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ABSTRACT

In music genre classification the decision time is typically
of the order of several seconds, however, most automatic
music genre classification systems focus on short time fea-
tures derived from10− 50ms. This work investigates two
models, themultivariate Gaussian modeland themulti-
variate autoregressive modelfor modelling short time fea-
tures. Furthermore, it was investigated how these models
can be integrated over a segment of short time features
into a kernel such that a support vector machine can be
applied. Two kernels with this property were considered,
theconvolution kernelandproduct probability kernel. In
order to examine the different methods an11 genre music
setup was utilized. In this setup theMel Frequency Cep-
stral Coefficientswere used as short time features. The
accuracy of the best performing model on this data set was
∼ 44% compared to a human performance of∼ 52% on
the same data set.

Keywords: Feature Integration, Product Probability
Kernel, Convolution Kernel, Support Vector Machine,
Music Genre

1 INTRODUCTION

The field of audio mining covering areas such as audio
classification, retrieval, fingerprinting etc. has received
quite a lot of attention lately both from academic and com-
mercial groups. Some of this interest stems from an in-
creased availability of large online music stores and grow-
ing access to live radio-programs, music stations, news on
the internet etc. The big task for the academic world is
to find methods for effectively searching and navigating
these large amounts of data.

The genre is probably the most important descriptor of
music in everyday life, however, it is not an intrinsic prop-
erty of music such as e.g. tempo, which makes it more
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difficult to grasp with computational methods. Still, for a
limited amount of data and for coherent music databases
there seem to be a link between computational methods
and human assessment, see e.g. [1, 2].

It is a well established fact that the success of a pat-
tern recognition system is closely related to the task of
finding descriptive features. There exist a large amount
of descriptive audio features, each designed for a specific
audio mining task. The various features can be grouped as
perceptual features such as pitch, loudness, beat or as non-
perceptual features as the Mel Frequency Cepstral Coeffi-
cients (MFCC). The MFCCs have been applied in a range
of audio mining tasks, and have shown good performance
compared to other features at a similar time scale.

In music genre classification the typical time horizon
for a human to classify a piece of music as belonging to
a specific genre is of the order of a quarter of a second
up to several seconds, see [3]. Typically for automatic
music genre classification systems whole pieces of music
are available, so the decision time is generally longer than
just a few seconds.

Short time featuressuch as the MFCCs are typically
derived at time horizons around10− 50ms depending on
the stationarity of the audio signal. A few authors [4, 5, 1]
have looked at methods for integrating (modelling) the
short time features to classify at longer time horizons. In-
tegration of short time features (feature integration) is also
known as early information fusion. Late information fu-
sion is another way of classifying at larger time horizons.
The idea of late information fusion is to combine the se-
quence of outputs from a classifier, like e.g. majority vot-
ing. Some techniques of information fusion (both early
and late) have been considered in more detail in [4, 2].

The focus of this work was to extend the model of
[2] for modelling the temporal structure of short time fea-
tures and secondly to investigate different methods for
handling audio data using kernel methods such as the
Support Vector Machine (SVM). The support vector ma-
chine is known for its good generalization performance in
high-dimensional spaces, furthermore, its ability to work
implicitly in a possible high-dimensional feature space
makes it possible to investigate non-linear relations in the
data.

The paper is structured as follows. An overview of
the investigated features as well as a description of the
two feature integration models themultivariate Gaussian
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model (GM)and themultivariate autoregressive model
(MAR) are given in section2. Section3 briefly explains
the classifiers applied to a music genre setup and further-
more explains the idea of information fusion. Section
4 presents the results of an11 genre music genre setup.
Last, but not least a conclusion in section5.

2 FEATURES

The work presented in this paper will focus on construct-
ing descriptive features at larger time scales by modelling
short time features. Earlier work by [2, 1, 5] suggested
to work with an intermediate time scale around1 second.
Here three time scales have been considered, ashort time
scaleof 30ms where short time features are extracted, a
medium time scaleat 2 seconds (selected from the data
set, see section 4) and along time scaleof 30 seconds,
limited by the length of the music snippets. The long time
scale contains information such as the ”mood” of the song
as well as long-structural correlations.

