communications, high speed electronics, photonics, 

X-ray lithography and crystallography, have been successfully applied.  

 

The international on-line database of the FDTD that is monthly updated can be easily 

found on the world-wide web [1]. This is the most complete reference for rapid tracking 

the FDTD-related published literatures. Besides, there were three interested books 

which were directly contributed to the FDTD method: Kunz and Luebbers [2]  and 
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Taflove [3-5] .These three books may be considered the main references to recent 

FDTD research.  

 

This chapter will first discuss the basic Yee’s Finite Difference algorithm. Then, the 

stability and accuracy of this approach will be demonstrated. The introduction into the 

FDTD lattice of electromagnetic wave excitations appropriate for modelling 

engineering problems will be explained and derived. Since no computer can store 

unlimited amount of data, a special technique called absorbing boundary condition is 

applied in order to limit the solution region. The computation process is started with the 

excitation of a plane wave into the system and the field components are calculated at the 

grid mesh in discretised time steps. This process is continued until steady state has been 

reached. The theoretical aspects of the FDTD technique are described in the following 

sections. The Absorbing Boundary condition (ABC) will be reported, including the 

discussion of two and three dimensional Berenger’s Perfectly Matched Layer (PML). 

Finally, a summarized conclusion of this chapter will be addressed. 

 

2.2 FDTD Updating Equations 

 

The FDTD method is a direct solution of Maxwell's curl equations for electric and 

magnetic vector fields within a finite computational domain truncated by proper 

boundary conditions. Consider a region of space that has materials that absorb electric 

or magnetic field energy, the time-dependent Maxwell’s equations in differential form 

for a source and isotropic medium are: 
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In equations (2.1) and (2.2), σ  is the electric conductivity in S/m and is the 

magnetic resistivity in Ω /m, therefore, 
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E σ and  are the electric and magnetic 

losses respectively which may exist inside the medium. In cartesian coordinates, 

equations (2.1) and (2.2) yield the following six scalar equations: 
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Following Yee's original notation [6], a space point in a rectangular grid is defined as:  
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Let F denote any function of discrete space and time 
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where , x∆ y∆ and are , respectively the grid space increments in x, y and z 

directions and is the time increment. Using a central finite-difference approximation, 

space and time derivatives of F can be written as  
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In equation (2.11), is the error term which represents all the remaining terms in 

a Taylor series expansion and equation (2.11) is known as a central finite difference 

scheme in space with second-order accuracy. Similarly, (2.12) is second-order accurate 

2)x(O ∆
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in time. Applying Yee's finite-difference scheme to (2.3): 
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The  field component in (2.13) is evaluated at time step n, but since the value of 

 at time step n is not available, the following interpolated approximation is used:  
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By substituting equation (2.14) in (2.13), leaving on the left hand side and 

passing the all remaining terms to the right, assuming cubical FDTD cells are used, the 

finite difference updating equation for the magnetic and electric field components can 

be derived in the following form:  
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where the coefficients on the left hand side are referred to as Yee's updating coefficients. 

The electric field coefficients can be written as follows: 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆
−=

kji

kji

kji

kji
kjia

tt
C

,,

,,

,,

,,
,, 2

1
2

1
ε

σ
ε

σ
 

(2.21) 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ε

∆σ
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆ε
∆

=
k,j,i

k,j,i

mk,j,i
k,j,ib 2

t
1tC

m
 

(2.22) 

 

and the magnetic updating coefficients are: 
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where m can be x, y or z and m∆  is the cell size in the m-direction. Assuming that the 

structure under investigation contains different types of material (dielectric and/or 

magnetic), electric and magnetic field updating coefficients can easily be calculated 

from equations (2.21)-(2.24) before the FDTD time stepping algorithm starts.  

 

 
Figure 2.1: The distribution of the electric and magnetic field components on “Yee  

cell” or FDTD lattice [3, 5]. 
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Figure 2.2: Space-time chart of the Yee algorithm in a leapfrog arrangement [3, 5]. 

 

 
Figure 2.3: Time Stepping FDTD algorithm flow chart 
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The magnetic fields are located on the edges of the box and the electric fields are 

positioned on the faces as shown in Figure 2.1. This orientation of the fields is known as 

the Yee cell and is the basis for FDTD. As can be observed, the electric and magnetic 

field components are located half a cell from each other in Yee’s cell. Each E or H 

component in three-dimensional space is surrounded by four circulating H or E 

components respectively. This configuration of the fields enables the realisation of a 

discretised version of Maxwell's equations. Figure 2.2 shows the electric and magnetic 

fields are updated using a leapfrog scheme where first the magnetic fields, then the 

electric field are computed at each step in time, while Figure 2.3 demonstrates the flow 

chart of time-stepping FDTD algorithms. From the flow chart, it can be seen that a 

suitable time step size should be selected properly in order to avoid the instability of the 

algorithms, after determining the spatial resolution based on the geometrical features 

and the operating frequency. It also shows a leapfrog arrangement between E and H 

components is used to implement the time stepping FDTD algorithm. The half-cell 

displacement between the E and H grids reflects the physical reality that the computer 

must work through them alternately.  

 

2.3 Stability and Accuracy of the FDTD Technique 

 

There are two significant parameters that might directly control the stability and the 

accuracy of FDTD technique, i.e. space resolution (grid size) ∆ x, y, z  and time 

resolution (time step) ∆ t. Due to the approximations inherent in FDTD, waves of 

different frequencies will propagate at slightly different speeds through the grid, this in 

turn causes the grid dispersion error in FDTD. This difference in propagation speed also 

depends on the direction of propagation relative to the grid. For accurate and stable 

∆ ∆
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results, the grid dispersion error must be reduced to an acceptable level. A rule of thumb 

sets the minimum space resolution, and thus the upper frequency limit, at less than ten 

cells per wavelength ( 10/λ≤ ). Figure 2.4 depicts the fact that while increasing the grid 

size and direction of propagation, the numerical grid produces a certain amount of 

numerical dispersion error. As can be observed, when the cell size is exactly , the 

numerical dispersion is approximately 1%. 

10/λ

 

 Once the space resolution is determined, the maximum size of the time resolution t∆  

immediately follows from the Courant condition [2], which sets the relation between the 

time and space resolution for three-dimensional FDTD as follows: 
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where  is the maximum wave phase velocity in any material in the model. maxν

For a cubic cell whose cell size is ∆ , in a d-dimensional (d=1, 2 or 3) spatially 

homogeneous FDTD grid, equation (2.25) becomes: 
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(2.26) 

 

 

To minimise the computer run time requirement, the time step should be chosen as large 

as possible yet satisfying equation (2.26). Choosing smaller time steps gives more 

accuracy but with longer simulation run times. In order to compromise the accuracy and 
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the efficiency of FDTD simulation, the value of ∆ x / (2 maxν ) for time resolution is 

always considered in many FDTD codes that must satisfy the Courant condition.  

 

In fact the stability also depends upon the algorithm used to model the Absorbing 

Boundary Conditions (ABC) to simulate the domain extension to infinity. The 

theoretical details of one efficient type of ABC used in the research work presented in 

this thesis will be given in section 2.5. 

 

 

 
 

Figure 2.4: Variation of the numerical phase velocity with wave propagation angle in 
two-dimensional FDTD grid for three dimensions [3, 5].  
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2.4 Incident Wave Source Conditions 

 

In this section, the issue of introducing the electromagnetic wave excitations into the 

FDTD lattice for modelling scattering problem will be elucidated. This can be easily 

done by using relatively E and H components to realize the wave source compared to 

the total number of field components in the space lattice, in order to accurately realize 

the physics of an electromagnetic wave source in as compact a manner as possible. In 

this way, the required computation time and resources to simulate the source is 

relatively small compared to the required ordinary time-stepping of the fields. Hence, 

the maximum algorithm efficiency is achieved. This section will only review two 

general classes of compact electromagnetic wave sources, i.e., the hard source and the 

total/field/scattered-field formulation for plane-wave excitation in one and three 

dimensional lattices.  

 

2.4.1 The Hard Source 

 
 
The hard source is set up simply by assigning a desired time function to specific electric 

or magnetic field components in FDTD space lattice. This can be explained more easily 

in a one dimensional TM (Transverse Magnetic) grid example. In TM grid, the hard 

source on Ez could be established at the grid source point is to generate a continuous 

sinusoidal wave of frequency fo which is switched on at n=0. Therefore, the first type of 

hard source can be formulated in following expression [3, 5]: 
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A second common hard source provides a wideband Gaussian pulse with finite dc 

content. The pulse is centred at time step no and has a 1/e characteristic decay of  

time steps: 

decayn
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It should be noted that equation (2.28) has a nonzero value at n = 0. Therefore, if a 

smooth transition from zero into the Gaussian pulse is required, no should be taken a 

value at least 3 .  decayn

 

A third common hard source provides a zero-dc content, bandpass Gaussian pulse with 

Fourier spectrum symmetrical about fo. The pulse is again centred at time step no and 

has a 1/e characteristic decay of  time steps: decayn
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2.4.2 Incident Plane-Wave Source Excitations  

 
 

Basically, an arbitrary incident plane wave is used for excitation purposes. The plane 

wave excitation model was firstly considered by Yee’s original paper in 1966 [6]. The 

modelling process of the incident plane wave was approximated within the FDTD grid. 

This includes a complete interaction between the scatterer under consideration and the 
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excitation plane wave. 

 

In this section, two techniques, i.e., Initial Condition and Total/Scattered Field 

Formulation Method, to realise incident waves on the space lattice will be demonstrated. 

Special attention will be given to Total/Scattered formulations which will be adapted 

later to be used in the proposed Quasi-static FDTD technique.  

 

Initial Condition Method [6] was used by Yee in his early implementation of the FDTD 

method to represent an incident plane wave: this has especial applications in radar cross 

section simulations. In this method, all of the values of electric and magnetic field 

components at the zero time step of the incident wave throughout the problem space are 

preset in sign and magnitude, to give the desired polarisation of the incident plane wave. 

This method encounters two profound problems, for instance it is a non-compact wave 

source, it has implementation difficulties for oblique angles and it requires a large 

number of additional free space cells (that enlarge the problem space size) to contain 

initial conditions of long duration pulses or continuous sinusoids. As a result, this 

method current finds only limited and specialized usage. 

 

Total/Scattered Field Formulation Method [7, 8] is the most popular method used in 

many FDTD software and codes due to it successes in all respects, permitting FDTD 

modelling of long-duration pulsed or sinusoidal illuminations for arbitrary plane-wave 

propagation directions. Figure 2.5 illustrates the zoning of the numerical space grid into 

two distinct regions, total field region and scattered field region, separated by a non-

physical virtual surface implemented numerically with a special treatment to include the 

incident wave excitations and to split the problem space into total and scattered field 
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regions at the same time.  This leads to a very important feature which is that the 

scattered field vector values may be computed in the scattered field region (region 2) 

with no incident field included in that region. The second key feature of this formulation 

is the efficient modelling of arbitrary incident plane waves with different oblique 

incidence angles using an incident-field array (IFA) excitation scheme proposed by 

Taflove [3, 5]. The IFA is an FDTD-based look-up table from which incident-field 

values are and overlaid on the FDTD grid in the direction of propagation.  

 

 

 
 

Figure 2.5: Overview of the total and scattered field zoning for a generic scattering 
problem. 
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2.4.2.1 Total/Scattered Field Formulation in One Dimension 

 

The best example to explain the basic principle of the total/scattered formulation is to 

consider the simple one-dimensional transverse magnetic field (TM) case, as shown in 

Figure 2.6 (as in [3, 5]).   

 

Figure 2.6: Total and Scattered Components for one dimensional FDTD grid 

 

 

The set up of the total/scattered formulation divides the x-directed array of Ez and Hy 

components into two regions, region 1 (total fields) and region 2 (scattered fields) by a 

virtual surface. At this surface interface between the two regions there exists a special 

set of E and H components (the grey coloured components in the Figure 2.6). These 

four field components are Ez at iL and iR and Hy at (iL-1/2) and (iR +1/2). According to the 

Yee algorithm these have different types, total or scattered, respectively. The incident 

fields, Einc and Hinc are known and may be calculated at outer interface points. They are 

added to the regular updating equations. For example, Ez at iL, the left interface surface, 

is considered to be a total field component and by applying the basic FDTD algorithm it 

will be updated as shown in equation (2.30). (Note: The equations are reviewed here 
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using symbols as close as possible to those used in [3, 5] ) 
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(2.30) 

 

where the subscripts tot, scat and inc stand for total, scattered and incident fields 

respectively. It is clear that the above equation (2.30) is inconsistent, so Hy,tot at (iL-1/2) 

must be subtracted from Hy,tot at (iL+1/2) to advance the value of Ez,tot at iL. To correct 

this updating equation, the vector function Hy,inc at (iL-1/2) is added as an excitation wave 

source of the FDTD scheme. The boundary Ez updating equation will then be: 
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(2.31) 

 

It should be noted that the added term is assumed to be a known function, for example a 

sinusoidal or Gaussian pulse for plane wave representation, while the rest of the terms 

of the right hand side are assumed stored in computer memory from the previous 

updating time step. 

 

By following the proper modifications of equation (2.31), the updating equations for the 

other three special magnetic and electric boundary field components will be as follows: 
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(2.32) 
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Equations (2.31)-(2.34) are the one-dimensional total/scattered field FDTD 

formulations to generate the equivalent effects of the plane wave at one surface 

interface. The same principle can be extended to 2D and 3D scattering problems. 

 

2.4.2.2   Total/Scattered Field Formulation in Three Dimension 

 

The Equivalence principle surface implementation in a FDTD computer code is 

complicated by the fact that H and E nodes are located at different points, i.e. a half-cell 

apart from each other. We can visualise two rectangular equivalent closed surfaces. The 

locations of the Huygens electric current sources (tangential magnetic field) and the 

magnetic current sources (tangential electric field) are considered on the inner and outer 

of the closed surfaces respectively. These are computed with a special treatment 

(different from that previously defined in Section 2.3) and then applied to updating 

equations as follows. 

 

To simplify the large number of equations required, the abbreviated notation used by 

Taflove in [3, 5] will be adopted. The basic updating equations are given in equations 

(2.15) to (2.20); the results of these are used here in the form [9](2.xx) and modified 
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forms for the field component A are then given below by adding appropriate additional 

terms. Referring to Figure 2.7(a), the Ey components at cells referenced (i=io , 

j=jo+1/2,…, j1-1/2; k=ko,…,k1) are given by: 
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Ez components at cells referenced (i=io ; j=jo,… j1; k=ko+1/2,… ,k1-1/2):  
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Hy components at cells referenced  (i=io-1/2; j=jo,… j1; k=ko+1/2,…,k1-1/2): 
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Hz components at cells referenced  (i=io-1/2; j=jo-1/2,…, j1+1/2; k=ko,…,k1): 
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Ey components at cells referenced  (i=i1 , j=jo+1/2,…, j1-1/2; k=ko,…,k1): 
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Ez components at cells referenced  (i=i1 ; j=jo,… j1; k=ko+1/2,… ,k1-1/2):  
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Hy components at cells referenced  (i=i1 +1/2; j=jo,… j1; k=ko+1/2,… ,k1-1/2):  
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Hz components at cells referenced  (i=i1 +1/2, j=jo+1/2,…, j1-1/2; k=ko,…,k1): 
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Referring now to Figure 2.7(b), the Ex components at cells referenced  

(i=io+1/2,……,  i1-1/2; j=jo; k=ko,…,k1) are given by: 
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Ez components at cells referenced (i=io,…,i1;j=jo; k=ko+1/2,…,k1-1/2): 
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Hx components at cells referenced (i=io,…,i1;j=jo-1/2; k=ko+1/2,…,k1-1/2): 
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Hz components at cells referenced  (i=io+1/2,…,i1-1/2;j=jo-1/2; k=ko,…,k1): 
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Ex components at cells referenced (i=io+1/2,…,i1-1/2;j=j1; k=ko,…,k1):  
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Ez components at cells referenced (i=io,…,i1;j=j1; k=ko+1/2,…,k1-1/2): 
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Hx components at cells referenced (i=io,…,i1;j=j1+1/2; k=ko+1/2,…,k1-1/2): 
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Hz components at cells referenced (i=io+1/2,…,i1-1/2;j=j1+1/2; k=ko,…,k1): 
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Figure 2.7(a):Location of Ey (→) and Ez(↑) components in planes i=io and i=i1  
Location of Hz (↑) and Hy(→) components in planes i=io-1/2 and 
i=i1+1/2 
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Figure 2.7(b):Location of Ex(→) and Ez (↑) components in planes j=jo and  j=j1   

Location of Hz (↑) and Hx (→) components in planes j=jo-1/2 and 
j=j1+1/2 
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Figure 2.7(c) Location of Ex(→) and Ey (↑) components in planes k=ko and k=k1  
Location of Hx (↑)  and Hy (→) components in planes k=ko-1/2 and 
k=k1+1/2 

 

 

  

 

 

  

 

 

Considering Figure 2.7(c), the Ex components at cells referenced  

(i=io+1/2,…, i1-1/2;j=jo,…,j1; k=ko) are given by:  
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Ey components at cells referenced (i=io,…,i1;j=jo+1/2,…,j1-1/2; k=ko): 
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Hx components at cells referenced (i=io,…,i1;j=jo+1/2,…,j1-1/2; k=ko-1/2):  
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Hy components at cells referenced (i=io+1/2,…,i1-1/2;j=jo,…,j1; k=ko-1/2):  
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Ex components at cells referenced (i=io+1/2,…,i1-1/2;j=jo,…,j1; k=k1):  
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Ey components at cells referenced (i=io,…,i1;j=jo+1/2,…,j1-1/2; k=k1):  
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Hx components at cells referenced (i=io,…,i1;j=jo+1/2,…,j1-1/2; k=k1+1/2):  
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Hy components at cells referenced (i=io+1/2,…,i1-1/2;j=jo,…,j1; k=k1+1/2): 
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Auxiliary one-dimensional FDTD routine simulating the arbitrary propagation of the 

incident wave (IFA) is used to simplify the implementation of the two or three-

dimensional computational domain. The common boundary of the total/scattered 

region's surface interface is considered same as the origin for the one-dimensional wave 

vector.  Linear interpolation using the closest two points in the source grid is used, given 

the delay distance and source grid values as shown in [3, 5].   

 

2.5 Absorbing Boundary Conditions (ABC) 

 

In order to use Finite-Difference Time Domain method (FDTD) method to solve the 

electromagnetic wave interaction problems in unbounded regions, an absorbing 

boundary condition (ABC) must be introduced at the outer lattice boundary of the 

problem to simulate the extension of the lattice to infinity. For an ideal ABC, it should 

be able to absorb waves travelling outwardly from an FDTD mesh with extremely low 

boundary reflection. It should also possess the ability to be implemented for a distance 

close enough to the scatterers and radiators, in turn to make the computation more 

efficiently and effectively. Therefore, absorbing-Boundary conditions (ABC’s) become 

one of the most critical elements of finite-different time-domain (FDTD) analyses.  

 

The more commonly used analytical absorbing-boundary conditions are Mur [7] and 

Liao [10], which provide effective reflection between -35 to -40 dB for most FDTD 

simulations. Besides, these methods unfortunately have been shown in the past to be 

very sensitive to the frequency and propagation direction of the radiation incident upon 

them [11]. As a result, these boundaries have had to be placed at large distances from 
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radiators and scatterers, such that they can be effective. However, the Perfectly Matched 

Layer (PML), introduced by Berenger [12] in 1994, allowed the boundary reflections 

below -80dB to be realized. PML is based on surrounding the FDTD problem space 

with a highly lossy and matched non-physical absorber. This is analogous to be physical 

treatment of walls of an anechoic chamber. It has been found to be the most accurate 

technique of the ABCs available and has become a standard in most current FDTD 

simulations [13, 14]. Hence, PML is employed and implemented is this thesis and will 

be briefly discussed in the next sub-sections.  

