Mathematical Modelling of Mandibular Metamorphosis from 3D CT

Klaus Baggesen Hilger and Rasmus Larsen Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

Metamorphosis!?

- Etymology: Latin, from Greek *metamorphosis*, from *metamorphoun* to transform, from *meta- + morphe* form
 "change of physical form, structure, or substance"
- The goal is to obtain better insight and improve the understanding of mandibular growth
- The growth of the mandible is particularly complex; due to asynchronous teeth eruption and changes in the angular direction of the condylar process

Time

The Data

• The data are 31 mandibular surfaces acquired from CT volume scans of a total of six subjects with the Apert syndrome

- All scans where acquired for treatment and diagnostics purposes
- In the Apert syndrom the mandible is not affected by the primary anomaly

Computed Tomography (CT) Imaging

	Scanning no.							
Patent no.	Sex	1	2	3	4	5	6	7
1	M	3	16	21	23	34	-	-
2	Μ	1	7	23	54	56	60	72
3	Μ	1	5	17	32	36	-	-
4	\mathbf{F}	3	27	46	62	131	132	144
5	Μ	3	4	21	72	-	-	-
6	F	9	21	84	-	-	-	-

Age in month vs. CT scan number for each patient

Active Shape Modelling

- Surface segmentation and shape representation
- Alignment of the set of shapes
- Tangent space projection into a metric space containing of shape variability
- Shape variability decompositioning
- Growth modelling and future shape prediction

Shape Representation

• Each shape is represented by 14851 homologous semilandmarks

Alignment

- Align the set of shapes by removing: scale, translation and orientation. (Generalized Procrustes Alignment using a similarity transform, GPA)
- Formally identical to Multiset Canonical Correlations Analysis (MCCA) under similar constraints

• Set of shapes:

 $oldsymbol{S} = \{oldsymbol{s}_i\}_{i=1}^S \;, \; oldsymbol{s}_i \in {\rm I\!R}^{
m Nk}$

• Objective to maximize:

 $\{\hat{T}_i(\cdot)\}_{i=1}^S: \operatorname{argmax}\{R = \sum_{ij} \operatorname{Corr}\{T_i(\boldsymbol{s}_i), T_j(\boldsymbol{s}_j)\}\}$

• Average shape:
$$s_i^P = \hat{T}_i(s_i) \rightarrow \bar{s} = \sum_i s_i^P / S_i$$

Tangent space projection

- Projection into a subspace of the tangent space containing the *patient specific* mean shapes, reveals dominating inter-patient variability
- Compensate by centering each subject group to the common average shape
- No significant structure in the scattering indicating no gender related differences in shape

Decompositioning

• Assuming a generative linear model

 $oldsymbol{s}_{new} = oldsymbol{ar{s}} + oldsymbol{P}oldsymbol{b}$

constrained so that

P : argmax{J(P, S)} where J(P, S) can be e.g. variance, autocorrelation or the signal-to-noise ratio in the new components

- The traditional approach to maximize variance (PCA) operates in an Euclidean metric
- Decompositioning under different constraints e.g. auto-correlation (MAF) results in uncorrelated components in a non-Euclidean metric

PCA versus MAF

Uncorrelated Modes of Variation

• The principal modes of variation using the MAF decompositioning:

MAF1

Evaluation and Prediction

• Robustness of the decompositioning is examined by cross-validation (CV) excluding one patient at a time

CROSS-VALIDATION OF THE ORIENTATION OF THE EIGENVECTORS

FROM THE REDUCED DATA SETS AGAINST EIGENVECTORS DETERMINED

ON THE BASIS OF ALL PATIENTS

$\operatorname{patient}$			
excluded	PC1	MAF1	MAF2
1	4.1°	3.4°	9.7°
2	5.8°	6.2°	38.4°
3	6.5°	9.3°	38.7°
4	8.3°	6.1°	32.9°
5	5.9°	6.5°	16.9°
6	3.9°	5.7°	32.5°

• The results shows the models ability to generalize. Note that no patient controls the variablility of the pooled analysis

Linear Dependence in Procrustes Tangent Space 3 mts, real. Log(Size) 72 36 Log(Age) ¥ 132 Shape Size 12 years, real

Growth Simulation

- Leave-one-out CV study predicting the most recent scan applying the earlier scannings as sources
- Notice the ability to predict the evolution of patient 4 no other subject has been scanned at such a high age
- This strengths the hypothesis of linear growth in Procrustes space

PREDICTION ERRORS OF THE CROSS-VALIDATION STUDY

Patient		PC1 model		MAF1	model	MAF2 model	
no.	scan	mean	std	mean	std	mean	std
1	1	2.4	1.3	2.4	1.3	4.3	1.4
	2	1.8	0.8	1.7	0.7	2.2	0.9
	3	1.8	0.7	1.7	0.7	2.3	0.9
	4	1.4	0.6	1.3	0.6	1.8	0.7
2	1	3.5	1.4	3.4	1.4	4.3	1.9
	2	2.4	1.1	2.3	1.1	3.2	1.9
	3	2.3	1.3	2.2	1.3	3.0	1.8
	4	1.5	0.7	1.5	0.7	1.7	0.8
	5	1.6	0.8	1.6	0.8	1.8	0.8
	6	1.4	0.6	1.4	0.6	1.5	0.7
3	1	2.8	1.3	2.8	1.3	5.4	2.2
	2	2.5	1.2	2.4	1.2	4.1	1.6
	3	2.1	0.9	2.1	0.9	2.7	1.2
	4	1.0	0.4	1.0	0.4	0.9	0.5
4	1	3.7	1.6	3.6	1.6	7.2	2.6
	2	3.1	1.6	3.1	1.5	3.3	1.6
	3	2.8	1.4	2.8	1.4	3.0	1.4
	4	2.8	1.4	2.8	1.4	2.9	1.3
	5	2.0	1.0	2.0	1.0	2.0	1.0
	6	2.0	0.9	2.0	0.9	1.9	0.9
5	1	2.6	1.0	2.7	1.1	5.5	2.1
	2	3.1	1.2	3.1	1.2	5.7	2.3
	3	2.1	1.0	2.1	1.0	3.4	1.5
6	1	2.8	1.0	2.9	1.0	5.3	1.8
	2	2.8	1.2	2.8	1.2	4.2	1.7

Summary

- Mandibular growth is approximately linear in Procrustes tangent space
- Technical high-lights:
 - removal of inter-patient variability
 - decompositioning in non-Euclidean metric

Acknowledgements:

- 3D-LAB, Headed by Dr. Sven Kreiborg, School of Dentistry, University of Copenhagen
- Also thanks to Dr. Per R. Andresen, formerly IMM, DTU