2.1 Short Time Features (30ms)

The short time feature extraction stage is really impor-
tant in all audio processing applications, since it is the
first level of feature integration performed1. Earlier results
[4, 5] indicate good performance in music genre classifi-
cation using the MFCCs and therefore these will be the
preferred choice in this investigation. These features were
originally developed for classification of speech, however,
they have been applied in various audio mining tasks, see
e.g. [6] where they were used in a timbre similarity ex-
periment. The low order MFCCs contain information of
the slowly changing spectral envelope while the higher or-
der MFCCs explains the fast variations of the envelope.
Several authors report success using only the first6 − 10
MFCCs. In the music genre classification setup, see sec-
tion 4, we found that the first seven MFCCs were ade-
quate. Furthermore, a hop- and frame-size of10ms and
30ms, respectively, were used. The larger overlap results
in more smooth transitions between consecutive feature
vectors.

2.2 Feature Integration (> 30ms)

Feature integration is a method for capturing the tempo-
ral information in the features. With a good model the
most salient structural information remains and the noisy
part is suppressed. The idea of using feature integration in
audio classification is not new, but has been investigated
in earlier work by e.g. [1, 5, 2] where a performance in-
crease was observed. The idea of feature integration can
be stated more strict by observing a sequence of consecu-
tive features

xn+1, . . . ,xn+L → f(xn+1, . . . ,xn+L) = z, (1)

where the sequence{xn+1, . . . ,xn+L} ∈ RD×L are inte-
grated into a new feature vector denoted asz ∈ RM where
typicallyM << D·L andL indicates the number of short

1Basically this first step is denoted as feature extraction and
not feature integration.

time features used in the integration step. A commonly
used feature integration technique is themean-varianceof
features, which provides a performance increase, but gen-
erally does not capture the temporal structure of the short
time features. An improvement to this is thefilter-bank
approach considered in [5] to capture the frequency con-
tents of the temporal structure in the short time features.
This improvement indicated a performance increase com-
pared to the mean-variance model, see [2]. Recently an
autoregressive model [2] was suggested for feature inte-
gration and provided a performance increase compared to
the mean-variance and filter-bank approach.

Figure 1 shows the first seven normalized MFCCs of
a10 second excerpt of the music pieceMaster of Revenge
by the heavy metal groupBody Count. As observed from
the coefficients there is both temporal correlations as well
as correlations among features dimensions.
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Figure 1: The first seven normalized MFCCs of a10 second
snippet of ”Body Count - Masters of Revenge”. The temporal
correlation and correlations among feature dimensions are very
clear from this piece of music.

2.2.1 Multivariate autoregressive model (MAR)

Themultivariate autoregressivemodel handles both tem-
poral and correlations among feature dimensions, which
makes it a good candidate for feature integration. In [2]
a simple autoregressive model was suggested where sim-
ple refers to considering each feature dimension indepen-
dently. The MAR model is popular in time-series mod-
elling and prediction being both simple and well under-
stood, see e.g. [7]. For a stationary time series of state
vectorsxn ∈ RD the MAR model is defined by

xn =
K∑

p=1

Apxn−I(p) + µµµ + un, (2)

where the noise termun (error-term) is assumed to be zero
mean Gaussian distributed, henceun ∼ N (un;0,C).

TheD-dimensional parameter vectorµµµ is a vector of
intercept terms that is included to allow for a non-zero
mean of the time-series, see [8]. The matricesAp ∈
RD×D for p = 1 . . . K are the coefficient matrices of
the K ’th order multivariate autoregressive model. They



encode how much of the previous information given in
xn−I(1),xn−I(2), ..,xn−I(K) is present inxn. The above
formulation is quite general asI refers to a general set.
For a model order ofK = 4, the set could be selected
asI = {1, 2, 3, 4} or I = {1, 2, 4, 8} indicating thatxn

is predicted from these previous state vectors. In this pa-
per we focus on the standard multivariate autoregressive
model whereI = {1, 2, 3, . . . ,K}. When estimating the
parameters of the model there is several methods avail-
able, see e.g. [7]. The authors have used theARFIT pack-
age, a regularized ordinary least squares approach, de-
scribed in [8]. This package ensures the uniqueness of
the estimated parameters of the model.