  

2.5.1 Berenger’s Field-Splitting Formulation for 2D PML 

 

In this section, the equations of a PML medium for two-dimensional TE (Transverse 

electric) problem will be first discussed. In Cartesian coordinates, the electromagnetic 

field involves only three components, i.e. Ex, Ey and Hz , and the Maxwell equations 

reduce to the three equations. In the most general case, which is a medium with an 

electric conductivity σ  and a magnetic conductivity , these equations can be written 

as follows:  
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Moreover, it is known that a plane wave incident on a planar boundary of a 

dispersionless medium from free space is perfectly transmitted without reflection 

(matched across a planar boundary) for all normally incident waves if the following 

matching condition is satisfied for that medium. 

 

00 µ
σ

=
ε
σ *

 
(2.62) 

 

On the other hand, obliquely incident waves partially reflect back to the free space, thus 

affecting the numerical results. The PML technique solves this problem by matching the 

incident wave to the absorbing boundary medium for all polarisations, all frequencies 

and all angles of incidence. 

 

The PML medium in the TE case is defined now. The basis of this definition is to 

splitting the magnetic component Hz into two subcomponents, i.e. Hzx and Hzy.. This 

makes the existence of four components Ex, Ey, Hzx and Hzy in the PML medium. Thus, 

the resultant four field components are coupled by the following equations [12]: 
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As can be observed from equations (2.63) to (2.66), if , then the last two 

equations can be combined and the PML medium holds the particular cases through the 

usual media. If , equation above reduce to the Maxwell equations of 

vacuum, if  and , it reduces to the equations of conductive medium. 

Finally, if  and , it reduces to the equations of the absorbing medium.  

*
y

*
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In the other point of view, If , the PML medium can only absorb a plane 

wave (E

0=σ=σ *
yy

y, Hzx) propagating along x, but it does not absorb a wave (Ex, Hzy) propagating 

along y, this can be noticed from equations (2.64) and (2.65).Inversely, if , 

outgoing waves of (E

0=σ=σ *
xx

y, Hzx) propagating along x were not absorbed and waves of (Ex, 

Hzy) were absorbed propagating along y by the PML. 

 

The general configuration of the PML technique is illustrated in Figure 2.8. Considering 

Figure 2.8, a source of outgoing waves is located in the centre of FDTD computational 

domain which is surrounded by a PML ABC of several cells thickness and terminated 
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by Perfectly Electric Conducting (PEC) walls on the four sides.  

 

On the both left and right sides of the PML layers, only existence of  and  and 

indicated as PML 

xσ
*
xσ

( )00,,, *
xx σσ , while on the top and bottom side of PML layers, only 

 and  are present and expressed as PMLyσ
*
yσ ( )*

yy ,,0,0 σσ . Therefore, the matched 

PML ( )0,0,, *
xx σσ  on the left and right sides permit the outgoing waves propagate 

without reflection through interface vacuum-layer AB and CD which is normal to x axis. 

Likewise, the outgoing wave can propagate without reflection through the BC and DA 

interfaces normal to y with the presence of the matched PML ( )*
yy ,,0,0 σσ  on the top 

and bottom sides of the computational domain [12].  

 

At the corners where horizontal and vertical PML intersect, all four losses occur and 

give PML ( )*
yy

*
xx ,,, σσσσ  that contains the conductivities equal to those of the adjacent 

( )0,0,, *
xx σσ  and ( )*

yy ,,, σσ00 . Again, this will allow the outgoing wave to propagate 

without reflection through the BB1 and BB2 interface [12].  
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Figure 2.8: Implementation of Berenger’s PML ABC on a 2-D FDTD grid [12]. 
 

 

In the other hand, Berenger also proposes that the electric and magnetic losses should 

increase gradually with a certain profile as a function of the depth of the PML layer. 

Therefore, power-law profile gives the electric and magnetic loss as a function of the 

depth as in equations (2.67) and (2.68) respectively [12]. 
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where thickness of the PML layer is δ , electric conductivityσ represent either xσ  or 
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yσ  , magnetic conductivity represent either or , n is the integer number 

either 1 or 2 (n=1 for linear profile, n=2 for parabolic profile) and finally 

*σ *
xσ *

yσ

mρ  and eρ  is 

the depth into the PML (See Figure 2.9). With increasing depth, both losses should 

increase to the values of maxσ and next to the PEC walls. The net amount of 

reflection from the PEC wall at arbitrary angle of incidence θ is given as [12]:  

*
maxσ

 

( ) ( )[ ] θ=θ cosRR 0  (2.69) 

 

with 
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where c is the speed of light and 0ε  is the permittivity of free space. By inserting 

equations (2.67) and (2.68) into (2.70), this yields the normal incidence of PML 

reflection factor of 

 

co)n/(maxeR ε+δσ−= 12(0)  (2.71) 

 

 

For the case of the PML layers with conductivities increasing geometrically, the profiles 

will be shown as follows [15]: 

 

( ) ( )ρ∆σ=ρσ x/g1
0  (2.72) 
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where the  is the spatial increment of the FDTD mesh and x∆ 0σ  is the conductivity in 

the vacuum-layer interface. The conductivity increases by grading factor g from one 

layer to the next. By substituting equation (2.72) into (2.70), for a N-cell layer the 

normal reflection is then shown as follows:   

 

( ) ( ) ( )( ) xgln/1gc/2 o
N

oe0R ∆σ−ε−=  

 

(2.73) 

 

From the equation (2.73), the conductivity 0σ  in term of N, g and R(0) can be obtained 

as follows: 

 

( )0
12

Rln
g

gln
x
c

N
o

o −∆
ε

−=σ  
(2.74) 

 

Figure 2.9 shows only right side of the FDTD computational domain surrounded by a 

PML layer. As can be seen, the conductivities at the mesh points were implemented as 

the average value in the cell around the index location. Hence, the conductivity that is 

considered at index L is given as follows: 

 

 

( ) ( )
( )

( )
duu

x
L

/xL

/xLn ∫
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∆−ρ
σ

∆
=σ

2

2

1  
(2.75) 
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Figure 2.9: Right side of a domain surrounded by PML layer [12, 16]. 

 

For linear or parabolic profiles, the conductivities at index L=0,1/2,1,3/2,…….., can be 

obtained by inserting equation (2.67) into (2.75) and taking account of (2.71). The 

expression is shown in equations (2.76) and (2.77). 

 

( ) ( )
( )

12
0

1 2
0

21
0 +++ ∆

ε
−=

+
σ

=σ nnnn
m

n xN
Rlnc

Nn
 

(2.76) 

 

( ) ( ) ( ) ( )[ ]11 121200 ++ −−+σ=>σ nn
n LLL  (2.77) 

 

By implementing the similar progress, the conductivities in geometric progression 

profiles are [15] 
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2.5.2 Berenger’s PML in Three-Dimensions 

  

For 3D structures, six Cartesian field vector components (equations (2.3) to (2.8)) are 

used to define the field components in which the following twelve modified version of 

Maxwell equations can be stated:  
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PML matching conditions and grid structures are similar to those TM case are utilised, 

for three-dimensional PML layers in x, y and z directions. 

 

 

2.5.3 Numerical Implementation of the PML in 3-D case  

  

Due to the fact that the attenuation to outgoing waves afforded by PML medium is so 

rapidly that standard Yee time-stepping cannot be applied blindly, therefore, a suitable 

explicit exponential time step algorithm is proposed to be used in PML medium [12, 17]. 

For example, the updated equations for Hzy and Exy in the PML region (applying 

equations (2.85) and (2.86)) are shown as follows: 
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(2.93) 

 

The updating equations for the rest of the ten components can be derived in a similar 

way as shown above. 

 

It should be noted that the above updated equations are valid throughout the PML 

regions except at the interfaces. For example, at the yL interface (equivalent to Ljj = ) 
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in the discrete space, where j is the y direction cell reference as shown in equation (2.9), 

then the resultant equation at the interface for the Exy component is 
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(2.94) 

 

where it is assumed that yσ is zero at the interface. 

 

2.6 Conclusions 

 

The fundamental principles of the FDTD method are reviewed implicitly and explicitly 

throughout this chapter. These cover the solution of Maxwell's curl equations using 

finite differences, derivation of FDTD updating equations for electric and magnetic field 

components in a 3D computational domain. It also includes the demonstration of the 

accuracy and stability factor that govern the FDTD technique. Moreover, introducing 

the hard source and incident plane wave excitation into the FDTD computational 

domain were also briefly discussed. In addition, the concepts on how the two- and 

three-dimensional Berenger’s perfectly matched layer (PML) absorbing boundary 

conditions were imposed to truncate the FDTD computational domain, were clearly 

elucidated. With the knowledge which was explained in this chapter, a three-

dimensional FDTD Fortran 95 source code was written and ready to be used for 

bioelectromagnetic applications. These applications will eventually be shown in chapter 

four and five with different aspects of bioelectromagnetic problems. 
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Chapter 3  

 

The Lumped-Element Finite Difference 
Time Domain Technique (LE-FDTD) for 
Hybrid Electromagnetic Systems with 
lumped-element Modelling 
 
 
 

3.1 Introduction 

 
 
The current capacity and bandwidth of the existing wireless communication systems are 

insufficient to meet the needs of future mobile requirements. In anticipation of this, new 

wireless systems, such as HSDPA (High-Speed Downlink Packet Access), 4G, WiMAX 

(Worldwide Interoperability for Microwave Access), IEEE 802.11n and UWB (Ultra 

Wideband), are currently being developed. This will increasingly make use of 

tremendous higher frequencies and high density microwave integrated circuit, such as 

monolithic microwave integrated circuits (MMIC), to develop and produce the new 

communication systems and electronic device for such application in order to keep 

abreast in time with the new technology.  

 

This is an area which is evolving rapidly as technology seeks to utilise higher 
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frequencies in the interest of ever greater bandwidth. To continue moves upward in 

frequency, the most existing computer-aided circuit design tools, (primarily SPICE [1, 

2], which are limited at digital clock speeds not exceeding 300MHz and also ignores the 

approximated electromagnetic effects,) are not suitable to be used to model and predict 

the overall performance of the circuits. Several problems on dealing with 

electromagnetic effect of radiation and the coupling effect between circuit elements can 

be encountered, if the software is blindly used. Due to these reasons, the 

electromagnetic simulators which can include the effect of this phenomenon by solving 

Maxwell’s equations and taking into account the interaction between electronic circuit 

and electromagnetic waves comprehensively, are indispensable for accurate 

characteristic.  

 

Finite Different Time Domain (FDTD) technique, since it is first proposed by Yee in 

1966 [3], has attracted several researchers, particularly for its simple implementation 

that can be directly applied the solutions of the Maxwell’s equations in time domain. In 

recent years, a significant effort has been made to bridging the gap between 

electromagnetic-field and circuit-based simulators by using this technique and it is 

called Lumped-element FDTD (LE-FDTD) technique [4-8]. By spatial descretizing the 

simulated structure into a three-dimensional grid and include the desired active and 

passive lumped elements between adjacent grid nodes, LE-FDTD allows the complex 

microwave circuits to be analysed effectively and efficiently.  

 

This chapter reviews the conventional FDTD method and then it is followed by a 

derivation of the relationships between the E and H fields. This also includes the 

voltages and currents that are used to extend the general equations to include the lumped 
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elements inside the grid. Subsequently, the updated equations for passive lumped 

elements such as resistor and capacitor will be briefly derived and discussed. Finally, a 

conclusion of this work will be stated. It should be noted that several test cases are 

analysed by this method and the results are compared with analytical solutions to verify 

the validity of this technique. However, it will be elucidated extensively and intensively 

in chapter 5. 

 

3.2 Basic Circuit Parameters 

 

In order to relate the electric field and magnetic field stated in FDTD analysis to the 

usual circuit quantities in terms of voltage and current, the following fundamental 

expressions can be used [9, 10]: 

 

( ) ( ) ldxtExtV
vC

ii ⋅= ∫ ,,
r

 (3.1a) 

 

( ) ( ) ldxtHxtI
IC

ii ⋅= ∫ ,,
r

 (3.1b) 

 

where  is a contour extending from a defined voltage reference point (usually a 

ground plane) to the circuit at location, x

vC

i  . In most of the cases, xi is a point on a 

metallic strip transmission line (a microstrip) that propagates the dominant TEM mode. 

In this situation, V (t, xi) is independent of the choice of if this path is confined to the 

transverse plane, and can be conveniently chosen to extend in a perpendicular 

vC

vC
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manner from the ground plane to the adjacent surface of the microstrip. Likewise, the 

selection of the contour  to wrap completely around the strip conductor at its surface 

in the transverse plane provides the local current. However, for the case of non-TEM 

modes, the above assumption cannot be applied blindly [9, 10].  

IC

 

3.3 Basic FDTD Algorithm and Extension 

3.3.1 Basic FD-TD Formulation 

 

The basic FDTD update equations used to solve the Maxwell’s equations, have been 

clearly derived in the previous chapter and literatures  [9-11]. Therefore, it will not be 

repeated again here. Consider Maxwell’s curl H
r

 equation (in which it is suitable for 

time-stepping the electric field [12]):  

    

t
DJH c ∂
∂

+=×∇
r

rr
 

(3.2) 

 

where and cJ
r

D
r

 are  the conduction current and the electric displacement respectively.  

It should be noted that EJc

rr
σ= and ED

rr
ε= . By applying the central differencing into 

equation (3.2), the following expression is obtained: 
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(3.3) 

 

As can be seen, all the H quantities on the right hand sides of equation (3.3) are taken at 

time step n+1/2, centred in time relative to the stored electric field, n
k,j,izE , and the 

advance updated electric field, 1+n
k,j,izE . In addition, assuming that  is also evaluated 

at time step n+1/2. Hence, the semi-implicit formulation for the conduction current can 

be expressed as follows: 

cJ
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Another assumption is made by denoting the Yee finite-difference analogy to the curl of 

H
r

 observed at k,j,izE as: 

 

y

HH

x

HH
H

/n
k,/j,ix

/n
k,/j,ix

/n
k,j,/iy

/n
k,j,/iy/n

k,j,i ∆

−
+

∆

−
=×∇

+
+

+
−

+
−

+
++

21
21

21
21

21
21

21
2121  

(3.5) 

 

For the sake of convenience, all the circuit components are located in a free space 

region ( )000 ==σε=ε cJ,,
r

 are assumed. Then equation (3.3) can be rewritten in the 

following simplified form: 
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3.3.2 Extended FD-TD Formulation 

 

According to [13] , the modification of the three-dimensional electric field time 

stepping algorithms of equation (3.6) permit the addition of lumped linear and nonlinear 

circuit elements.  However, the basis of this formulation is originally reported by Sui et 

al. [5] for two-dimensional problems. Subsequently, Tsuei et al. [14] and Piket-May et al. 

[12] have successfully extended the same principles to model full wave propagation in 

3-D circuits containing both active and passive lumped elements. The fundamental 

concept is that circuit elements can be accounted for in Maxwell’s equations by adding a 

lumped electric current density term  to the conduction and displacement currents on 

the right-hand sides of equation (3.6), hence, the equation now becomes 

LJ

 

Lc J
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Assuming that the lumped element is located in free space at the electric field point 

(i,j,k), and it is also oriented in z direction of the grid. Then, the local current density 

that is related to the total element current  can be given as follows: LI

 

yx
I

J L
L ∆∆
=  

(3.8) 
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Here,  can possibly consider as a time-derivative, time-integral, scalar multiple, or 

nonlinear function of the electric potential, 

LI

zEV k,j,iz ∆= , that is developed across the 

element. It should be mentioned that the positive direction of the  is +z.  Thus, the 

modified version of equation (3.6) that describes the presence of the lumped element 

can be expressed as follows: 

LI
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(3.9) 

 

At the observing point of view, the lumped current in equation (3.9) is computed at time 

n+1/2, in which it is the same time stated to the conduction current in equation (3.4). 

Since the lumped element current is a function of the E-field at the circuit element, 

hence it requires averaging 

cJ

1+n
k,j,izE  and n

k,j,izE in order to produce a stable semi-implicit 

time-stepping algorithm. As for x- and y- orientations of a lumped element, the equation 

can be simply derived by permuting the coordinate subscripts of the fields. 

 

3.4 Linear Lumped Components 

3.4.1 The Resistor 

 

Assuming a z-directed resistor R located in free space at the field component 

k,j,izE and zEV k,j,iz ∆= is known. According to Ohm’s law (I= V/R), the resistor value 

(R) is directly proportional to the voltage (V) and inversely proportional to the current 

(I).  For the operation of the FDTD field solver, the formula to include the resistor 
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inside the FDTD computational domain can be expressed in the following form [12]: 
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By substituting equation (3.10a) into equation (3.9), the corresponding time-stepping 

relation can be obtained as follows 
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(3.11) 

 

Piket-May et al. [12] are using one or the other to terminate a 50 Ω transmission line 

excited by a 90-ps Gaussian pulse (spectral width of 20GHz), in order to prove the 

validity of equation (3.11) for FDTD modelling. The research outcomes from [12] is 

depicted in Figure 3.1. Figure 3.1 illustrates a comparison of the impedance matching 

that is provided by the numerical resistor of equation (3.11) and the physical resistor 

model that is composed of a one-cell-thick resistive slab in the FDTD lattice [12].  As 

can be found, both resistor models provide reflection coefficients of less than 1% up to 

1GHz. For operating frequencies above 1GHz, the two resistor models continue to 

provide very close agreement in terms of reflection coefficients, although, as expected, 

the match to the line degrades because of presence of parasitic capacitance and 
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inductance in each model [10].  

 

 

Figure 3.1: Agreement of FD-TD computed effective load impedance (low frequency to 
10GHz) for the numerical resistor and the physical resistor: (a) Magnitude 
(b) phase [12] . 

 

3.4.2 The Resistive Voltage Source 

 

To model a nonreflecting (matched) source as a resistive voltage source in FDTD grid, 

and also assumes a z-directed lumped element, the voltage-current characteristic that 

describes the behaviour of a resistive voltage source in a semi-implicit manner is [12]: 
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where  is the source voltage and R2/1n
SV +

s is the internal source resistance. By 

substituting equation (3.12a) into equation (3.9), the corresponding time-stepping 

relation is derived as shown in equation (3.13). 
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(3.13) 

 

 

3.4.3 The Capacitor 

3.4.3.1 Intrinsic Capacitance  

 

A charge can be stored into the adjacent cells in FDTD grid, therefore, it is imperative to 
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define an intrinsic capacitance between cells of the grid.  This intrinsic capacitance (grid 

capacitance) of adjacent cell in free space in FDTD grid can be derived in the following 

manner. The standard definition of capacitance is [15]: 

 

V
QC =  

(3.14) 

 

where Q is the stored charge and V is the voltage between the charges. The charge can 

be expressed in terms of the flux integral and yields an electric field term in the 

numerator of equation (3.14), thus, the electric field that subsequently appears in the 

denominator can be cancelled.  Consider a cubical cell of Gaussian surface that encloses 

a charge Q. The relationship between the charge and field on the faces of the cell 

surrounding the charge is [15]: 

 

( ) ( ) ( ) enclosed
2

o
facessix

face
2

o E6EQ ∆ε=∆ε= ∑  (3.15) 

 

where  ,cetandisenclosedface EEE
rrr

+= enclosedE
r

and cetandisE
r

are the electric field from the 

enclosed charge and external source respectively ,∆  is the length of one side of the 

cubical cell and  is the permittivity of the free space. Without the existence of the 

external source, is not contributing to the integral. Then, the difference in 

potential between the two adjacent cells containing charges of equal magnitude and 

opposite sign is given as follows: 

oε

enclosedE
r
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(3.16) 

 

By substituting equations (3.15) and (3.16) into equation (3.14), the intrinsic/grid 

capacitance between adjacent nodes in the FDTD grid can be found as follows: 

 

∆ε= 0lattice 3C  (3.17) 

 

In order to verify the presence of grid capacitance in FDTD computational domain, a 

simple example from [15] was presented and is confirmed here by the above equation.  

According to the example in [15], authors justify the grid capacitance between adjacent 

nodes in FDTD grid for 1-m cubical cell is 26.6pF. This can be done by discharging the 

deposited charge through a conductance in which can be introduced into the grid.  The 

rate of discharge can easily be measured and can be used to obtain the associated time 

constant. From this time constant and the known resistance, the capacitance value can 

be obtained.  Charge deposited into the grid will discharge through conductance with a 

time constant 

 

latticeloadCR=τ  (3.18) 

 

where  is the resistance associated with the conductivity at the grid location. 

Assuming the conductivity is S/m that is equivalent to 5 kΩ in which a 

single-element current source driven by a Gaussian pulse is used to excite the structure.  

By implementing equations (3.18) and (3.17), the expected time constant is 133 ns. 

loadR

4102 −×=σ
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Figure 3.2 shows the measured time constant which characterizes the decay is precisely 

equal to 133ns and this also verifies the capacitance value that is predicted by equation 

(3.18). 

 

 

Figure 3.2: Charge versus time when the conductivity is present [15] . 

 

3.4.3.2 Extrinsic Capacitance 

 

In this section, insertion of capacitor C into the FDTD space lattice is discussed. Again 

assuming a z-directed lumped element is located in free space at k,j,izE , the voltage-

current characteristic that depicts the capacitor’s behaviour in a semi-implicit manner is 

[12]: 
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For the sake of consistency with the time stepping used for inclusion of the numerical 

resistor described above, equation (3.19a) is dissimilar to [16] in which the E-field 

samples are separated here by one time-step rather than two. The corresponding time-

stepping relation is [12]: 
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(3.20) 

 

It should be noted that the C capacitor value being modelled includes the additive 

contribution of the intrinsic lattice capacitance defined in section 3.4.3.1.  

 

For the case of Parallel combination of Capacitor C and Resistor R located at k,j,izE , 

the equations (3.10) ,(3.11), (3.19) and (3.20) are combined to yield the following time-

stepping relation [12]: 
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The tests of this FDTD approach, in a variety of numerical capacitive loads were 

modelled at the end of a long 50Ω microstrip line (≈ 1-mil scale in the transverse 

plane). This is subjected to a rectangular step-pulse excitation of 1000 time-steps long, 

in which it is reported in reference [12] . Figure 3.3 shows the FDTD-computed voltage 

response versus time for each capacitor, and then the results are compared to the exact 

theoretical response. Results are in an excellent agreement for microstrips terminated 

with 4-nF and 20-nF capacitors. 

 

 

 

Figure 3.3: Comparison of FDTD and SPICE calculation of voltage across capacitor 
[12]. 
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3.5 Conclusions 

 

In this chapter, the standard three-dimensional FDTD equations are extended to analyse 

various electrical components such as resistor and capacitor elements. This yields a set 

of equations in which the method is called LE-FDTD. These equations were derived by 

specifying the appropriate voltage-current characteristics of sources and lumped 

elements. The characteristics of linear lumped elements including resistor and capacitor 

within FDTD grid were demonstrated and an example was given to prove the validity of 

the derived LE-FDTD formulas for all lumped elements respectively. Furthermore, the 

inherent grid capacitor which is a function of grid spacing was also discussed in the 

context. The knowledge acquired from this chapter will be broadly extended to include 

the analysis of the interaction between electromagnetic and biological tissue modelling 

that will be discussed in chapter five. In addition, the derived equations for linear 

components such as resistor and capacitor will be validated and the LE-FDTD will be 

implemented on the surface of the tissue as an equivalent circuit for cell membrane. 
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Chapter 4  

 

Quasi-Static FDTD Scheme for 
Electrically-Small Regions in Free Space, 
Lossless and Lossy Penetrable Media 

 
4.1 Introduction 

 

The problem of modelling electromagnetic field interaction with structures whose 

dimensions are a few wavelengths has been the subject of many studies and numerical 

simulations for bioelectromagnetic applications. The methods used for such numerical 

simulations generally fall into one of three categories, method of moment (MOM) [1-4], 

finite element (FE) [5-8] and finite difference time domain (FDTD) [9-11].  

 

Method of moment (MOM) does an excellent job of analyzing unbounded radiation 

problems and they excel at analyzing perfect electric conductor and homogeneous 

dielectrics. However, it is not very effective when applied to arbitrary configurations 

with complex geometries or inhomogeneous dielectrics. As for finite element method 

(FEM), it is a very versatile technique because it allows the analysis of complex 

inhomogeneous structures. However, it requires unaffordable computation resources to 
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solve extremely large problem, due to discretising the entire problem space and lack of 

adequate free-space boundary conditions that can be placed close to the objects 

modelled.  

   

In contrast, the finite difference time domain (FDTD), since its first introduction by Yee 

[12], has been used extensively over the last decade for bioelectromagnetic dosimetry - 

numerical assessment of electromagnetic fields coupled to complex heterogeneous 

biological entities at powerline frequency and radio frequency. The use of FDTD is very 

attractive for this application, due mainly to its algorithmic simplicity, capable to solve 

complicated heterogeneous geometries and ease of modularization and parallelisation of 

the algorithm on massively parallel computers. Moreover, it is also capable to model 

electromagnetic wave interaction problems requiring the solution of considerably more 

than 108 field vector unknowns. At this level of complexity, it is possible to develop 

detailed, three-dimensional models of complete engineering systems.  

      

The classical form of Finite-difference Time-domain (FDTD) method requires 

extremely small time-step sizes when modelling electrically-small regions (much 

smaller than a wavelength). Thus, it can become impractical due to the unaffordable 

computation times required. This problem can be solved by implementing a quasi-static 

approximate version of FDTD. This approach is based on transferring the working 

frequency to a higher frequency, to reduce the number of time steps required. Then, the 

generated internal field at the higher frequency can be scaled back to the frequency of 

interest [10, 13-16]. It should be noted that this approach is only valid if the size of the 

interacting structure in the problem space is 10 times or more smaller than the 

wavelength and |σ + jωε| >> ωεo [10, 13], where σ and ε are the conductivity and 
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permittivity of the tissues respectively, ω is the radian frequency, and εo is the 

permittivity of free space. In order to prove the validity of the quasi-static approach, this 

chapter will develop a three-dimensional FDTD program to directly model a single 

homogeneous or multi-layered sphere inside a lossless or lossy problem space. The 

sphere was excited by a plane wave, which is replaced by an equivalent surface.  The 

edge of the problem space was truncated by a properly modified Berenger’s perfectly 

matched layer (PML) absorbing boundary condition (ABC), with matching impedance 

condition (σ/ε = σ*/µ for lossless or lossy media, whereas σ/εo = σ*/µo for free space) 

[17-20]. An optimum value of the g factor is properly chosen to provide efficient low 

reflection termination of the computational space for different penetrable media 

problem at the interface layer.   

 

The remainder of this chapter is organized as follows. In section 5.2, the formulation for 

plane wave solution in free space, lossless and lossy medium will be derived and 

discussed in order to be used in the numerical analysis. The analytical solution for the 

field scattered by a sphere is demonstrated thoroughly in section 5.3 as well. Then, the 

methodologies of studying the problem of modelling electromagnetic field interaction 

with structures whose dimensions are a few wavelengths, using Quasi-static FDTD and 

modified Berenger’s Perfectly matched layer are elucidated in detail in section 5.4. 

Numerical results are presented in section 5.4, where the perfect agreement with 

analytical solution confirms the validity of our technique. Finally, the entire work of this 

chapter is summarized in section 5.5. 

 

 



Chapter 4: Quasi-static Scheme For Electrically-Small Regions…                             83 
 
4.2 Basic Plane Wave Solutions 

 

The major goal of this section is to solve Maxwell’s equations and derive 

Electromagnetic wave motion in free space, lossless and lossy penetrable media [21, 22].  

 

4.2.1 Plane Waves in Lossy Medium 

 

In a source-free, linear, isotropic, homogeneous, lossy dielectric medium, Maxwell’s 

equations in phasor form are: 

 

HjE ωµ−=×∇  (4.1) 

 

( )EjH ωε+σ=×∇  (4.2) 

0E =⋅∇  (4.3) 

0H =⋅∇  (4.4) 

 

Taking the curl of both side of equation (4.1) gives 

 

HjE ×∇ωµ−=×∇×∇  (4.5) 

 

Applying the vector identity 
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( ) AAA 2∇−⋅∇∇=×∇×∇  (4.6) 

 

to the left-hand side of equation (4.5) and invoking equations (4.2) and (4.3), the 

following expression is obtained 

 

0EE 22 =γ−∇  (4.7) 

 

where 

 

( )ωε+σωµ=γ jj2  (4.8) 

 

where γ is called the propagation constant( in per meter) of the medium. 

An identical equation for H can be derived in the same manner: 

 

0HH 22 =γ−∇  (4.9) 

 

Equations (4.7) and (4.9) are known as homogeneous vector Helmholtz’s equations or 

simple vector wave equations. 

Since γ shown in equations (4.7) to (4.9), is a complex quantity, given by: 

  

ωε
σ

−µεω=β+α=γ j1jj  
 
(4.10) 
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(4.11) 

 

(4.12) 

 

 

where  is known as the attenuation constant or attenuation factor of the medium and 

is measured in nepers per meter (Np/m) or in decibels per meter (dB/m). The quantity 

 is a measure of the phase shift per length and is called the phase constant or wave 

number.  σ, µ and ε are respectively the conductivity, permeability and permittivity of 

the media. 

α

β

fπω 2= is the radian frequency. It should be noted that in term of β , 

the wave velocity u and wavelength λ can be expressed in the following form: 

 

β
π

=λ
β
ω

=
2,u  

 
(4.13) 

 
 

A basic plane wave solution to the above wave equations can be found by considering 

the wave is propagating in z direction and polarised in x direction. Therefore, the 

helmholtz equation of (4.7) reduces to         

  

0E
dz

Ed
x

2
2

x
2

=γ−  
 

(4.14) 

 

which has solutions 

 



Chapter 4: Quasi-static Scheme For Electrically-Small Regions…                             86 
 

( ) zz
x eEeEzE γ−γ−+ +=  (4.15) 

 

where E+ and E- are arbitrary amplitude constants.  

The positive travelling wave then has a propagation factor of the form 

 

zjzz eee β−α−γ− =  (4.16) 

 

which in time domain can be given as follows: 

 

)ztcos(ee zz β−ω= α−γ−  (4.17) 

 

As can be seen, this represents a wave travelling in the +z direction with a phase 

velocity vp=ω/β, a wavelength λ=2π/β, and an exponential damping factor. The rate of 

decay with distance is given by the attenuation constant α. The negative travelling wave 

term of (4.15) is similarly damped along the –z axis. Hence, the solution for positive 

electric travelling wave is obtained in equation (4.18).  

 

( ) ( ) )aeeERe(t,zE x
ztjz β−ωα−= 0  

or 

( ) ( ) x
z aztcoseEt,zE β−ω= α−

0  

 

(4.18) 

 

As for the solution for the positive magnetic travelling wave, the H(z,t) can be gained 

by taking the similar steps to solve equation(4.9).  
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( ) ( ) )aeeHRe(t,zH y
ztjz β−ωα−= 0  

or 

( ) ( ) y
z aztcoseHt,zH β−ω= α−

0  

 

(4.19) 

 

 

Now, by using equation (4.18) with equations (4.1) and (4.2), the relationship between 

Eo and Ho can be solved in the following way.  

 

 

From Faraday’s law, equation (4.1) can be expressed in the following forms: 

 

 

 

t
HE
∂
∂
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( )dtEH ∫ ×∇
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(4.20) 

 

Since 
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(4.21) 

 

Hence, 
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y

ztjz aeejE
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(4.22) 

 

From Ampere’s law, equation (4.2) can be expressed in the following form. 

 

t
EEH
∂
∂

ε+σ=×∇  
(4.23) 
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(4.24) 

 

 

Then, 

 

( ) ( )ztjzeeEjH β−ωα−ωε+σ=×∇ 0  (4.25) 

 

Comparing equations (4.24) and (4.25), equation (4.26) is obtained. 

 

( ) ( )( )ωµωε+σ=β+α jjj  (4.26) 

 

Substitute equation (4.26) into equation (4.22), eventually equation (4.27) is gained. 
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η
= 0

0
EH  

 
(4.27) 

 

where η is a complex quantity known as the intrinsic impedance (scalar element stated 

by ohm values) of the medium. 

 

ηθ
η η=θ∠η=
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=η je
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j  
 

(4.28) 
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(4.29) 

 

 

where 0≤ ≤45ηθ
o . Substituting equations (4.27) and (4.28) into equation (4.19) gives 

 

( ) ( ) )aee
e
ERe(t,zH y

ztjz
j

β−ωα−

ηθη
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( ) ( ) y
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(4.30) 
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4.2.2   Plane Waves in Lossless Medium 

 

In a lossless dielectric, ωε<<σ , in which is a special case of that given in previous 

section except that 

 

rr ,, µµ=µεε=ε≅σ 000  (4.31) 

 

where µr and εr are the relative permeability and permittivity of the media respectively.  

µo  and  εo  are the free space permeability and permittivity.  

Substituting these into equations (4.11) and (4.12) gives 

 

,, µεω=β=α 0   
(4.32) 

 

,,
u

u
β
π

=λ
ε

=
β
ω

=
21  

 
(4.33) 

 

Also 

 

o0∠
ε
µ

=η  
 

(4.34) 

 

And thus E and H are shown to be in time phase with each other. 
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4.2.3   Plane Waves in Free Space 

 

In a free space, the following equations can be stated: 

 

000 µ=µε=ε=σ ,,  (4.35) 

 

,
c

, ω
=εµω=β=α 000  

(4.36) 

 

,,c
u
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ω

=
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00

 
 

(4.37) 

 

Ω≈π=
ε
µ

=η 377120
0

0
0  

 
(4.38) 

 

where c ≈ 3 ×108 m/s, the speed of light in a vacuum. 

 

4.3 Analytical Solution 

 

The exact solution for describing the characteristics of electromagnetic radiation 

scattered by a homogenous sphere when it is excited by a plane wave, was first solved 

by Mie [23] in 1908 and has been concisely formulated by Stratton [24] in 1941. A 
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solution of scattering problem of a sphere with one concentric shell has been given by 

Aden and Kerker [25] and the scattering from an inhomogeneous spherically symmetric 

object has been calculated by Wyatt [26]. Since Mie series solution is simple and easy to 

be modified for any composition of sphere, therefore it was adapted by various authors 

for comparisons to investigate bioelectromagnetic problems, either to be used as an 

analytical solution to the problems [27-37] or as a solution to proposed numerical 

methods [13, 38-42] for comparisons. This section gives the solutions in a form readily 

amenable to machine computation for both the scattered and the interior fields. The 

spherical core is surrounded by arbitrary number of concentric shells. It should be noted 

that this exact solution will be implemented as a tool for comparison against our 

proposed quasi-static FDTD method throughout this chapter.  

 

 

4.3.1 Sphere with arbitrary Concentric Layers 

 

Figure 4.1 depicts the orientation of the plane wave with respect to a rectangular and 

spherical coordinate system having its origin at the centre of the sphere. The plane wave 

is assumed to propagate in the positive z-direction and the electric field is linearly 

polarised in the x-direction. A stratified sphere with arbitrary thickness and electrical 

characteristics is shown in Figure 4.2. The basic idea of the analysis is performed by 

expanding the incident and secondary fields in vector spherical harmonics appropriate 

to each region and matching the tangential components of the fields at each boundary to 

determine the expansion coefficients.  
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The expansion of the incident plane wave is given in Stratton [24] and the same 

identical notation will be implemented in this work. This incident wave will induce 

fields in all of the regions and the general solution of the vector wave equation for the 

transverse fields in any shell layer can be written as a linear combination of the 

spherical vector wave functions, mr  and nr , that was used by Stratton [24]. In general, 

the radial field dependence is an arbitrary solution to any linear combination of the 

spherical Bessel and Hankel function of first and second kinds.  

Each type of Bessel and Hankel function with its associated properties will be discussed 

as follows: 

 

1. The spherical Bessel function of the first kind, , indicates a 

standing wave. 

( )rJB n)1(n =

2. The spherical Bessel function of the second kind, ( )rYB n)(n =2 , 

indicates a standing wave as well and is also called the spherical Neumann 

function or Weber function. 

3. The spherical Bessel function of the third kind, ( ) )r(iYrJB nn)3(n += , 

indicates an inward traveling wave and is also called the Hankel function of the 

first kind, . )r(H )1(n

4. The spherical Bessel function of the fourth kind, ( ) )r(iYrJB nn)4(n −= , 

indicates an outward traveling wave and is also called the spherical Hankel 

function of second kind, . )r(H )2(n

For the innermost layer of the sphere the spherical Bessel function of first kind, Jn, is the 

only admissible solution, while for the surrounding medium the fields will consist of 

incident waves and scattered waves in order to satisfy the radiation condition at infinity. 
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Hence, the general solution of the electric and magnetic field vectors in pth region of 

concentric sphere can be formulated as follows: 
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where a, b, α, β are the expansion coefficients (see Section 4.3.2 ) and 

mr ,  are the spherical vector wave functions as given by Stratton [24].     n
r
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where: 
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    1. is the complex propagation constant for the ppk th region: 
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(4.43) 

 

εo is the free space permittivity, and p
rε pσ  are the relative permittivity and electrical 

conductivity of the pth layer, and the positive value of the square root is used.  

 

 

 

Figure 4.1: Spherical co-ordinates and incident plane wave configurations. 

 

 

 

     2. The nth term of  is the associated first order Legendre Polynomials, ( θcosPn
1 )
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properties for which can be found in literature [43] or might be computed using the 

follow recursive relations: 

 

       Let: ( ) ( )
θ
θ

=θ
sin
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Q n
n
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       ( ) ( ) ( ) ( )θ+−θθ=θ −11 nnn QnQcosnR   

 

 

which can be solved using initial value of  

( ) ( ) ( ) θ=θ=θ=θ cosR,.Q,.Q 110 0100                                  

 

 

 

 

 

     3. The subscript “e” and “o” correspond to the even or odd character of the vector 

wave functions mr  and n
r

. 
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Figure 4.2: M-Layered Concentric Spherical System. Shaded region represents Pth 

layer of the system with the radius of rp and electrical parameters of εp, 

µp, and σp. 

 

4.3.2 Solution for Expansion Coefficients 

 

The electric and magnetic fields can be determined using equations (4.39) and (4.40) 

with four expansion coefficients a, b, α, β determined by the requirement that the 

tangential components E
r

 and H
r

 be continuous at the interfaces between all regions. 

This requirement yields the following four relationships at the interface to each layer: 

 

( ) ( )
θ+θ

= 1pp EE  
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( ) ( )
θ+θ

= 1pp HH  

 

 

(4.44) 
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( ) ( )
φ+φ

= 1pp HH  

 

Substituting the m  and nr r
 functions into equations (4.39) and (4.40) and applying the 

four relationships in equation (4.44), the expansion coefficients may be written as 

follows [28, 44]: 
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All of the Bessel functions are now understood to be evaluated at the values of p and 

p+1 corresponding to the interface between the two regions. 

For the solution of coefficients  ,  and , equations (4.45a), (4.45b) and 

equations (4.45c), (4.45d) can be represented in matrix form as follows: 
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From [28], for a M-layered sphere, the above equations can be stated as follows: 
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Using the fact that  (i.e., the Hankel function, in which its divergent at the 

origin at the innermost sphere, must be absent for this region), and . 