2.2.2 Multivariate Gaussian model (GM)

Neglecting the temporal correlations in the data, hence
setting theAp matrices forp = 1, . . . ,K in equation (2)
to zero leads to the much simpler model

xn = µµµ + un, (3)

whereµµµ encode the mean value of the time series and
un ∼ N (un;0,C) is denoted the multivariate Gaussian
model. The previous mentionedmean-variancemodel
is the mean valueµµµ and the variance components given
from the diagonal of the covariance matrixv = diag{C}.
If the full covariance matrix is used, only the upper (or
lower) triangular coefficients are needed due to the sym-
metry. The multivariate Gaussian model will be consid-
ered as the ”base-line” against the MAR model in the ex-
perimental section since it performs better than the typical
mean-variancemodel.

The two feature integration techniques described
above can be used to derive features at themedium time
scaleor used directly to derive features at thelong time
scale. The model order for the MAR model can be se-
lected from e.g. Schwarz’s Bayesian Criterion (SBC) [8],
which is implemented in theARFIT package or as in our
experimental setup, where a separate validation set was
used to determine the optimal model order across data ex-
amples (music snippets).

2.3 Unique Solutions

Performing feature integration the model parameters are
typically used as new feature vectors at the new time scale.
If the model does not have a unique solution, two similar
audio pieces could risk being classified as dissimilar. Con-
sider using amixture of Gaussian (MoG), given as

p(x|θθθ) =
K∑

k=1

p(k)p(x|k,θθθ),

wherep(k) (and
∑K

k=1 p(k) = 1) are the mixing pro-
portions andp(x|k,θθθ) ∼ N (x;µµµk,Ck), as a feature in-
tegration model. Optimizing the model parameters from
the likelihood function using e.g. theEM-algorithmdoes
not necessarily provide a global maximum since the likeli-
hood function has many local maximums. So using these
model parameters (mixing proportions, means and covari-
ances) directly in a classifier2 would make no sense. Re-

2Stacked in a vector.

cent studies in kernels indicate that it is possible to inte-
grate this type of complicated models in a kernel, see e.g.
[9, 10]. The mixture of Gaussian model was considered as
modelling music snippets in [6] and will be investigated as
a feature integration model in section 4.

3 CLASSIFIERS

Earlier work in the field of music information retrieval
(MIR) considered simple yet efficient classifiers such as
K-nearest neighbors, however, lately more computation-
ally demanding algorithms have been investigated. Only
a few researchers within the field ofMIR have consid-
ered support vector machines (SVM), see e.g. [11, 12].
In the following subsections the support vector classifier
(SVC) and the linear neural network classifier (LNN) will
be briefly discussed.

3.1 Support Vector Classifier

The challenge of machine learning is to provide the
learner with as broad a range of functions as possible
while still ensuring that accurate learning can be achieved.
Using high-dimensional feature spaces satisfies the first
constraint of ensuring high flexibility, but appears to be at
odds with the second since it is undermined by the curse
of dimensionality. As a result we would expect that a good
fit on the training data could still leave the generalization
very poor. Support vector machines [13] manage to avoid
this difficulty by optimizing a bound on the generalization
error in terms of quantities that do not depend on the di-
mension of the feature space [14], hence enabling good
performance unaffected by the curse of dimensionality. In
the present work, the C-libraryLIBSVM [15] was used.
This library implements the one-against-one voting termi-
nology to handle more than two classes.