Equations (4.46) and (4.47) yield 
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Equations (4.51) and (4.52) represent a simple simultaneous equation form which , 

 and  can be computed. Using the modified version of equations (4.46) and 

(4.47), all remaining expansion coefficients can be found as follows: 
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4.4  Numerical Method 

4.4.1  Quasi-Static FDTD Scheme 

 

The interaction between animals or humans exposed to extremely low frequency 

electric fields were investigated by Kaune and Gillis [45] and Guy et al. [46] in 1981 

and 1982 respectively. Their research outcomes furnish valuable analytical and 

experimental verification of the idea of quasi-static nature of coupling at power-line 

frequency. Later, the works presented in [13, 14, 41] showed the same principles using 

finite difference time domain (FDTD) in which the numerical dosimetry of anatomically 

based models were discussed. Recently, the same idea has been further extended to 

model the interaction between electromagnetic (EM) fields and biological tissue at 

mobile communication frequencies, i.e. GSM900 and GSM1800 [16].  

 

By using the similar methodologies of authors [45, 46], and in order to implement the 

Quasi static approximation to analyse any scattering problems, following two conditions 

have to be satisfied: 
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1.  The size of the structure under consideration is a factor of  

10th or more smaller than the wavelength.  

 

 

2.   |σ + jωε| >> ωεo  

 

where σ and ε are the conductivity and permittivity of the analysed structure 

respectively, ω is the radian frequency, and εo is the permittivity of free space. 

 

Under these conditions, electric fields outside the analysed object are not dependent on 

the internal analysed object properties, but also on the shape of the body. The 

components of the electric field tangent to the surface of the model and the internal 

fields are approximately zero compared to the applied field. For these conditions the 

external field E can be considered to be perpendicular to the body of the analysed 

structure.  

 

From the Maxwell equation div D = ρ, the boundary condition for the normal 

component of electric field at the surface of the region of interest is : 

 

tissuetissuetissueair En̂)j(En̂j
rv

o •ωε+σ=•ωε  (4.55) 

 

where subscripts refer to the regions of interests and “•” refers to vector dot product.  

 

From equation (4.55), and under the two conditions given above in which the problem 
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space 10 times or more smaller than the wavelength and |σ + jωε| >> ωεo, the scaling 

relationship can be derived as follows [13, 46]:  
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(4.56) 

 

 

Assuming that ωε (f) << σ (f) and ω'ε' (f ') << σ' (f'), then according to equation (4.56), a 

higher working frequency (f') which falls within the quasi-static regime, can be chosen 

to excite the model, to reduce the computation time. Thus, the resultant internal fields, 

E', evaluated at higher frequency can be transferred back to the desired low frequency.  

 

4.4.2 Modified Berenger’s Perfectly Matched Layer (PML) 

 

The primary difficulty of FDTD method when modelling open-region electromagnetic 

wave scattering problems, is that an artificial boundary or absorbing boundary condition 

(ABC) is required to be imposed at the outer grid boundaries of the computational 

domain, in order to truncate the size volume. Therefore, Absorbing boundary conditions 

(ABC’s) are one of the most critical elements of finite-difference time domain analysis, 

that must be applied to absorb the required wave of this bounded problem. 
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Several analytical ABC’s , such as Mur [47] and Liao [48], have been invented in order 

to overcome this problem. The proposed ABCs provide effective reflection coefficients 

in order of -35 to -45dB for most FDTD simulations. Recently, The capabilities of the 

ABC have been significantly enhanced with the introduction of Berenger’s perfectly 

matched layer (PML) [17, 19, 20]. This is based on surrounding the FDTD problem 

space with highly lossy and matched non-physical absorber. It also allowed for 

boundary reflections below -80dB to be realized. The PML, therefore, became the 

boundary of choice for the simulation problems of this chapter.  

      

It is known that a plane wave incident on a planar boundary of a dispersionless medium 

from free space is perfectly transmitted without reflection (matched across a planar 

boundary) for all normally incident waves if the matching condition in equation (4.57 ) 

is satisfied for that medium [17].  

 

oo µ
σ

=
ε
σ ∗

 
 

(4.57) 

   

The idea of matching condition in free space for the PML will be extended to lossless 

and lossy media with the following modified matching condition.  

 

oror µµ
σ

=
εε
σ ∗

 
 

(4.58) 

 

where σ and  σ*  are the electric conductivity and magnetic conductivity of the medium 
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respectively. εo and µo are the free space permittivity and permeability and the relative 

permittivity and permeability are εr and µr . 

 

In order to reduce the reflection on the interface layer, an optimum value of the 

geometric grading factor (g) has been selected, by using an empirical expression as in 

[19]: 

 

)0(Rln
1g

gln
x2

c
N −∆

ε
−=σ  

(4.59) 

 

where ∆x is the spatial increment of FDTD mesh, R(0) is the normal reflection 

coefficient, N is the number of the cells in the PML thickness, c is the velocity of EM 

waves in free space or lossy medium. 

 

4.5 Results and Method Verification 

 

In order to verify the validity of quasi-static approximation (using a higher frequency f’ 

to obtain induced E fields) in finite difference time domain (FDTD) method, four 

examples will be illustrated and discussed in this section. Due to the existence of the 

analytical solution for a spheres exposed to plane wave, therefore, all examples 

demonstrated here will be discussed subject to a homogeneous and layered sphere 

involving for free space, lossless and lossy penetrable media to confirm the accuracy of 

the solution obtained from numerical results with analytical solution.   
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This section is classified into two sub-sections, i.e. verification at powerline frequency 

and verification at mobile communication frequency, in which three examples will be 

given at powerline frequency and one example will be shown at mobile communication 

frequency. It should be noted that Examples 4.1 and 4.2 are drawn from paper [13] for 

proving the proposed FDTD method and compared with Mie-series solution codes that 

is working at powerline frequency for free space case. Then, the media of the Examples 

4.1 and 4.2 are replaced with lossless case and the results are compared as shown in 

Example 4.3. This example gives stable results and shows the feasibility of using the 

quasi-static approach to biological application at mobile communication. Finally, the 

quasi-static concept is extended to model a biological equivalent spherical cell in lossy 

penetrable media at mobile communication frequency and it is clearly depicted in 

Example 4.4. 

 

In FDTD computational domain, Examples 4.1 to 4.3 are modelled in a domain of 63 × 

63 ×63 cm space size, with a grid resolution of 1cm in each direction and δt of 16.67ps.  

The Example 4.4 uses 100× 100 ×100 µm space size, with grid cell of 1µm in each 

direction and δt of 1.3 fs. The model is excited by a plane wave of 1V/m, which is 

propagating in z-direction and polarised in x-direction. Moreover, the domain was 

terminated by a PML (6, Gx, 40dB) (six layers, with geometric progression profile and 

geometric grading factor of Gx of the media used, for which 40-dB attenuation for 

normal incidence is considered) on all sides. Moreover, the simulation time of order of 

four oscillation periods of the source field is found necessary to calculate the steady 

state conditions. 
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For the convenience of illustration of the problem, consider Figures 4.3 and 4.4, which 

show the 2- and 3-dimensional view of geometry stated in FDTD computation domain. 

This shows the equivalent surface (Huygens surface) that replaces the plane wave. It 

also shows the Berenger’s perfectly matched layer (PML) that implements the 

absorbing boundary condition (ABC). This layer has been applied surrounding the edge 

of the problem space, with matching impedance condition (σ/ε = σ*/µ for lossless or 

lossy media, whereas σ/εo = σ*/µo for free space). In addition, in order to explain the 

results systematically, all 1-dimensional and 2-dimensional plot of the induced electric 

and magnetic fields components are standardised for ease of comparison for all test 

cases. For one dimensional plots, it should be noted that only dominated Ex component 

versus y and z, it also includes Ez component versus x. Moreover, the dominated Hy 

vesus x and z for the central axes of the sphere are shown for discussion. For 2-

dimensional plots, they display logarithmic value of 2-dimensional field strengths are 

demonstrated when eight grid cells are considered between the PML and the structure. 

 

 

4.5.1  Verification at Low Frequency (Powerline Frequency) 

 

This section demonstrates the feasibility of frequency scaled FDTD method to solve 

scattering problem at powerline frequency of 60Hz. All the test cases in this section will 

initially transfer the working frequency to 20MHz, in order to make the simulation time 

reasonable to be computed. Then, the obtained induced fields are scaled back to 60Hz 

by using equation (4.56). As can be observed, if the same problem is solved directly at 

frequency of 60H and four oscillation-period criterion is used, then the number of the 
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time step requires is  4×(1/(δt*60)). This is equivalent to about 4 billions of time steps at 

desired operating frequency of 60Hz. By scaling the operating frequency to 20MHz, the 

number of time steps can be reduced, i.e., from few billions to few thousands. In the 

other hand, due to σ>> at both 20MHz and 60Hz, the selection of the εωε r of the 

scatterer properties can be considered relatively insignificant for the calculations. Hence, 

εr = 1 is used for the scatterer. 

 

4.5.1.1  Free Space Penetrable Media 

 

For sake of checking the correct implementation of equivalent surface (Huygens surface) 

that replaces the plane wave and the Berenger’s PML absorbing boundary condition in 

FDTD computation domain, thus, the simulation is initially performed without the 

presence of the analysed object. Figure 4.5 shows the Huyghens surface in free space of 

the FDTD computational domain. As can be seen, the fields inside the problem space is 

about 0dB, while the numerical reflection is about -40dB between the Huygens surface 

and PML region. This proves that the FDTD code is working perfectly with the 

Huygens surface and berenger’s PML absorbing boundary conditions.   

 

 

Example 4.1:  A single layer sphere of radius 16.5cm with conductivity σ = 0.35 S/m 

and dielectric constant εr = 1.0. Properties of free space (σ = 0, εr = 1.0) are assumed 

here in the perfectly matched layers (PML) and the problem space, where the PML (6, 

G5.4, 40dB) (six layers, with geometric progression profile and geometric grading 

factor of 5.4, with 40-dB attenuation for normal incidence) is used on all sides. Figure 



Chapter 4: Quasi-static Scheme For Electrically-Small Regions…                             109 
 
4.6 shows the intensity of Ex component in coordinate plane of the structure at 20MHz, 

while Figure 4.7 depicts the electric field distribution along various central axes for a 

single-layer sphere in free space media at 60Hz. The induced magnetic field inside the 

structure are also shown in Figure 4.8 and Figure 4.9 respectively. It can be observed 

from Figure. 4.9 that the magnitude of magnetic field Ey component is about 1/377 A/m 

(which is equivalent to the incident magnetic field) constantly along x and z axis of the 

structure at both 20MHz and 60Hz, where 377 Ω is the characteristic impedance for free 

space medium. This result confirms that under quasi-static condition, the magnetic and 

electric field are decoupled. As can seen, the results of the proposed method agree well 

with the Mie series solution.  

 

 

 

 

Figure 4.3:  Basic structure of the problem for FDTD computational domain. 
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Figure 4.4:  3-D view of the problem for FDTD computational domain. 

 

 

Figure 4.5: Huyghens surface in free space FDTD computational domain 

(logarithmic scale). 
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Figure 4.6: Ex component at yzplane for single-layer sphere excited by plane wave 

of 1V/m at 20MHz (logarithmic scale). 

 

 

Figure 4.7: Electric Fields distribution along various central axes for single-layer 

sphere excited by plane wave of 1V/m at 60Hz in free space. 
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Figure 4.8: Hy component at xzplane for single-layer sphere excited by plane wave 

of 1V/m at 20MHz and 60Hz (logarithmic scale) 

 

 

Figure 4.9: Magnetic Field Hy component distribution along various central axes for 

single-layer sphere excited by plane wave of 1V/m at 60Hz and 20MHz 

in free space. 
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Example 4.2: A three-layer concentric sphere is modelled in free space here. The 

assumed properties are listed as follows: σ1  = 0.52 S/m (corresponding to properties of  

skeletal muscle) for innermost sphere 0 < r < 8 cm, σ2 = 0.2 S/m (corresponding to the 

properties of fat) for the intermediate sphere 8 < r < 12 cm, and σ3= 0.04 S/m 

(corresponding to the properties of bone) for the outermost sphere 12 < r < 16.5 cm. 

Since σ >> ωεo  for each layers at 20MHz and 60Hz, thus, the choice of ε r is 

insignificant in calculation results. Due to the reason above, ε r  =1 is assumed in all 

layers of the sphere. Figure 4.10 shows the Ex component in yz coordinate plane for 

three-layers sphere excited by plane wave of 1V/m at 20MHz. The calculated results of 

60Hz are well agreed with the analytical one as illustrated in Figure 4.11.  

 

 

Figure 4.10: Ex component at yzplane for three-layers sphere excited by plane wave  

of 1V/m at 20MHz in free space (logarithmic scale). 
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Figure 4.11: Electric Fields distribution along various central axes for three-layer 

sphere excited by plane wave of 1V/m at 60Hz in free space. 

 

4.5.1.2 Lossless Penetrable Media  

 

By using equations (4.58) and (4.59), the Berenger’s PML absorbing boundary 

conditions in FDTD computational domain is modified to permit the modelling of 

lossless media. To validate the correctness of PML absorbing boundary conditions, the 

simulation is first running without the presence of the scatterer. Figure 4.12 shows 

Huyghens surface in lossless media of the FDTD computational domain. The results are 

well agreed with the predicted results, in which the fields inside the problem space is 

about 0dB and numerical reflection is found about -40dB between the Huygens surface 

and PML region. 
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Example 4.3: A homogenous single layer sphere with the same conductivity and 

permittivity of previous example, are being used in this example, except the properties 

of the surrounding media and perfectly matched layers (PML) are assumed to be (σ = 

13e-9  ≈  0 ,   ε r = 50) in order to consider the sphere in a lossless media. It should be 

noted that the PML (6, G9.5, 40dB) (six layers, with geometric progression profile and 

geometric grading factor of 9.5, with 40-dB attenuation for normal incidence) is 

implemented on all sides, in order to reduce the reflection of the interface layer. Figure 

4.13 describes the intensity of the Ex component in yzplane at 20MHz. Figure 4.14 

depicts the electric field distribution along various central axes in lossless media. The 

magnetic field distributions are also shown in Figure 4.15 and 4.16 respectively. It 

proves that within quasi-static regime, the electric and magnetic field are decoupled, in 

the other words, the scattered magnetic field is insignificant compared to incident field 

since the induced magnetic field is equal to incident magnetic field which is about 1/η ≅ 

18.8 mA/m at both 20MHz and 60Hz, where η is the characteristic impedance of 

lossless media which is about 
ro

o

εε
µ

≅ 53.27Ω. As can be observed, excellent 

agreement has been reached between the numerical and analytical result. 
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Figure 4.12: Huyghens surface in lossless media FDTD computational domain 

(logarithmic scale). 

 

 

Figure 4.13: Ex component at yzplane for single-layer sphere excited by plane wave 

of 1V/m at 20MHz in lossless media (logarithmic scale). 



Chapter 4: Quasi-static Scheme For Electrically-Small Regions…                             117 
 
 

 

Figure 4.14: Electric Fields distribution along various central axes for single-layer 

sphere excited by plane wave of 1V/m at 60Hz in lossless medium  

(logarithmic scale). 
 

 

Figure 4.15: Hy component at xzplane for single-layer sphere excited by plane wave 

of 1V/m at 60Hz and 20MHz in lossless media (logarithmic scale). 
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Figure 4.16: Magnetic Field distribution along various central axes for single-layer 

sphere excited by plane wave of 1V/m at 60Hz and 20MHz in lossless 

medium. 
 

 

4.5.2 Verification at High Frequency (Mobile Communication 

Frequency) 

 

The frequency scaled FDTD technique is applied to biological cell modelling at mobile 

communication frequency of 2450MHz. Since the cell size of this problem is considered 

about micrometer, therefore δt ≤ 1510
3c
s −≅

∆ s where ∆s is the cell size and c is the 

speed of light in lossy penetrable media. Since four oscillations period of the incident 

wave are required for the completion of the simulation to reach the steady state. This 

would involve some millions of iteration, hence, apply the operating frequency to 
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2450MHz to the problem will increase the number of iterations required. Consequently, 

frequency of 30GHz is selected as transferable working frequency at initial state, to 

support the simulation time at affordable level to be computed. Then, the obtained 

induced fields are scaled back to 2450MHz by using equation (4.56). 

 

4.5.2.1  Lossy Penetrable Media  

 

The stability and the correctness of the implementation of modified lossy Berenger’s 

PML absorbing boundary conditions are initially performed, by running the simulation 

without the presence of the analysed scatterer. Figure 4.17 shows Huyghens surface in 

lossy FDTD computational. According to Figure 4.17, the electric field inside the 

problem space is 0dB, while numerical reflection between the Huygens surface and 

PML region is nearly -40dB. As can be seen, the results are well agreed with the 

predicted one. 

 

 

Example 4.4: A two-layer sphere simulating a biological cell inside a lossy medium, for 

which the assumed properties are as follows: cytoplasm (internal)  εr = 48.699, σ = 

1.412; membrane εr = 11.3, σ = 0.0; and lossy medium (external) εr = 70.87, σ = 2.781. 

The internal radius (internal region) is 25µm and the membrane thickness is set to 2µm. 

The operating frequency is 2.45 GHz whereas the interim transformed frequency used 

in this example is 30 GHz. From equation (4.59), the optimum grading factor g is 

calculated as 6.07 for which the FDTD cell size is 1µm. The Electric field distributions 

inside the simulated biological equivalent spherical cell are shown in Figure 4.18-4.20, 
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while magnetic field distributions are depicted in Figures 4.21 and 4.22 at the operating 

frequency of 2450MHz. From the inspection of Figure 4.22, the induced magnetic field 

is constant over the sphere at both 2.45GHz and 30GHz. The value of these fields, is 

about  A/m, in which the lossy/ η1 lossyη  is the characteristic impedance of the lossy 

media which can be calculated using equation (4.28). From equation (4.28), the value of 

 is computed and is approximately found 44.77 Ω. In the light of all the obtained 

simulated results, as can be noticed that the numerical and analytical results are 

indistinguishable. 

lossyη

 

 

 

 

Figure 4.17: Huyghens surface in lossy medium FDTD computational domain 

(logarithmic scale). 
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Figure 4.18: Ex component at yzplane for double-layers sphere excited by plane 

wave of 1V/m at 30GHz in lossy medium (logarithmic scale). 
 

 

Figure 4.19: Electric Field (Ex) distribution along various central axes for double-

layers sphere excited by plane wave of 1V/m at 2450MHz in lossy 

medium. 
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Figure 4.20: Electric Field (Ez) distribution along x-axes for double-layer sphere 

excited by plane wave of 1V/m at 2450MHz in lossy medium. 

 

Figure 4.21: Hy component at xzplane for double-layers sphere excited by plane 

wave of 1V/m at 2450MHz and 30GHz in lossy medium (logarithmic 

scale). 
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Figure 4.22: Magnetic Field distribution along various central axes for double-layer 

sphere excited by plane wave of 1V/m at 2450MHz and 30GHz in 

lossy medium. 