3.1.1 Kernels

A typical applied kernel for the support vector classifier is
the linear kernel, which is defined as
κ(x,x′) = x

T
x
′, hence an inner product between the in-

put vectors. Another well known kernel is the Gaussian
kernel (orRBF-kernel) with width parameterσ defined as
κ(x,x′) = exp(− ‖ x − x

′ ‖2 /2σ2). Using this kernel
the support vector classifier is basically finding discrimi-
nating dimensions in an infinite feature space.

The linear and RBF kernel can be used in comparing
vector data, however, when handling audio we are typi-
cally forced to calculate the distance between two audio
snippets of varying lengths, which for two pieces of audio
is presented by the sequence of short time features:X =
[x1,x2, . . . ,xL] ∈ RD×L andX

′ = [x′

1,x
′

2, . . . ,x
′

L′ ] ∈

RD×L′

. The two audio files are not required to be of
same length, though in the present investigation they are
(L = L′). Two different kernels have been investigated,
which calculate a similarity between sequences of data,
the convolution kernel[16] and theproduct probability
kernel[9]. These kernels naturally incorporate feature in-
tegration.
Convolution Kernel - CK
The convolution kernel [16] handles all kinds of discrete



structures such as strings, trees and graphs. In this work
the convolution kernel measures the distance (correlation)
between two audio pieces (between their feature vectors).
The kernel is defined as

κ(X,X′) =
1

L2

L∑
v=1

L∑
v′=1

κI (xv,x′

v′) , (4)

whereκI(x, z) must be a valid kernel. It is interesting to
note that if a linear kernel is used a fast calculation can be
obtained.

Product Probability Kernel - PPK
Theproduct probability kernelintroduced in [9] measures
the distance between probability models of the feature
vectors. Other divergence based kernels have been sug-
gested, see e.g. [10], for measuring a similar distance. In
[6] the Kullback-Leibler similarity measure was applied
to measure the distance between timbre models of mu-
sic snippets modelled by a mixture of Gaussian, however,
no closed form solution could be found using this diver-
gence measure. With theproduct probability kernel, a
closed form solution can be determined for e.g. a mixture
of Gaussian, furthermore, thePPK fulfills the requirement
for a kernel to be positive semi-definite. From [9] thePPK
is given as

κ(θθθ,θθθ′) =

∫
p(x|θθθ)ρp(x|θθθ′)ρdx, (5)

whereθθθ(θθθ′) are the parameters from modellingX(X′),
ρ > 0 andp(x|θθθ) is the probabilistic model of the short
time features of a music piece.ρ controls the weight-
ing of low or high density areas of the probability dis-
tribution. Selectingρ = 1/2 the Bhattacharyyaaffinity
between distributions is found. A nice bi-product of se-
lecting ρ = 1/2 is a normalized kernel structure, since
κ(θθθ,θθθ) =

∫
p(x|θθθ)dx = 1. This kernel can directly com-

pute the distance between the models suggested in section
2.2, and thus incorporates feature integration. As men-
tioned in section 2.3 the problem of uniqueness is allevi-
ated for this kernel, since probabilistic models are com-
pared instead of model parameters.

Closed form solutions of the kernel for the multivari-
ate Gaussian and mixture of Gaussian can be found in [9].
Additionally, we have calculated a closed form solution of
the MAR model, but the details have been omitted through
lack of space3.

3.2 Linear Neural Network classifier (LNN)

The linear Neural Network hasc outputs and is trained
using a squared loss function [17]. This classifier has pre-
viously been applied with success in music genre classifi-
cation, see e.g. [2, 4].

3.3 Fusion Techniques

The early information fusion (feature integration) was dis-
cussed in section 2.2. Late information fusion is the prob-

3Regarding computational complexity the methods ranked
after numerical complexity are (top: least computational inten-
sive): GM, MAR, MoG. The GM and MAR are closer related in
complexity than the MAR and MoG.

lem of combining the results from the classifier. There ex-
ist several ways of performing late information fusion, see
[18]. In the present work, the majority voting rule was ap-
plied due to the SVM classifier. In the majority vote rule,
the votes received from the classifier are counted and the
class with the largest amount of votes is selected, hereby
performing consensus decision.