 

4.6 Conclusions 

By implementing the frequency scaling approach, the number of FDTD time steps can 

be reduced. The reflection on the interface layers inside the FDTD computation domain, 

has also been successfully reduced in lossless and lossy penetrate media. The accuracy 

of the FDTD scaling approach with the models of homogenous and layered spheres in 

free space, lossless and lossy media, was verified. The numerical results were in good 

agreement with the analytical ones. This lending its support to the validity of using the 

scaled-frequency FDTD method to obtain induced E fields at power-line and mobile 

communication frequencies, as long as the quasi-static conditions are valid. 
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Chapter 5  

 

Computation of Electromagnetic Field 
inside a Tissue Using Quasi-Static and 
Lumped-Element FDTD Scheme 
 

5.1 Introduction 

 

Research into possible mechanisms of interaction of electromagnetic (EM) fields with 

biological tissues and cells in culture has motivated a growing need for accurate models 

describing the EM behaviour of cells exposed to these fields.  Therefore, several 

numerical models have been set up in order to study the interaction between 

electromagnetic (EM) fields and biological entities, at tissue level, cell level and ionic 

level. In this area, the most frequently used technique for computing the EM field is the 

finite-difference time-domain (FDTD) method [1, 2], due to its independence from the 

material parameters.  
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The standard Finite-Difference Time-Domain (FDTD) method [1, 2] requires extremely 

small time-step when modelling electrically-small regions (much smaller than a 

wavelength): this is especially the case when modelling biological cells, since they have 

maximum dimensions of a few tens of micrometers. Thus, it can become impractical 

due to the unaffordable computation times required. This problem can be solved by 

implementing a quasi-static approximate version of FDTD. This approach is based on 

transferring the working frequency to a higher frequency, to reduce the number of time 

steps required. Then, the generated internal field at the higher frequency can be scaled 

back to the frequency of interest [3-6].  

 

 

Cells are surrounded by thin membranes, typically about a few nanometres thick [7]. 

They are the major barrier in the cell, separating the inside of the cell from the exterior 

medium. This structure will allow cells to selectively interact with their environment. 

Therefore, the cell membrane has been identified as the primary target of the action of 

the EM field on biological structures. Since the thickness of the membrane is about 

1000 times smaller than the biological cell, and if the standard FDTD procedure were to 

be blindly applied to model detail in the membrane within a complete cell model, then 

this will take some millions of iterations to complete one cycle of simulation. This again 

will cause excessive computation time. To overcome this problem in standard FDTD, 

the lumped element finite different time domain (LE-FDTD) method [8-12] was 

implemented in such a way to model the behaviour of the membrane, based on the 

Hodgkin-Huxley (HH) model [13-17] on the surface of the biological cell. 
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This chapter presents a new approach to model and analyse of the HH (Hodgkin and 

Huxley) membrane model [13-17]. The HH model is represented as an electrical circuit 

on the surface of the biological equivalent spherical cells. For the sake of simplicity, the 

analysed structure has been represented with spherical cells and then Floquet periodic 

boundary conditions [18-21] have been applied to the border of the analysed structure in 

order to mimic the presence of the surrounding cells. Despite the cellular tissues are not 

perfectly periodic and the living cells are not precisely spheres, this approximation 

allows the modelling of biological tissue with only a small part of the structure and 

alleviates the problem of huge requirement of computer resources for the simulation of 

a complete tissue. Since the external medium of the biological tissue is lossy fluid, the 

modified Berenger’s perfectly matched layer (PML) absorbing boundary condition 

(ABC) is used to truncate the computation grid [22-25], in order to reduce the 

reflections on the interface layers.  It should be noted that Berenger’s PML ABC is more 

accurate than the Mur ABC [26], used in other recent work [6]. 

 

A further difficulty is the limited extent of studies on the dielectric properties of cell 

tissues [27]; thus, the complex permittivity of each cell tissue is not clearly established 

for radio frequencies. However, in this study, an analytical method for estimating the 

electrical properties of cell tissues in the RF band [28] will be adopted throughout the 

analysis. Earlier work only considered two media (water and membrane) [6], but the 

procedure adopted here enables the tissue model to consist of three media (lossy 

medium, membrane and cytoplasm). In addition, a mass of connected biological tissue 

is simulated by creating an equivalent stack of compact cell structures (such as spherical 

and cylindrical with interstices, and cubical). The total electric fields along the central 

axes of rows of these spherical, cubical and cylindrical cell structures will be 
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investigated.  

 

 5.2 Summary of the Method 

5.2.1 Modified Berenger’s Perfectly Match Layer (PML) 

 

Consider Figure 5.1, it describes the geometry of the FDTD computation domain. It 

shows the equivalence-principle surface (Huygens surface) that replaces the plane wave. 

It also depicts the Berenger perfectly matched layer (PML) that implements the 

absorbing boundary condition (ABC). This layer has been applied to surround the edge 

of the problem space, by using appropriate matching impedance that satisfies to certain 

condition (such as σ/ε = σ*/µ for lossless or lossy media, whereas σ/εo = σ*/µo for free 

space). In order to reduce the reflection on the interface layer, an optimum value of the 

geometric grading factor (g) has been selected, by using an empirical expression as in 

[22, 24, 25]: 

 

)0(Rln
1g

gln
x2

c
N −∆

ε
−=σ  

(5.1) 

 

where ∆x is the spatial increment of FDTD mesh, R(0) is the normal reflection 

coefficient, N is the number of the cells in the PML thickness, c is the velocity of EM 

waves in free space or lossy medium.  
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Figure 5.1: Basic structure of the problem of FDTD computational domain 
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5.2.2 Floquet Periodic Boundary Condition (PBC) 

 

Many structures of electromagnetic interest are extremely large and periodic in one or 

more dimensions. In order to perform the EM analysis of these types of structure with 

reasonable computational time, the structures are assumed to be an infinite grid and 

subsequently reducing the problem into a unit-cell analysis by using floquet boundary 

condition. This will enable the numerical solution to simulate the effect of the periodic 

replication. In this area, Photonic Bandgap (PBG) structure, Frequency Selective 

Surface (FSS) and antenna array are the typical candidates for EM analysis that use the 

same boundary condition. These structures may contain complex arbitrary shape of 

scatterers comprised of dielectrics and conductors, thus, numerical methods that can 

easily handle complex and inhomogeneous geometries are indispensable in this scope of 

research.  

 

For the purpose of numerical modelling, the finite-difference time-domain (FDTD) 
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technique appears to be an attractive choice for this problem due to its simplicity and 

comprehensibility. In fact, the floquet theorem has been successfully implemented 

inside the FDTD to analyse the case of normal [18, 29] and oblique incidence [30, 31] 

for two- and three-dimensional problems. The techniques used to perform FDTD with 

the floquet periodic boundary condition can be classified into two categories, i.e., direct 

field methods and field transformation methods. Direct field methods comprise of 

Normal incidence, Sine-Cosine, Multiple Unit Cell and Angled Update Method, 

whereas the field transformation methods consist of Multi-Spatial Grid and Split-Field 

method [2].  In order to understand basic theory and implementation of floquet periodic 

boundary into FDTD, the case of normal incidence method for 2-D and 3-D problems is 

demonstrated in the following context.  

 

5.2.2.1 Two-dimensional Transverse Magnetic (TM) case 

 

Consider a 2-D Transverse Magnetic (TM) case of analysis, Figure 5.2 depicts a simple 

geometry of a 2-dimensional infinite periodic scatterer illuminated by a normal 

incidence plane wave which is propagating in y direction. As can be seen, part of the 

scatterer is repeated along x direction, while magnetic walls will be formed at the unit 

cell boundaries at x=0 and x=d. The upper and lower boundaries along y axis are 

truncated with the absorbing boundary condition [22, 26] can be observed. Due to the 

scatterer structure is periodic in y direction, therefore, this problem can be simplified 

and analysed on a basis of a finite size unit cell in the FDTD computation domain, as 

shown in Figure 5.2.   
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Figure 5.2: Basic configuration of 2-D infinite periodic structure illuminated by a plane 

wave at broadside incidence in FDTD computational domain.  

 

In TM case of analysis, only the sets of (Ez, Hx, Hy) components are included. Assume a 

lossless medium problem space (σ =0, r0εε=ε  and 0µ=µ ) is considered, in which  σ , 

 and  are the conductivity, permittivity and permeability of the lossless medium 

respectively. Therefore, the 3-dimensional FDTD updating equations of (2.15), (2.16) 

and (2.20) can be reduced to the proper algorithms for 2-dimensional TM case periodic 

problem analysis. Thus, the equations can be written in the following simplified form:  

ε µ
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where  is the lattice increment and ∆ t∆ is the time increment.  

 

On the border at x=0 and x=d, the periodic boundary conditions have to be imposed in 

order to mimic the periodic structure of the problem. This can be done by modifying the 

updating equation (5.4) of the tangential component (Hy) along the border x=0 and x=d, 

in the following forms [18]: 
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where M is the largest lattice grid number in the x direction.  In general, equations (5.5a) 

and (5.5b) are well known as a periodic boundary condition. As for TE case of analysis, 

the magnetic walls are replaced with the electric walls at x=0, d, and a dual forms of the 

previous equations can be obtained.  

 



Chapter 5: Computation of Electromagnetic Field Inside a Tissue…                   139 
 
5.2.2.2 Three-Dimensional case 

 

Figure 5.3 shows a simple geometry for the elucidation of three-dimensional periodic 

boundary implementation. As can be observed, the periodic boundaries are imposed on 

the x- and y-sides of the structures, while ABCs are applied to truncate the space lattice 

along z-axis. The coordinate point (io,jo,ko) and (iN, jM, kp) denote a space point in a 

uniform rectangular lattice, where io, jo,ko are the smallest lattice grid number in x, y, z 

direction  respectively and iN, jM, kp are the largest lattice gird number in x, y, z direction 

respectively. 

 

Figure 5.3: Geometry used in the analysis of 3-D infinite periodic structure illuminated 

by a normal incident plane wave. 

 

Consider the problem space is filled with the lossless medium ( =0, σ r0εε=ε  

and ) and the normal incident plane wave is propagating along z axis. The 

tangential electric fields distribution on plane i

0µ=µ

0, iN, j0 and jM are illustrated in Figure 5.4.  
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As can be seen, the red arrows are representing the tangential electric field components 

which are located on edge of the surface plane, while the black arrows are indicated as 

the least of the tangential electric field components which are located on the surface 

plane. It should be noted that the explanation of the implementation method of the 

periodic boundary condition into FDTD computation domain in the following context, 

are based on the normal incidence methods [2], therefore, it is only applicable when the 

normal incidence plane wave is used. 

 

 

(a) 

 

 

(b) 

Figure 5.4:(a) Location of Ez(→) and Ey (↑) components in plane i = i0 and iN     

                          (b) Location of Ez(→) and Ex (↑)components in plane j = j0 and jM        
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For the sake of simplicity and consistency of explanation of updating equations for the 

periodic boundary condition on the surfaces of the geometry shown in Figure 5.3, the 

updating equations of the tangential electric components (Ex, Ez and Ey) which are not 

on the edge of the surface will be firstly to be discussed, and subsequently, the updating 

equations of the edged tangential electric component (Ez) are demonstrated.  

 

Consider the four surfaces planes at i=i0, iN and j=j0, jM, in which the floquet periodic 

boundary condition should be applied as shown in Figure 5.3. From Figure 5.4(a), the 

3D updating equations for the tangential electric components (Ey and Ez) which are not 

located on the edge of surface plane i=i0 and iN, can be modified from equations (2.19) 

and (2.20), and then the new following forms are stated:
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where is the time increment and t∆ ∆ is the space lattice increment.  
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As for the 3-D updating equations for the tangential components (Ex and Ez) which are 

not located on the edge of the surface at plane j=j0 and jM as shown in Figure 5.4 (b), can 

be derived from equations (2.18) and (2.20), thus, the following expressions can be 

obtained: 
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As for the case of the edged tangential electric components (Ex, Ey, Ez) on plane i=i0, iN 

and j=j0, jM, and due to the Ex and Ey components are on the edge of the absorbing 

boundary conditions as seen in Figure 5.4 (a) and (b), therefore, they are assumed to be 

updated by the ABC updating equations. It should be noted that the only edged Ez 

tangential components will be considered here for the periodic boundary condition. 

According to Figure 5.5, due to the normal incidence plane wave, hence, four equations 
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of Ez tangential components can be updated simultaneously. This can be simply done by 

modifying the equation (2.20) and then the following four formulas can be obtained:   
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Figure 5.5: Location of the edged tangential component (Ez)  

 

5.2.3 Hodgkin and Huxley (HH) Membrane Model 

 

Cells are surrounded by thin membranes. It is the major barrier in the cell, separating 

cell contents from outside. Since the cell is separated from its environment, the 

membrane must be able to accommodate the required cell functions. Therefore, the 

membrane has to act as a selective barrier, allowing nutrients to pass in but keeping out 

many harmful substances to the cell, and as a dynamic barrier medium, constantly 

adapting to changing environmental conditions (different concentrations of ions). 

 

The dimensions of a biological cell are around a few tens of micrometres while the 

thickness of the membranes is in the scale of a few nanometres, strongly depending on 

the type of the tissue. Depending on the type of the cell, voltages in the range of 20-

200mV can be obtained across the membrane. When the cell is in a resting state, the 
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current across the membrane averages zero, but more generally it depends on the 

variation on the membrane voltage [13, 14]. 

 

Hodgkin and Huxley (H&H) gave a general description of the time course of the current 

which flows through the membrane of a squid giant axon when the potential difference 

across the membrane is suddenly changed from its steady state [13, 14]. The results in 

[13], suggest that the behaviour of a membrane may be represented by the electrical 

circuit shown in Figure 5.6. Current can be carried through the membrane either by 

charging the membrane capacitance or by movement of ions through the nonlinear 

conductance in parallel with the membrane capacitance.  The equations that describe the 

HH model are [13]: 

 

)EV](t,V[ng
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(5.14) 

where 
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rm VVV −=  (5.15) 

 

The element definitions of the HH model of the above equations are given as follows: 

 gl is the leakage conductance of chloride or other ionic channels. 

 m, n, h are the probability parameters determining the percentage of open 

channels (where an ion passes through the membrane). All variables change 

between 0 and 1 as functions of time and voltage. 

 Cm is the membrane capacity per unit area. 

 Vm is the voltage across the membrane. 

 Ek , Ena , and El are the resting potentials of the various ionic channels. 

They contribute to the steady-state voltage on the membrane for each ionic 

channel. 

 gk and gna are the nonlinear conductances of potassium and sodium 

channels. 

 Vr is the resting potential of the membrane. 

 V is the potential difference between the resting potential and the 

potential of the membrane, expressed in millivolts. 

 I is the total ionic current across the membrane due to flux of ions. It is 

equal to zero if the membrane voltage equals the resting potential. 
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                                                              TABLE  5.1 

CONSTANT VALUES OF THE PARAMETERS IN EQUATION (5.11) 

 

Cm Ek gk ENa gNa EL gL

0.01F/m2 72mV 360 S/m2 -55mV 1200 S/m2 50mV 3 S/m2
 

 

Table I quotes the constant value of all the components in HH model, as stated in [13]. 

According to [13], the percentage of the open Potassium channels is n4 and the 

percentage of the open sodium channels is m3h. It also needs to be highlighted that the 

quantities appearing in equations (5.12) to (5.14) are defined as [13]: 
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Equations from (5.16) to (5.21) can be redefined and rearranged in more general form as 

follows: 
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where: 
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After solving the first order partial differential equation of (5.22), the expression for ψ 

can be obtained: 
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where K is the constant that defines the initial condition. As can be observed, if the time 

(t) is much greater than the time constant τ = 1/ (aψ+bψ), the parameter ψ can be 

considered and replaced to the following constant: 
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Consider a biological cell excited by a plane wave of 1V/m. Since the dimension of the 

membrane is just a few nanometres, the potential difference on the membrane can be 

estimated as a few nanovolts. This leads to the conclusion that the variables m, n, h in 

equations (5.16)-(5.21) can be assumed as constant values at steady state, and the HH 

model can be treated as a linear model. Figure 5.7 shows the percentage variations of aψ 

and bψ versus V in the range of ± 1µV. Table II quotes the constant values of n, m and h 

at steady state. 

 

 

TABLE 5.2 

STEADY-STATE VALUES FOR THE PARAMETERS n,m AND h. 

 

n m h 

0.3177 0.0529 0.5961 
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Figure 5.6: Equivalent electrical circuit for the cell’s membrane 

 

 

 

Figure 5.7: Percentage variation of aψ and bψ (ψ = n,m,h) versus voltage. 
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5.3 Implementation and Validation 

5.3.1 Implementation of Floquet Boundary Condition 

 

This section demonstrates the implementation of Floquet boundary conditions, quasi-

static FDTD and the present modified PML for a lossy medium excited by a 100 V/m 

plane wave at an operating frequency of 900 MHz. The lossy medium properties were εr 

= 1.0, σ = 25 S/m. The problem space and cell sizes were 21×21×121 and 10µm 

respectively. The Floquet boundary conditions were imposed on four sides of the lossy 

medium. The remaining two sides were each terminated by a PML of 6 cells. The 

analyses were performed at 10, 15 and 20GHz and then transferred back to the desired 

operating frequency of 900MHz. As can be observed in Figure 5.8, the analytical and 

computed results are in good agreement. 

 

 

Figure 5.8: Electric Field along the centre of the lossy medium. 
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5.3.2  HH Model Implementation 

 
To verify the correctness of the implementation of the HH model within the FDTD 

framework, the results of the analytically computed solution have been used for 

comparison. 

 

In the first test case, the HH model will be included in one FDTD grid cell which is 

aligned with the grid. In order to observe the transient phenomena and the steady-state 

with a reasonable period of computation time, the cell size of the FDTD framework is 

assumed to be 10cm. Since the entire system is linear, these assumptions do not affect 

the validity of this test case. No external excitation will be given in this test case until 

the steady-state is reached. It should be noted that the direction of the cell’s membrane 

is normal to the x-axis. Therefore, the following equations are exploited for this analysis 

in FDTD computational domain. 
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where    Vk=72mV, VNa=-55mV, VL=50mV 

             ,pnkg ∆∆= 360 pnNag ∆∆= 1200 , pnkg ∆∆= 3 , pn.C ∆∆= 010  

 

Now, by setting current I = 0 in Equation (5.11), the steady state condition for the cell 

can be attained, which means the average rate of the ions crossing the membrane is zero. 

Under this steady state conditions, the resting voltage is equal to the membrane’s 

voltage (Vr = Vm ), then voltage (Vr) can be computed as follows: 

 

=
++
++

=
LNaK

LLNaNakK
r GhmGnG

EGhEmGEnG
V 34

34

60.27mV 
 

 

Figure 5.9 shows the comparison between the FDTD model and the analytical computed 

membrane voltage versus time. As can be seen, the analytical and FDTD results are 

indistinguishable in the steady state.  

 

Since the HH model contains a large capacitor, it causes the transient of the HH circuit 
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to require hundreds of thousands of time-steps to reach the steady state when simulation 

considers the dimensions of a realistic biological cell. To speed up the computation time, 

the actual FDTD simulation is performed in two steps. In the first step (known as d.c. 

simulation), simulation is performed with the capacitor in the circuit and then removed 

and its effects on the system is energized by the step voltage (d.c) sources. Once the 

steady state is reached, the electric and magnetic fields on each FDTD discretisation cell 

are used as the initial values for the second step. During the transient simulation, the 

capacitor and the sinusoidal source are activated. In short, to speed up the computation 

time, the value obtained in the steady state without excitation can be used as the initial 

value of the membrane voltage. This procedure is similar to the approach used by the 

SPICE computer program [14] for the transient and AC analysis of electronic circuits. 

 

 

Figure 5.9: Steady state membrane’s voltage verse number of time steps (The 

normal is directed along X.) 
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In the second test case, it was shown that the method above gives the same results as 

when complete transient simulation is performed. The HH model was again inserted in 

one of the FDTD grid cells, with dimension of 10cm. Then, it was excited by a plane 

wave at a frequency of 10MHz. Two initial conditions were assumed in the simulation; 

firstly the membrane voltage was set at zero, and then at 60.27 mV. Figure 5.10 depicts 

the comparison of the two initial conditions, leading to the conclusion that the 

computation time can be speeded up by assigning the resting voltage on the cell’s 

membrane at the initial state of the simulation. 

 

 

 

Figure 5.10: Comparison between membrane voltage with different initial conditions 
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In a third test case, all the parameters in equation (5.11) were set to zero, except for n = 

1 and gk = 2000000 S/m2, so the HH model behaves like a resistor whose value is 

 

Ω=
∆

= 501
2sg

R
k

 
 

 

In this case, the grid cell’s size is 0.1 mm, and a plane wave excitation was used 

propagating in the z-direction and polarised in the x-direction at 40GHz. Figure 5.11 

shows the distribution of voltage and current on the membrane. The ratio between the 

peak values of voltage and current on the membrane was 50.0 Ω. 

 

 

 

Figure 5.11: Voltage and current on the membrane 
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5.3.3 Single Cell Simulation 

 

In this section, the HH model was modelled on a spherical structure with diameter 

50µm and discretised with 1µm steps, in order to check the polarization voltage of 

60.27 mV on the membrane. The HH model is included on the surface of the cell. The 

inner and external mediums of the cell geometry, have been considered as cytoplasm (εr 

= 48.699, σ = 1.412 S/m) and lossy medium (εr = 70.87, σ = 2.781 S/m) respectively. It 

should be noted that the LE-FDTD method has been successfully modified in order to 

accommodate the case when the position of the lumped element inside the membrane’s 

cell is not aligned with the FDTD grid (see Figure 5.12), so that it can be excited by the 

electric field component normal to its surface.  The rotation was done subject to the 

fields in spherical co-ordinates and then transferred to the actual grid of the FDTD at 

each time step. A matrix transformation was implemented on each FDTD cell surface.                           

 

 

Figure 5.12: Modified LE-FDTD cell on normal FDTD cell grid 
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Figure 5.13 depicts the polarization voltage value of 60.27mV on the membrane of the 

spherical structure without any external excitation. From Figure 5.14, it can be observed 

that the field in the centre of the spherical structure is not zero. This effect can be 

described to a type of numerical noise which is created by the geometry of the structure. 

In order to verify whether the noise is random or deterministic, two simple simulations 

have been carried out. In one, the structure was irradiated with a plane wave of 

100kV/m at 100GHz and in the other there was no excitation. It should be noted that the 

plane wave in the first case is propagating along the z-axis and electric field is parallel 

to the x-axis. Figure 5.15 shows the numerical noise in the centre of the structure 

without excitation. Figure 5.16 shows that the dominant component (Ex) is corrupted by 

the numerical noise along the z-axis of the structure, whereas Figure 5.17 shows that the 

noise is deterministic and the harmonic excitation can be retrieved. This can be done by 

subtracting the numerical noise in Figure 5.15 from the excitation field in Figure 5.16. 

 

 

                    Figure 5.13: Field distribution on coordinate plane 
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Figure 5.14: Total electric field along central axis of the structure 

 

 

 

Figure 5.15: The field versus time in the central FDTD cell of the structure in lossy 

medium without excitation 
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Figure 5.16: The corrupted excitation field in the centre of the FDTD cell of the 

structure. 

 

Figure 5.17: Excitation field removed from the numerical noise 
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5.4 Simulation and Results 
 

By incorporating the aforementioned and validated theories, i.e., Floquet Periodic 

Boundary Conditions (FPBCs), modified PML, Quasi-Static and Lumped-Element 

FDTD approach, this section will model biological tissue with different structures that 

consider a cluster of spherical, cubical and cylindrical cells and examine the 

electromagnetic field behaviour inside the tissue when it is exposed by a plane wave.  

 

In general, the radius of the each biological cell in a tissue was 10 µm. The biological 

cell consists of three layers, which are cytoplasm, membrane and extracellular medium 

and the dielectric properties of these were obtained from [28]. In paper [28], the 

equations of the effective conductivity ( )ωσ  and effective dielectric permittivity ( )ωε  

of the material of biological cells are given in the following two forms: 

 

( ) ( ) ∑
= τω+

ωτε∆
ω+σ=ωσ

n

k k

kk

1
221

0  
 

(5.29) 

 

 

( ) ( ) ∑
= τω+

τωε∆
−ε=ωε

n

k k

kk

1
22

22

1
0  

 

(5.30) 

 

 

where , f is the frequency of the field, n is the number of steps of dielectric 

relaxation of the material, 

fπ=ω 2

kε∆  and  kτ  are the magnitude of the k-th relaxation step and 

the time constant of the k-th step respectively, while ( )0σ  and ( )0ε  are the conductivity 

and dielectric permittivity of the material and it is measured at . It should be 

noted that all the fixed parameters that govern the equations are well defined in Tables 

11 τ<<ω /
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5.3 and 5.4. Once all the parameters are known, the material of the biological cell, as 

function of field frequency, can be established easily as shown in Figures 5.18 and 5.19 

which are the ones in [28].  From the inspection of Figures 5.18 and 5.19, the electrical 

properties of cytoplasm, membrane and extracellular medium are found and all the 

desired parameters of this analysis at various frequency of interest, i.e. 900MHz, 

1800MHz, 2000MHz, 2450MHz and 10GHz, are tabulated in Table 5.5 respectively.     

 

TABLE 5.3 

THE ELECTRICAL PROPERTIES OF THE BIOLOGICAL CELL MODEL 

Parameter Symbol Value 

CytoplasmoftyPermittivi  
Conductivity of Cytoplasm 

MembraneoftyPermittivi  
MembraneoftyConductivi  

MediumlarExtracelluoftyPermittivi  
MediumlarExtracelluoftyConductivi

( )0iε  
( )0iσ  
( )0mε  
( )0mσ  
( )0eε  
( )0eσ  

Vm/As. 101046 −×  
m/S.30  

Vm/As. 101046 −×  
m/S7103 −×  

Vm/As. 111044 −×  
m/S.21  
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TABLE 5.4 

PARAMETERS OF DIELECTRIC RELAXATION OF CYTOPLASM, MEMBRANE 

AND EXTRACELLULAR MEDIUM 

Parameter Symbol Value 

Dielectric relaxation of cytoplasm and 
extracellular medium 
 
First relaxation time 
First relaxation step 
 
Dielectric relaxation of membrane 
 
First relaxation time 
First relaxation step 
Second relaxation time 
Second relaxation step 
 

 
 

rire / ττ  

ie / ε∆ε∆  
 
 
 

1rmτ  

1rmε∆  

2rmτ  

2rmε∆  

 
 

s. 121026 −×  
Vm/As. 101095 −×  

 
 
 

s. 91003 −×  
Vm/As. 111032 −×  

s. 101064 −×  
Vm/As. 121047 −×  

 

 

Figure 5.18: Effective permittivity of cytoplasm, membrane and extracellular medium 

of the biological cells as a function of frequency 
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Figure 5.19: Effective conductivities of cytoplasm, membrane and extracellular medium 

of the biological cells as a function of frequency. 

 

 

TABLE 5.5 

ELECTRICAL PROPERTY OF THE SIMULATED STRUCTURE AT MOBILE 

COMMUNICATION FREQUENCIES 

900 MHz 1800MHz 2000MHz 2450MHz 10GHz 

iε = 72.2003 

iσ =0.4168 

mε =1.6526 

mσ =0.0217 

eε =72.2003 

eσ =1.3168 

iε =71.956 

iσ =0.7656 

mε =1.5680 

mσ =0.0232 

eε =71.956 

eσ =1.6656 

iε =71.88 

iσ =0.8742 

mε =1.5621 

mσ =0.0233 

eε =71.88 

eσ =1.7742 

iε =71.6806 

iσ =1.1590 

mε =1.5536 

mσ =0.0234 

eε =71.6806 

eσ =2.0590 

iε =63.5023 

iσ =12.8384 

mε =1.5371 

mσ =0.0237 

eε =63.5023 

eσ =13.7384 
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5.4.1 Connected Tissue Model Using Spherical cells 

 
A stack of ten spherical cells was investigated, as shown in Figs. 5.20 and 5.21. The 

radius of the each cell was 10 µm. A plane wave of 100 V/m, propagating in the z-

direction and polarized in the x-direction was used as the excitation. Note that the 

incident plane wave excitation was applied on a plane lying between the PML region 

and the outer limit of the FDTD grid. In addition, in order to reduce high-frequency 

transients [32, 33] and DC offsets [34, 35], associated with unramped sine wave 

excitations, the following ramped sinusoidal source in equation (5.31) was adopted 

[34]:  .  

 

( )[ ] ( )
( )

2
Tt

2
Tt0

0t

tsin
tsintcos15.0

0

)t(f
r

r

r

rr

>

≤≤

<

⎪
⎪
⎩

⎪
⎪
⎨

⎧

ω
ωω−

=  

 

(5.31) 

Where Tr is the period of the ramped cosine which is about 3 source cycles.  

 

The PML, shown in Figure 5.21, was 6 FDTD elements wide, the grading factor g was 

10.1383 and the grid structure was effectively extended to infinity in the x- and y-

directions, by imposing the Floquet boundary condition along the x and y axes. The 

Floquet periodic boundary condition plays an important role to mimic the presence of 

an extended 3-dimensional structure of biological cells, simulating connected tissue. 

This can be easily imagined in two dimensions, as shown in Figure 5.20. The FDTD 

problem space was 220×20×20 FDTD elements of size 1µm while a discretization time 

step δt of 1.3 femtoseconds was chosen to drive the FDTD computation, to meet the 

requirements of the Courant stability criterion.  
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Before implementing the Hodgkin-Huxley model into the simulated structure, the effect 

of moving the Floquet boundaries gradually away from the simulated structure was 

studied. Figures 5.22 and 5.23 depict the field distribution through the centre of the 

simulated structure at 10GHz with varying locations of the Floquet boundaries, where 

Ncell is the number of FDTD elements between the Floquet boundaries and the 

boundaries of the biological cells, in the x and y directions. Figure 5.24 shows the field 

distribution on the xz-plane of the simulated structure for the case of Ncell = 10. When 

the Floquet boundaries are exactly adjacent to the simulated structure (Ncell = 0), the 

strongest coupling effect between cells can be obtained: the highest induced field on the 

membrane and lowest induced field in the cytoplasm of the cell can be observed. 

Conversely, when the Floquet boundaries are far away from the simulated structure 

(Ncell = 10), the lowest induced field on the membrane and highest induced field in the 

cytoplasm of the cell are observed. It should be noted that all the following analysis will 

be based on Ncell = 0, which is assumed to be the most appropriate model for the real 

living biological tissues or cells in this micro-dosimetry study.  

 

The simulations were performed at the transformed intermediate frequency of 10GHz 

and the overall model was then transformed to the intended lower frequencies.  Table 

5.6 reports the transformation factors at 900MHz, 1800MHz, 2000MHz and 2450MHz 

used in the analysis.  

 

Figure 5.25 illustrates the 10GHz field distribution on the xz-plane of the simulated 

structure. The distributions of the electric field through the centre of the simulated 
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structure, along the incident wave propagation direction, at 900MHz, 1800MHz, 

2000MHz and 2450MHz are given in Figures 5.26 and 5.27, where Figure 5.27 is an 

enlarged version of Figure 5.26. The magnified version of Figure 5.27 is also plotted in 

Figure 5.28 and 5.29 as well. From inspection of Figures 5.27, 5.28 and 5.29, the field 

inside the cells is not constant and the induced field intensity is directly proportional to 

the frequency. In the other words, the higher the operating frequency that is used to 

excite the model, the higher the electric field intensity that will be induced within the 

analyzed structures.  

 

To complete the simulation, the Hodgkin-Huxley models were embedded in the surface 

of the spherical cells, in a direction normal to the surface, to represent the membrane 

effect of the tissue model. Versions including this were studied at frequencies of 

900MHz and 2450MHz. As can be seen in Figures 5.30 and 5.31, there is a difference of 

approximately 15% in the field strength due to the contribution of the membrane effect 

from the Hodgkin-Huxley model: these variations were in well agreement with 

expectations [6, 13, 28].  

 

5.4.2 Connected Tissue Model Using Cubical cells 

 

Since living cells, when compacted into connected tissue, are not perfectly spheres, a 

cluster of cubical cells was also chosen for study on the foundation of the previous 

spherical-cells analysis. Figure 5.32 depicts the proposed cluster of cubical cells in a 

three dimensional view of the FDTD computational domain. In order to compare the 

results obtained from the previous model with this analysis, an FDTD simulation was 
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executed, keeping the same parameter values unchanged. The 2D view of the electric 

field inside the cubical-cell tissue is shown in Figure 5.33. The field distributions along 

the propagation direction of the incident wave, through the centre of the simulated 

structure at various frequencies, are illustrated in Figures 5.34 and 5.35, while the 

magnified version of Figure 5.35 are depicted in Figures 5.36 and 5.37. 

 

The contribution of the Hodgkin-Huxley model to the cubical tissue model has also 

been investigated, as shown in Figures 5.38 and 5.39. The effects of adding the 

Hodgkin-Huxley model are about 15% difference in field magnitude, as can be easily 

observed in the figures. 

 

The peak field values on the membrane of the cubical structure are observed to be about 

three times higher than in the cytoplasm, which agrees well with the results from the 

structure based on spherical cells. However, the absolute field strength is approximately 

doubled in the spherical-cell case, presumably because of the curvature at the points 

studied: it is to be expected that much higher fields would be observed at the corners of 

the cubical cells, but it might be argued that, as a localised matter, these points do not 

correspond well with biological reality.  

 
 

5.4.3 Connected Tissue Model Using Cylindrical cells 

 

The shape of the living cells can be so diverse.  In order to have better understanding on 

the subject of EM field interaction with different geometry of biological tissue, a cluster 

of cylindrical cells model of the tissue is proposed, as depicted in Figure 5.40. This 
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analysis is performed in which the material properties unchanged as in the case of 

spherical and cubical cell structures. Figure 5.41 describes the 2D view of electric filed 

distribution of the proposed cylindrical-cell tissue at 10GHz, while the electric field 

distribution along the centre of the analysed structure is shown in Figure 5.42 to 5.45, 

where the Figures 5.43-5.45 are the amplified version of the Figure 5.42.   

 

The loading effect of the HH model into the cylindrical-cell tissue has also been studied. 

Figure 5.46 and 5.47 demonstrate the difference of 15% in field magnitude with and 

without the presence of HH model in the proposed simulated structure. The results show 

consistent difference with the previous spherical- and cubical-cells tissue simulated 

structures.  

 

The comparison of the field distribution of spherical-, cubical- and cylindrical- cells 

tissue model, through the centre of the analysed structure, is elucidated in Figure 5.48. 

The peak field on the membrane of the cylindrical structure is found to be about 1.7 

times higher than in the cytoplasm, which is distinct with the previous two models. As 

can be noticed, the peak field value of this cylindrical model is higher than the cubical 

model and lower than the spherical model, whereas the peak field value on the 

cytoplasm is the about the same as in the spherical model and double the value found in 

the cubical structure.  
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Figure 5.20: The two-dimensional view of the simulated structures in FDTD 

computational domain 
 

 

Figure 5.21: The three-dimensional view of the simulated spherical structures in FDTD 

computational domain. 
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Figure 5.22:  Penetration of Electric Field along z axis, through the centre of the 

simulated structure with different location of the floquet boundary 

condition. 
 

 

Figure 5.23: Penetration of Electric Field (Enlargement of Figure 5.22) 
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Figure 5.24: Ncell = 20, modulus of the electric field on xz-plane at intermediate 

frequency 10GHz (logarithmic scale). 

 

 
 

 

 

TABLE 5.6 

FREQUENCY SCALING TRANSFORMATION FACTOR FROM 10GHz TO 

FOLLOWING MOBILE COMMUNICATION FREQUENCIES 

Parameter 900MHz 1800MHz 2000MHz 2450MHz 

Cytoplasm 

Membrane 

Extracellular 

0.9296 

0.9 

0.8867 

0.9337 

0.97 

0.9226 

0.9344 

0.9756 

0.9254 

0.9360 

0.9838 

0.9301 
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Figure 5.25:  Modulus of the electric field on xz-plane at intermediate frequency 10GHz 

(logarithmic scale) 

 

 

 

 

 

 

Figure 5.26: Penetration of Electric Field along z axis, through the centre of the 

simulated structure 
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Figure 5.27: Penetration of electric field (Enlargement of Figure5.26) 

 

 

Figure 5.28: Penetration of electric field on the cytoplasm  (Enlargement of Figure 5.27) 
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Figure 5.29: Penetration of electric field on the membrane  (Enlargement of 

Figure.5.27) 

 

Figure 5.30: Electric field distribution along z-axis, through the centre of the simulated  
spherical structure in Figure 5.21, incorporating Hodgkin-Huxley model 
and driven at 900MHz. 
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Figure 5.31: As Figure 5.30, driven at 2450MHz. 

 

 

Figure 5.32: The three-dimensional view of the simulated cubical structures in FDTD 

computational domain. 
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Electric Field intensity in dB scale 

 

 

Figure 5.33:  Modulus of the electric field on xz-plane at intermediate frequency 

10GHz (logarithmic scale) 

 

 

 

Figure 5.34: Penetration of Electric Field along z axis, through the centre of the 

simulated structure 
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Figure 5.35: Penetration of Electric Field (Enlargement of Figure 5.34) 

 

Figure 5.36: Penetration of electric field on the cytoplasm  (Enlargement of Figure 5.35) 
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Figure 5.37: Penetration of electric field on the membrane(Enlargement of Figure 5.35). 

 

Figure 5.38: Electric field distribution along z-axis, through the centre of the simulated 

cubical-cell structure in Figure 5.32, incorporating Hodgkin-Huxley 

model and driven at 900MHz. 

 



Chapter 5: Computation of Electromagnetic Field Inside a Tissue…                   180 
 

 

Figure 5.39: As Figure 5.38, driven at 2450MHz. 
 

 

 
Figure 5.40: The three-dimensional view of the simulated cylindrical structures in        

FDTD computational domain. 
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Figure 5.41:  Modulus of the electric field on xz-plane at intermediate frequency 10GHz 

(logarithmic scale) 

 

 

 

Figure 5.42: Penetration of Electric Field along z axis, through the centre of the 
simulated structure 
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Figure 5.43: Penetration of electric field (Enlargement of Figure 5.42) 
 

 

Figure 5.44: Penetration of electric field on the cytoplasm  (Enlargement of Figure 5.43) 
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Figure 5.45: Penetration of electric field on the membrane (Enlargement of Figure 5.43) 
 

 

Figure 5.46: Electric field distribution along z-axis, through the centre of the simulated  
cubical-cell structure in Figure 5.40, incorporating Hodgkin-Huxley 
model and driven at 900MHz. 
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Figure 5.47: As Figure 5.46, driven at 2450MHz 
 
 

 

Figure 5.48: Comparison of three different simulated structures at 900MHz 
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5.4 Conclusions 
 

An approach to microdosimetric modeling of bioelectromagnetic interactions at the 

cellular level has been presented. This uses the FDTD method, combined with an 

arbitrarily-oriented implementation of the Hodgkin-Huxley cell-membrane model and 

the Floquet periodic boundary condition. By implementing a frequency-scaling 

approach, the number of FDTD time steps for such an electrically-small structure can be 

reduced from several millions to a few tens of thousands. The reflection on the interface 

layers inside the FDTD computation domain has also been successfully reduced, even 

though it is within lossy penetrable media, by using a modified version of Berenger’s 

absorbing boundary condition. The accuracy of the FDTD scaling approach was verified 

with idealized models of spherical cells in lossy media. The feasibility of the inclusion 

of the HH model inside the FDTD computation domain was demonstrated. This leads to 

the conclusion that the application of the HH model allows cells of arbitrary geometries 

to be handled and demonstrates the viability of embedding other types of lumped-

element model for membrane behavior. It can be argued that the HH model is imperfect 

for microwave frequencies, but it is reasonable to use it as a working hypothesis (as 

have others [6]) to develop modeling techniques while operational versions of improved 

models are still in development. 

 

Use of the Floquet boundary condition enables a non-trivial region of connected 

biological tissue to be simulated. Such a tool will facilitate deeper investigation of the 

phenomena in the interaction between EM fields and biological systems at various 

levels of spatial definition. The combination of quasi-static FDTD with an arbitrarily-

oriented lumped element membrane model, the modified Berenger absorbing boundary 
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condition and the Floquet periodic boundary condition represents a significant advance 

in verisimilitude of biological cell modeling. 
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Chapter 6  

 

Numerical and Experimental Analysis 
of Proposed Cylindrical Cavity For 
Detection of Nonlinear Response in 
Biological Cells Exposed to RF Energy 
 
 

6.1 Introduction 

 
 
With the explosive growth of mobile communications, large numbers of researchers 

around the world have studied the interaction mechanism between electro-magnetic 

fields and biological tissues. The result has been the development of research streams in 

different aspects of bioelectromagnetic problems at various levels of definition such as 

tissue level, cell level and ionic level, with intensive effort worldwide [1].  

 

However, most of the previous analyses have been performed treating bulk tissue effects 

as a linear problem. Recently, the tendency of research in this area has moved towards 

seeking evidence for the existence of nonlinear tissue responses, involving more 

microscopic studies of cellular and molecular processes. Many experiments have been 

proposed in order to clarify the various nonlinearity hypotheses for biological tissue [2-
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6]. Some interested research works in the same field have suggested that the detection 

of the presence of nonlinear interactions can be investigated by exposing living cells 

with low-amplitude unmodulated RF carriers and observing the possible generation of 

second harmonics [7-11]. Such harmonics would be inherent in any unsymmetrically-

nonlinear medium: a property essential for demodulation of modulated waveforms. 

Demodulation has been postulated as a plausible mode for putative non-thermal effects 

of RF radiation on living organisms.  

 

By implementing the doubly harmonic resonant cavity model proposed in [7-9, 12, 13], 

this chapter will firstly focus on the numerical modelling of the cylindrical doubly 

harmonic resonant cavity prior to the experiment works take place, then, a series of 

practical measurement is performed to validate the numerical results and verify the 

hypothesis of the nonlinearity response on the biological tissue.  

 

On the numerical analysis, particular attention will be paid on designing the dimension 

of the cylindrical cavity, field distribution on the proposed cylindrical cavity, allocating 

the position of the bio-preparation support structure, transmit and receive antennas for 

second harmonic detection, verifying second harmonic generation from a known 

nonlinear device and suggesting the required level of input power to excite the bio-

preparation.  
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6.2 Theory of Doubly Resonant Cavity 

 

The doubly resonant cavity is first proposed by [7-9] to detect the nonlinearity of the 

biological tissue. Due to the amount of nonlinearity in biological cell is unknown, and 

might be very weak, the amount of energy conversion is minimal. Thus, by storing the 

converted energy in a cavity instead of radiating it in open space, the chance of 

detection of the nonlinearity behaviour of the bio-preparation will be higher. Therefore, 

the doubly resonant cavity is exploited in the analysis of this chapter. 

 

 
In general, the doubly resonant cavity should able to store energy at both fundamental 

and second harmonic frequencies. By compromising between size of the cavity and the 

availability of the instrument at selected frequency used to carry out this experiment, a 

high quality factor doubly resonant cylindrical cavity with height of 272mm and 

diameter of 248mm is designed and tested for this analysis at 900MHz and 1800MHz.   

 

6.3 Computation of Modes and Quality factor Q  

 

This section is devoted to compute and understand the resonant frequencies for the 

TEnml (Transverse Electric) and TMnml (Transverse Magnetic) of the cylindrical cavity 

modes and quality factor (Q) of the TEnml mode. By using the equations (6.1) to (6.2), 

the first 25 modes of the proposed cylindrical cavity is tabulated and reported in Table 

6.1 [14]: 

 



Chapter 6: Numeric

 

al and Experimental Analysis of Proposed…                   194 

 

 

 
22

2
⎟
⎠
⎞

⎜
⎝
⎛ π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

εµπ
=

d
l

a
pcf

,
nm

rr
l,m,n  

(6.1) 

22

2
⎟
⎠
⎞

⎜
⎝
⎛ π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

εµπ
=

d
l

a
pcf nm

rr
l,m,n  

(6.2) 

 
 
 

( )
( )

( ) ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′

+
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

−

′
==

2

222
2

2

2

2

3
0

11
2

1

4

nmnmnm

nm

snmc
c

p
n

p
a

p
anad

p
n

Rp
adka

P
W

Q
ββ

ηω
 

(6.3) 



Table 6.1: The characteristic of the proposed cylindrical cavity 

Mode 1 (TE) or 2 (TM ) n m l nmp or  ,
nmp Freq Q-factor 

(Gold) 
1 1     1 1 0 1.84E+00 7.09E+08 2.96E+04
2 1     1 1 1 1.84E+00 8.98E+08 3.41E+04
3 2     0 1 0 2.40E+00 9.26E+08 4.80E+04
4 2     0 1 1 2.40E+00 1.08E+09 5.30E+04
5 1     2 1 0 3.05E+00 1.18E+09 3.09E+04
6 1     2 1 1 3.05E+00 1.30E+09 3.28E+04
7 1     1 1 2 1.84E+00 1.31E+09 4.21E+04
8 2     0 1 2 2.40E+00 1.44E+09 6.31E+04
9 2     1 1 0 3.83E+00 1.48E+09 5.64E+04
10 1     0 1 0 3.83E+00 1.48E+09 6.06E+04
11 2     1 1 1 3.83E+00 1.58E+09 5.89E+04
12 1     0 1 1 3.83E+00 1.58E+09 6.33E+04
13 1     2 1 2 3.05E+00 1.61E+09 3.70E+04
14 1     3 1 0 4.20E+00 1.62E+09 3.11E+04
15 1     3 1 1 4.20E+00 1.71E+09 3.21E+04
16 1     1 1 3 1.84E+00 1.80E+09 4.98E+04
17 2     1 1 2 3.83E+00 1.84E+09 6.50E+04
18 1     0 1 2 3.83E+00 1.84E+09 6.99E+04
19 2     0 1 3 2.40E+00 1.90E+09 7.36E+04
20 1     3 1 2 4.20E+00 1.96E+09 3.47E+04
21 2     2 1 0 5.14E+00 1.98E+09 5.95E+04
22 1     2 1 3 3.05E+00 2.03E+09 4.20E+04
23 1     4 1 0 5.32E+00 2.05E+09 3.10E+04
24 1     1 2 0 5.33E+00 2.05E+09 6.89E+04
25 2     2 1 1 5.14E+00 2.05E+09 6.09E+04
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6.4 Field Distribution inside the designated cylinder cavity 

 

After several computations attempted, then, two modes were found and used for 

nonlinearity study. These modes are TE111 mode at 898MHz and TE113 mode at 1796 

MHz. With the aids of the commercial 3D computational software package CST [15], 

the electric fields (Ex, Ey, Ez and Etotal) and magnetic fields (Hx, Hy, Hz and Htotal) 

distribution within the cavity will be investigated. The results give indication on the 

location required inside the cavity to provide the maximum electric or magnetic fields 

required for maximum coupling. Electric or magnetic field distribution components play 

a major role on contributing to the maximum field points. Figures 6.1 to 6.4 and 6.5 to 

6.8 show the 2D view of the electric and magnetic fields distribution at TE111 and TE113 

mode of the proposed cavity respectively.  

 

From the observation point of view, at the fundamental TE111 mode, the cavity has a 

field maximum in the centre of the cavity, whereas the second harmonic of TE113 mode 

has maximum field points at h/6, h/2 and 5h/6, where h is the height of the cavity. In the 

light of this information, the locations of the bio-preparation, transmit and receive 

antenna can be identified.  

 

 

 

 

 



Chapter 6: Numerical and Experimental Analysis of Proposed…                   197 
 

  
(a) Ex (b) Ey 

 
 

 

( c ) Ez (d) Total E-field 

  
(e) Hx (f) Hy 

  
(g) Hz (h) Total H-field 

 
Figure 6.1: TE111 mode of Cavity (height=272mm, diameter=248mm) 

  0.25h=0.25*272mm (xyplane) 
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(a) Ex (b) Ey 

 
 

( c ) Ez (d) Total E-field 

  
(e) Hx (f) Hy 

  
(g) Hz (h) Total H-field 

Figure 6.2: TE111 mode of Cavity (height=272mm, diameter=248mm) 
  0.75h=0.75*272mm (xyplane) 
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(a) Ex (b) Ey 

  
( c ) Ez (d) Total E-field 

  
(e) Hx (f) Hy 

 
 

(g) Hz (h) Total H-field 
Figure 6.3: TE111 mode, yzplane through the centre of the cavity. 
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(a) Ex (b) Ey 

  
( c ) Ez (d) Total E-field 

  
(e) Hx (f) Hy 

 
 

(g) Hz (h) Total H-field 
Figure 6.4: TE111 mode, xzplane through the centre of the cavity. 
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(a) Ex (b) Ey 

  
( c ) Ez (d) Total E-field 

  
(e) Hx (f) Hy 

  
(g) Hz (h) Total H-field 

Figure 6.5: TE113 mode of Cavity (height=272mm, diameter=248mm) 
0.25h=0.25*272mm (xyplane) 
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(a) Ex (b) Ey 

 
 

( c ) Ez (d) Total E-field 

  
(e) Hx (f) Hy 

  
(g) Hz (h) Total H-field 

Figure 6.6: TE113 mode of Cavity (height=272mm, diameter=248mm) 
0.5h=0.5*272mm (xyplane) 
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(a) Ex (b) Ey 

 
  

( c ) Ez (d) Total E-field 

  
(e) Hx (f) Hy 

 
 

(g) Hz (h) Total H-field 
Figure 6.7: TE113 mode, yzplane through the centre of the cavity. 
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(a) Ex (b) Ey 

 
 

 

( c ) Ez (d) Total E-field 

 
 

(e) Hx (f) Hy 

  
(g) Hz (h) Total H-field 

Figure 6.8: TE113 mode, xzplane through the centre of the cavity. 
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6.5 Antenna and bio-preparation support structure design 

 

The proposed cylindrical cavity is built with two rectangular loop antennas and support 

structure for biopreparation (i.e. butterfly shaped Lexan lamina and Petri dish, as shown 

in Figure 6.9). As can be seen in Figure 6.9, the antenna with size of (14x105 mm) at 

the bottom of the cavity acts as a transmitter to excite the TE111 cavity mode in the 880-

890 MHz band. The antenna with size of 12.5 x 56.5mm at the side wall of the cavity, is 

used to receive the energy of TE113 cavity mode that appears between 1760-1790MHz 

frequency band. Moreover, the electrical properties such as the relative permittivity of 

the Lexan sample that supports the structure and the Petri dish are 2.75 and 2.56 [16] 

respectively. It should be noted the length of the transmitter and receiver antennas have 

been tuned in order to achieve the resonant mode TE113 at double the frequency of the 

TE111. In addition, the detailed dimension of the butterfly shaped Lexan sample 

structure is also shown in Figure 6.10. 

 

The bands of the operation of the two antennas are shown in Figure 6.11. According to 

Figure 6.11, the dashed line represents the return loss of the bottom antenna at its 

frequency of operation with an empty 3cm Petri dish. The operating frequency has been 

multiplied by a factor of two to display the second harmonic performance in the same 

band of the receiver antenna of the mode TE113. Solid line in Figure 6.11 illustrates the 

shift of operating frequency band when 15µl lossy water with properties of εr =78.24, 

σ=0.173 [17] is added to the Petri dish inside the cavity. 
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Z

X
Y

Figure 6.9: The dimension of the proposed cavity model with its Lexan sample support 
structure and two rectangular loop antennas 

 
 
 

 
 
Figure 6.10: The detailed dimension of the butterfly shaped Lexan sample support 

structure. 
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Figure 6.11: The fundamental and second harmonic responses of the cavity 
 

6.6 Tests with a Schottky diode 

 

This section predicts the level of detectable second harmonic signal from a nonlinear 

frequency conversion process in the cavity in the presence of a known nonlinear device 

such as Schottky diode. A nonlinear high tangential sensitivity diode [18] is used and 

placed on the bio-preparation support structure. Figures 6.12 and Fig.6.13 demonstrate 

the diode model in [18] and microwave studio software package [15] respectively, while 

Figure 6.14 describes the practical UHF diode used and the simulated diode model.  

 

The time domain solver [15] is employed by using narrow input pulse to excite the 

antenna sensors. The simulation is carried out by placing a narrow band Gaussian pulse 

that covers the frequency band of 0.88 to 0.89 GHz to the antenna ports 1 and 2. After 
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the simulation is completed, the FFT (Fast Fourier Transform) is used; in which the time 

domain output signals on port1 and port2 can be converted to frequency domain to find 

any sign of the presence of the second harmonic. 

 

In order to confirm the proposed configuration for the second harmonic with pulse 

excitation signal, a simulation was conducted without the presence of the diode in the 

cavity.  Figure 6.15 depicts the narrow band Gaussian pulse signal in time domain. After 

the process of FFT, this excitation signal is transformed to frequency domain and then 

Figure 6.16 can be presented. The input and output signals on both excitations at port1 

and 2 are found with no presence of second harmonic, as shown in Figure 6.17. 

 

6.6.1  Testing for the orientation of the diode in the cavity  

 

Tests to force the generation of second harmonics have been undertaken by placing a 

small schottky diode in place of the biological test material inside the cavity. 

Simulations were performed with two different orientation of the diode: (i) parallel (x 

axis in Figure 6.9) and (ii) orthogonal (y axis in Figure 6.9), to the transmitter antenna. 

The results shown, as broadly expected, strong generation of second harmonics when 

the presumed current axis in the diode is oriented parallel to the electric field and zero 

generation when these directions are orthogonal. Figure 6.18 illustrates the presence of 

the second harmonic on the output port of receiver port 2 when the diode is oriented 

parallel to the transmitter at port 1. By analogy with the problem of searching for an 

antenna null with a portable radio, the orientation of the diode to achieve zero harmonic 

generation should be highly critical. 
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 (a) Micrograph of the diode. (b) Small signal equivalent circuit 

 
Figure 6.12: Diode Model from ref. [18] 

 

 
 

Figure 6.13: Diode Model from Microwave Studio [15] 
 
 

 
 

(a) Practical UHF diode 

 
(b) Simulated diode 

 
Figure 6.14: Diode Model (a) Practical UHF diode (b) Simulated diode 
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Figure 6.15: Input Signal for Port 1 and Port 2 in time domain (Normalized value) 
 
 

 
 

Figure 6.16: Input Signal for Port 1 and Port 2 in Frequency Domain (Normalized value) 
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Figure 6.17: Input Signal and Output Signal for Port 1 and Port 2 in Frequency Domain 

(Enlargement) 
 

 
 

Figure 6.18:  Output signal on the receive antenna in Frequency Domain 
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6.6.2 Testing for variation of the length of diode leads 

 

In this sub-section, the simulation will be conducted to investigate the variation of the 

second harmonic signal intensity against different lengths of the diode Leads. These 

leads lengths are considered between 0mm to 28mm and placed into the middle of the 

dish inside the cavity in which, the orientation direction was kept parallel to the transmit 

antenna at port 1. As expected, Figure 6.19 illustrates that as the length of the diode 

leads is reduced, the second harmonic signal strength is decreased. It was observed that 

the second harmonic signal strength was varied from 2.4 to 0.04 (units) for constant 

input signal strength of 800 (units: refer to Figure 6.16).  

By applying the following formula dB
P

P

lfundamenta

harmonicnd
02.86

800
04.010log10

2
2

−=⎟
⎠
⎞

⎜
⎝
⎛= , this 

indicates the minimum requirements of the signal-to-noise ratio that is required to be 

used for the measurements.   

 

On the other hand, the behaviour of the return loss at output port of the receiver antenna 

is also been analysed with the variations of the length of diode leads. Figure 6.20 

elucidates the S22 is about 68 dB when 28mm leads length used, while with the diode 

without leads, the S22 was found around 20dB. 
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Figure 6.19:  Second harmonic signal strength variation with different length of diode 

leads 
 

 
 
Figure 6.20:  Return loss on the output port variation with different length of diode leads 
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6.7 Proposed Electrical Circuit Model 

 
 

An efficient way to test the unsymmetrical nonlinear response of biological tissue 

samples exposed to a 0.9GHz signal is to observe the second harmonic at 1.8GHz in a 

cavity resonant at the two frequencies.  A simple mathematical technique is proposed 

here to calculate the second harmonic power with known input power. 

 
 

6.7.1 Summary of method 

 

The procedure of the proposed mathematical model will be demonstrated in the 

following context. Firstly, the cavity model used in the previous analysis will be 

implemented. A discrete port or floating port with metal leads of width 1mm which 

represents the dipole antenna, are placed inside the Petri dish of the cavity and oriented 

parallel to the transmitted antenna, as depicted in Figure 6.21 and Figure 6.22.  
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Figure 6.21: Proposed cavity model for mathematical analysis 
 
 
 
 
 

 
 

Figure 6.22: Discrete Port Model in the Petri dish of the cavity (Enlargement) 
 
      
 
Then, two simulations will be performed separately at frequency of TE111 and TE113, in 

order to extract the 3x3 Z- matrix parameters at both frequencies which is equivalent to 

the 3-ports network as depicted in Figure 6.23. Once the Z- matrix parameters are 
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obtained at both frequencies, the proposed mathematical model as depicted in Figure 

6.24 can be employed. According to Figure 6.24, the input and output ports can 

equivalently represent the transmitter and the receiver antennas respectively in the 

cavity, while the nonlinear element can be represented at one port inside the cavity. 

Hence, the electrical circuit equivalent diode model used is illustrated in Figure 6.25.  

 

From the Figures 6.24 and 6.25, by applying Ohm’s law, the following equation can be 

stated. 
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(6.4) 

 

From Input Port in Figure 6.24:  

 

o

i

Z
VV

I 1
1

−
=  

 

(6.5) 

 

Where Vi is the input voltage to port1 and Zo is the characteristic impedance of 50Ω. 
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Figure 6.23: Simulated Model in Microwave Studio. 
 

 
 
 

 
 

Figure 6.24: Proposed Mathematical Model for TE111 mode 
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From Output Port in Figure 6.24: 

 

0

2
2 Z

VI −=  
(6.6) 

 

From the Diode Model in Figures 6.24 and 6.25:  

 

dc III +=3  (6.7) 

 

Where Id is the current across the diode and Ic is the current across the capacitor in the 

diode model as seen in Figure 6.25. 

 
 

 
Figure 6.25: Electric circuit model of the nonlinear element in Figure 6.24 

 
 
 
From Equation (6.7), I3 can be further extended to following equation:  

 

d
C

I
jX
V

I +=
1

3
3  

(6.8) 

Where as  
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Where e is the Elementary Charge (e=1.60217x10-19) 

      T is the Temperature in Kevin (T=300K) 

      Io is the Reserve current  (Io=1.0x10-14) 

      k is the Boltzmann Constant (k= 1.3806503x10-23) 

      And since: 

 

13 RIVV dd +=  

 

(6.10) 

 

Substituting the Equations (6.5 to 6.10) into (6.4), the following expression can be 

obtained: 
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(6.11) 

 

Where R1=106.5 and C1=1.5 fF obtained from paper [18]. Vi is the input voltage to 

Port1. 

 

Since the e, K,T, Io are known parameters, therefore, Equation (6.9) can be simplified as 

follows: 
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By assuming the input voltage and substitute the Z-parameters of TE111 into the 

Equation (6.11), the parameters V1, V2 and Vd can be found. Then, the input power of 

the mathematical model can be computed by using ( )*
in IVRe.P 1150 ×=  (where ‘*’ is 

the complex conjugate). 

 

Once the Vd is obtained, it can be used as the excitation source to the previous input and 

output ports, hence, the electrical circuit can be modified as shown in Figure 6.26. Thus 

the following set of equations can be established as follows: 
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(6.13) 

 

By substituting the Vd from the solution of equation (6.11) to equation (6.13), V1 , V2 

and V3 can be gained. Hence, the output power on port 2 can be calculated by 

( )*
out IVRe*.P 2250 ×=  
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Figure 6.26: Proposed Mathematical Model for TE113

 
 
 

6.7.2 Simulation and Results 

 

Table 6.2 shows the result obtained from the proposed mathematical model presented in 

the previous section, while Figure 6.27 illustrates the variation of the second harmonic 

against the input power. These results were computed when each end of the diode is 

connected to a wire of length 1mm and radius of 0.65mm. It is well known that these 

particular short leads and unmatched load at port 3 at the present operating frequencies 

(floating port that describes the inclusion of the active device), the power level of the 

second harmonic is very low. It can be easily noticed that the generated power level of 

the second harmonic (at TE113) increases linearly with the input power at TE111 mode. In 

general, the presented results will state the confidence of the proposed method to predict 

the equivalent nonlinear function of active devices. 
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Table 6.2: Input power versus Second Harmonic Power 
 

 
 

 
 
 

 
 

Figure 6.27: Input Power of Port1 versus second harmonic power of Port2 
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6.8 Biological sample modelling in the cavity 

 
 

New computer simulation studies were commissioned to investigate on what is the basis 

for determination of the maximum permissible input signal which can keep the accepted 

safety thresholds of the sample, in which it must not to be so high to damage the sample 

under test. By using two different EM software packages (CST Microwave Studio and 

Agilent HFSS), the field strength in the sample region as function of input power, is 

computed. Two media samples were considered: air (εr = 1, σ = 0) and generic 

biological medium (εr = 50, σ = 1 S/m), with the volume 60µl. This 60µl lossy medium 

is modelled as a cylindrical structure with diameter of 17.5mm and height of 62.36 µm. 

The results were a little surprising, in showing only a modest difference between air and 

biological medium, but have been checked and show agreement between the two 

packages, as reported in Table.6.3. 

 

The International Commission on Non-Ionising Radiation Protection (ICNIRP) limit for 

SAR is 2 W/kg [19] , in which it has been argued to include a large and poorly 

quantified safety factor. The National Radiological Protection Board (NRPB) [20] 

formerly argued that its limit of 10W/kg was more realistic, although that would also 

include some safety factor and hence it is felt that the option of going up to 100 W/kg 

should be available to the experiment. Thus we have:   

  

SAR = σE2
peak/2ρ  

 

Hence:   Epeak = (2ρ.SAR/σ)0.5
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Taking SAR = 100 W/kg again as the upper target, and using reasonable approximations 

ρ = 1000 kg/m3 and σ = 1 S/m, we found Epeak = 447 V/m. This field strength is 

considered within the sample, and the value outside could be higher, depending on its 

orientation. From the SAR calculations, it shows that the induced maximum electric 

field is about 447V/m when SAR = 100W/kg is considered. This gives indication that 

the maximum power of order 250mW (from the Table 6.3) is suggested for the 

experiment.  



                                                                                                       

      

Table 6.3: Electric Field intensity in the cavity with and without the presence of the biological tissue 
 

Microwave 
Studio HFSS 

Microwave 
Studio HFSS

      (air) (air) Bio.medium Bio.medium

Voltage(V)
Power 

(W)  Power(dBm) E-Field (V/m) E-Field (V/m) E-Field (V/m) 
E-Field 
(V/m) 

0.2410    0.0005 -3.0103 22.2000 22.7000 19.0000 20.2200
0.2951       0.0008 -1.2494 27.1000 28.7200 23.2000 25.6000
0.3408       0.0010 0.0000 31.3000 32.1000 26.8000 28.6100
0.5388       0.0025 3.9794 49.6000 50.7700 42.4700 45.2400
0.7620       0.0050 6.9897 70.1000 71.8000 60.0200 64.0000
1.0000       0.0086 9.3500 92.0000 94.1600 78.7400 82.0000
1.0776       0.0100 10.0000 99.1000 101.5000 84.8100 88.4000
1.3198       0.0150 11.7609 121.0000 124.0300 103.5600 108.0200
1.5240       0.0200 13.0103 140.0000 143.6000 119.8200 123.0640
1.7039       0.0250 13.9794 157.0000 160.0000 134.3700 137.1100
1.8665       0.0300 14.7712 172.0000 175.8700 147.2000 150.7100
2.1553       0.0400 16.0206 198.0000 203.0000 169.4600 174.2000
2.4097       0.0500 16.9897 222.0000 227.0000 190.0000 194.0000
3.4078       0.1000 20.0000 313.0000 321.0900 269.0000 283.0000
5.3882       0.2500 23.9794 496.0000 507.7000 424.5000 430.5000
7.6201       0.5000 26.9897 701.0000 717.9000 600.0000 620.4000
9.3327       0.7500 28.7506 870.0000 879.3000 750.6000 783.1400
10.7760       1.0000 30.0000 991.0000 1015.0000 849.0000 904.0000
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6.9 Measurement 

 

This section is devoted to demonstrate the experimental work for detection the second 

harmonic. Firstly, the S parameters for port 1 and 2 was carried out using HP Network 

Analyser 8720B, Anritsu Synthesized Signal Generator MG3632A and Anritsu spectrum 

Analyser MS2802A, as shown in Figure 6.28. The cavity with height of 272mm and 

diameter of 248mm, is gold plated aluminum to suppress sources of nonlinearity.  

 

 

 

Figure 6.28: Experiment Setup in MSCRC (Mobile and Satellite Research Centre), 
University of Bradford. 



Chapter 6: Numerical and Experimental Analysis of Proposed…                   227 
 
6.9.1 Doubly resonant Cavity  

 

Figure 6.29 depicts the inner geometry of the cavity. As can be observed, a plastic bio-

preparation support structure is glued in the centre of the cavity, while the transmitting loop 

antenna sensor is located at the bottom of the cavity and the receiver loop antenna sensor is 

mounted on the top side of the cavity in which the position of the maximum TE113 field 

occurs. The size dimensions of the transmitter and receiver sensors are considered to be 

6.1cm x 1.4 cm and 2.2cm x 1.5cm respectively. A fine tuning was applied for both sensors 

to achieve the resonance frequency between 880 MHz and 890 MHz at port 1 and 1760 

MHz and 1780 MHz at port 2.   

 

 

Figure 6.29: Gold plated cylindrical cavity with bio-preparation support structure and two       
ports sensors. 
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By doing the fine tuning, the resonance frequency of 0.8883GHz was found, in which a 

good return loss was obtained at 1.7766 GHz at port 2 as shown in Figure 6.30. This 

procedure was adjusted again when different loading effects analysis was required such as 

adding water into the Petri dish inside the cavity; however, it was found that the resonant 

frequency of both ports shifted around 0.6MHz to the lower frequency band, as illustrated 

in Figure 6.30. 

 

 

Figure 6.30: The fundamental and second harmonic response of the gold plated cavity 
 

 

6.9.2 Summary of Methods and Results 

The proposed detection system, in principle, will be conducted in the following three 

phases, these are: 
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(i) Testing the orientation of the Schottky diode inside the cavity, as illustrated in Figures 

6.31 and 6.32.  

(ii) Check the sensitivity of the second harmonic corresponding to different length of 

diode lead, as depicts in Figure 6.33. 

(iii) Investigating the effects of non-biological liquids to the diode, as illustrated in Figure 

6.34. 

 

The input power is constantly set to 10dBm of all cases of the analysis in phases (i) to (iii).  

 

 

Figure 6.31: Orientation of the diode parallel to the transmitted antenna. 
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Figure 6.32: Orientation of the diode orthogonal to the transmitted antenna 
 

 
 
 

 
 

Figure 6.33: UHF diode with different length of leads 
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Figure 6.34: UHF diode without leads and loaded with 60µl water 

 

Preliminary experiment is commissioned according to the test bed shown in Figure 6.35.  

On the input port, Anritsu Synthesized Signal Generator MG3632A is used to generate the 

input signal to the bottom sensor at 0.8883GHz. Two stages of low pass filters are used to 

suppress frequencies above 1 GHz that will reduce any effect of generation of the second 

harmonic products generated by the input generator. On the output port, An Anritsu 

spectrum Analyser MS2802A is set to display the expected second harmonic frequency 

component (i.e., twice the fundamental frequency component), at a minimum bandwidth of 

BW = 1.7766GHz ±100kHz. High pass filter and narrow band pass filter are exploited to 

ensure at least -60 dB unwanted frequency rejection of the fundamental frequency 

component.  

 

Two sets of measurements results were observed, the first one, no amplification 
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implemented and the other with two stages power amplifier as shown in Figure 6.35. For 

phase (i) when the diode is oriented in parallel to the transmitting antenna, as broadly 

expected, a strong generation of second harmonics was observed on the spectrum analyzer. 

However, no notice on the existence of the second harmonic was recorded when the 

orientation of the diode is moved to the position orthogonal to the transmitting sensor. The 

measurement results are summarized as follows: 

 

 

Figure 6.35: Test bed of the experimental setup used for detection the second harmonic. 
 

6.9.2.1: Without the Power Amplifiers: 

 
The experimental results for phases (ii) and (iii) are shown in Figure 6.36. As can be 

noticed, the minimum noise floor of -115dBm was observed, and as the length of the diode 
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leads gradually reduce from 28mm to 0mm, the second harmonic signal strength is dropped 

down linearly from -58dBm to -108dBm in which the  corresponding difference between 

the noise floor and second harmonic signal are varied between 57dBm to 7dBm. It is 

discovered that the generation of the second harmonic by the diode without leads, is 

indistinguishable with the noise signal. 

 

 

Figure 6.36: Output signal level for detection system without amplification. 
 

Interestingly, when 60µl water is added to the diode without leads, the second harmonic 

signal was improved from -108dBm to -95dBm i.e., 13dBm improvement in second 

harmonic power level was noticed.  
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6.9.2.2. With Power Amplification 

In this detection system, two stages power amplifiers were used. The amplifier models are 

ZRL - 2400 LN and Zel-1724LN enquired from Mini-circuits. Due to these stages, the 

noise floor of the spectrum analyser was been rose up to -100dBm as elucidated in Figure 

6.37.  As can be noticed, the second harmonic signal is improved to -62dBm, and when the 

water was added further increase was achieved by 20dBm (i.e. the power level -42dBm is 

considered now). This will fully contribute to increase the probability of the expected 

chances to detect the second harmonic if a biological tissue is considered for test. 

 

 

Figure 6.37: Output signal level for detection system with power amplification. 
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6.10 Conclusions 

An efficient way to test the unsymmetrical nonlinear response of biological tissue samples 

exposed to a 0.9GHz signal is to observe the second harmonic at 1.8GHz in a cavity 

resonant at the two frequencies. A closed cylindrical cavity model using two rectangular 

loop antennas for coupling two ports networks was simulated and tested. This also includes 

loading structure implemented inside the centre of the cavity. The simulated results show 

that the tuned TE113 mode has double the resonant frequency of the TE111 mode. The first 

and second harmonic responses of the cavity due to different loading materials were also 

demonstrated numerically and experimentally. 

 

Moreover, the level of detectable second harmonic signal from a nonlinear frequency 

conversion process in the cavity in the presence of known nonlinear diode has been studied. 

The variations of the second harmonic signal were investigated for different structure 

orientation of the diode and various diode lead lengths in the cavity. Meanwhile, an 

electrical circuit model was proposed to calibrate the performance of nonlinear RF energy 

conversion inside a high quality factor resonant cavity using a known nonlinear loading 

device. The results from the proposed mathematical model gave a good indication of the 

input power required to detect the weak second harmonic signal prior to perform the 

measurement. Hence, this proposed mathematical model will assist in determining the level 

required of the second harmonic signal: this can be adjusted by supplying the specific input 

power. On the other hand, the issues on relating signal generator output power to signal 

strength in the biological sample was also performed. This study will strongly support the 

requirements of the total power dissipated of the biological samples to estimate the SAR 
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values. 
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Chapter 7 

 

Conclusions and Suggestions for 

Further Work 

 
 
 
 
 

7.1 Conclusions 

This Chapter summarises the conclusions arising from the earlier Chapters. It also 

includes a section on the future possibilities arising from this work. The primary target 

of this presented work is to model the interaction mechanism between the biological 

cells and electromagnetic field at mobile communication frequency by implementing 

FDTD numerical method. In microscopic level of modelling biological cells, the 

computational power required is extremely huge. In order to tackle this problem with 

affordable computational resources, quasi-static FDTD with floquet periodic boundary 

conditions and modified Berenger’s PML are proposed to represent an infinite cluster of 

cells in computational domain.  

 

The main original achievements of the present thesis can be summarised as follows: 
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 The implementation of FDTD code procedures with Berenger’s PML absorbing 

boundary condition were demonstrated in chapter 2. It was encompassed the 

fundamental derivation of time domain finite difference updating equations to solve the 

Maxwell’s curl equations, discussion of the critical parameters which govern the 

stability and accuracy of the FDTD algorithm, formulation of incident plane wave 

source excitations and  Berenger’s PML absorbing boundary conditions.  

 

 Based on the circuit theory to derive the relationship between the E and H fields 

and voltages and current, Chapter 3 extends the FDTD updating equations which are 

derived from chapter 2, to include the lumped element (resistor, capacitor, inductor and 

etc.) into the FDTD computational domain. This allows arbitrary microwave circuit to 

be analysed into the FDTD lattice. In addition, the presence of intrinsic capacitance due 

to the adjacent cells in FDTD grid can store charge, is also well addressed in this 

chapter.  

 

 Chapter 4 proposes a frequency scaled FDTD or Quasi-static FDTD approach to 

modelling the electrical small object which is much smaller than a wavelength. This 

chapter begins with discussion the incident plane wave characteristic in free space, 

lossless and lossy media. Then, the Mie series analytical solutions for sphere with 

arbitrary concentric layers are formulated concisely and systematically. In order to 

validate the proposed frequency scaled approach, four test cases based on the spherical 

geometry in different media are carried out. The first two test cases were adopted from 

paper [1] which analyse the electric field at power line frequency (60Hz) of single layer 

and multiple layers of conductive sphere in free space. Due to the size of the sphere is 



Chapter 7: Conclusions and Suggestions for Further Work                       241 
 
 
negligible compared to wavelength of 60Hz, the FDTD computation can be performed 

at scaled higher frequency of 20MHz which is still a few tens wavelength larger than 

the conductive sphere. The analytical solutions are in excellent agreement to the 

proposed QS-FDTD algorithm. The numerical results give very promising evidence that 

written FDTD Fortran code is working perfectly. These results motivate this work to 

further extend to model conductive sphere in lossless and lossy media at mobile 

frequency. The obtained numerical results from last two test cases again show good 

agreement to the analytical solution. 

 

 Chapter 5 implementing the idea of frequency scaled FDTD from previous chapter 

incorporate with Floquet periodic boundary conditions and modified PMLs to 

microdosimetric modelling of bioelectromagnetic interactions at cellular level. In order 

to include the membrane effect on the biological tissues model in the analysis, the LE-

FDTD is exploited to embed the Hodgkin-Huxley cell-membrane model on the surface 

of the proposed tissue model in the FDTD computational domain. Three different types 

of the biological tissue are modelled, which are made by a cluster of spherical, cubical 

and cylindrical cells respectively. Floquet periodic boundary conditions are imposed on 

the proposed model to imitate the effect of periodic replication of the assemblages. Thus, 

the analysis of a large structure of cells is made more computationally efficient than the 

modelling of the entire structure. The total fields of the simulated structures are shown 

to give reasonable and stable results at 900MHz, 1800MHz and 2450MHz. This leads to 

the conclusion that the application of the HH model allows cells of arbitrary geometries 

to be handled and demonstrates the viability of embedding other types of lumped-

element model for membrane function. Moreover, use of the Floquet boundary 
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condition enables a non-trivial region of connected biological tissue to be simulated. 

Such a tool will facilitate deeper investigation of the phenomena in the interaction 

between EM fields and biological systems at various levels of spatial definition. 

  

 Chapter 6 is devoted to propose a detection system to assist the investigation of 

whether biological cell exhibit nonlinearity in the radiofrequency (RF) region. An 

efficient way to test the unsymmetrical nonlinear response of biological tissue samples 

exposed to a 0.9GHz signal is to observe the second harmonic at 1.8GHz in a high 

quality cavity resonant at the two frequencies. The presented works are firstly 

performed by using CST microwave studio software to model a doubly resonant high 

quality cavity [2]. With the aids of the GUI of the software, the field distribution of the 

cavity at TE111 and TE113 modes can be visualised, in order to identify the best location 

to place the transmit loop antenna, support structure for the bio-preparation and receive 

loop antenna for better chances of second harmonic detection. The transmitter and 

receiver antenna sensors were successfully designed to operate at 880-890MHz and 

1760-1790 MHz respectively. This will enhance the receiver sensor to receive energy at 

twice the frequency of the transmit antenna sensor. The cavity was calibrated by 

verifying the second harmonic generation from a known nonlinear diode. This gave 

indication on what is the dynamic range required for the practical measurement for 

detection of the expected second harmonic. Moreover, a proposed circuit model was 

carried out to more precisely quantify the amount of input power required in the 

excitation port to generate a detectable second harmonic signal. Finally, an experimental 

work was implemented and the measured results were compared with the numerical 

results. 
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7.2 Overall Conclusions 

The combination of quasi-static FDTD, an arbitrarily-oriented lumped element 

membrane model, the modified Berenger’s absorbing boundary condition and the 

Floquet periodic boundary condition represent a significant advance in verisimilitude of 

biological cell modeling. This is because it permits the computationally-efficient FDTD 

method to model small cell size object with reasonable computing time and accuracy.  

 

The proposed numerical modelling and experimental work for the detection of nonlinear 

responses in biological cells exposed to RF energy, give the clear procedures on how to 

perform the nonlinearity test on the biological sample and what precautious have to be 

taken into consideration. Interestingly, both the numerical and measured results were in 

good agreement. 

 

7.3 Suggestions for Further Works 

Finally, this work can be extended for further research with the following suggestions: 

 

 A further work on the electromagnetic field interaction mechanism with 

biological tissue can be extended to modify the Floquet boundary condition to allow 

oblique plane wave incidence to excite the proposed model and study the effect of 

polarization of the incident wave against the field distribution inside the proposed tissue 

model. This can be done by implementing the proposed techniques in [3-5]. 

 

 Standard FDTD  suffers from staircase error [6] in which a complex geometries 
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can not be accurately modelled. Nonorthogonal curvilinear FDTD algorithm [7] might 

be employed for future FDTD code that will be able to model the exact cell geometry 

instead of the spheres, cuboids or cylinders, as described in the present work. 

 

  The proposed QS-FDTD and Floquet boundary condition can further utilise to 

develop a fine modelling of a particular portion of the human head or body to precisely 

investigate the EM interaction mechanism. 

 

 The presented tissues model only use one FDTD cell to represent the tiny 

membrane layer of the biological cell. In order to increase accuracy of the model, a 

further work can be extended to incorporate the sub-gridding algorithm [8] or adaptive 

meshing technique [9] to increase the mesh cells on the membrane of the cells. This will 

help to better understanding the field distribution inside the cell membrane. 

 

 It is very interesting to use the present work to include sub-surface radar 

application in which breast cancer cells might exist for modelling purposes, to obtain 

accurate electric field distribution inside the breast tissue. 

  

  The analysis on the RF interaction mechanism with biological tissue that was 

performed at mobile frequency at the present work can be expanded to include the EM 

interaction mechanism at power line operating frequency (i.e., 50Hz  or 60Hz) at indoor 

or outdoor environments. 

 

 The research work presented here can be easily extended to study the SAR 
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variation values inside the cytoplasm of the cells. 

 

 A further work for the proposed cavity model is to conduct the experimental test 

with live biological tissue in which the nonlinearity responses can be easily derived.   
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