4 EXPERIMENTS

To evaluate the different feature integration techniques an
11 genre music setup was investigated. As discussed in
the introduction, decisions can be made at different time
scales. In the present work, the best achievable perfor-
mance at30 seconds will be pursued, using the above fea-
ture integration techniques, voting technique and combi-
nations of the two.

4.1 Data set

The data set consists of11 music genres distributed evenly
among the following categories:Alternative, Country,
Easy Listening, Electronica, Jazz, Latin, Pop&Dance,
Rap&Hiphop, R&B and Soul, Reggae and Rock. The data
set consists of a training set of1098 music snippets,100
from each genre except for latin, of each30 seconds and a
separate test set of220 music snippets each of30 seconds
in length. The music snippets wereMP3 encoded music
with a bit-rate≥ 128kB down-sampled with a factor two
to 22050Hz.

4.1.1 Human evaluation

To test the integrity of the data set a human evaluation
was performed on the music snippets (at a30 second time
scale) of the test set. Each test person out of9 was asked to
classify each music snippet into one of the11 genres on a
forced choice basis. Each person evaluated33 music snip-
pets out of the220 music pieces. No information except
for the genre of the music pieces was given prior to the
test. The average accuracy of the human evaluation across
people and across genre was51.8% as opposed to ran-
dom guessing, which is∼ 9.1%. The lower/upper95%
confidence limits were46.0%/57.7% (results shown in
figure 2, upper figure). The human evaluation shows that
the common genre definition is less consistent for this data
set, however, it is still interesting to observe how an auto-
matic genre system works in this setup.

4.1.2 Results & Discussion

In each genre90 out of the100 music snippets from the
training set were randomly selected10 times to assess the
variations in the data. In each of these runs the remaining
music pieces (10 in each genre, exceptlatin) was used as a
validation set for tuning parameters such asC in the sup-
port vector classifier andσ in the RBF kernel. Optimal
model order selection for the MAR models were deter-
mined across music samples and evaluated on the valida-
tion set. A model order ofK = 3 at both2 and30 seconds
was found optimal.

The medium time scale was selected by evaluating the
performance at30 seconds using both theGMMV and the



Table 1:Description of the different combinations investigated.
All investigations with the product probability kernel,ρ = 1/2

was used.

Scheme Description

MOG,PPK
Mixture of Gaussian applied to each30

second music snippet. A PPK kernel was
generated (dimension990 × 990).

GM,PPK
A multivariate Gaussian is fitted for each
30 second music snippet. A PPK kernel
was generated.

GM,PPK,MV
A multivariate Gaussian is fitted for each
2 seconds of music data. A PPK kernel
is generated (sampling applied using only
3 samples from each music piece result-
ing in a kernel of2970 × 2970). After
classification with SVM, majority voting
is applied.

GM,CONV
A multivariate Gaussian is fitted for each
2 seconds of music data and a linear con-
volution kernel is applied (taking mean of
the parameters).

GM,MV
A multivariate Gaussian is fitted for each
2 seconds of music data and majority vot-
ing is applied to the outputs of the clas-
sifiers. For the SVM a RBF-kernel was
applied.

GM
A multivariate Gaussian is fitted for each
30 second music snippet. For the SVM a
RBF-kernel was applied.

MAR,PPK
Same as above (see GMPPK), just with a
multivariate AR process.

MAR,PPK,MV
Same as above, just with a multivariate
AR process.

MAR,PPK,CONV
Same as above, just with a multivariate
AR process.

MAR,CONV
Same as above, just with a multivariate
AR process.

MAR,MV
Same as above, just with a multivariate
AR process.

MAR
Same as above, just with a multivariate
AR process.

MARMV method explained in table 1 varying the frame-
/hop size of the medium time scale4. No big performance
fluctuation was observed in this investigation, however, a
small favor of a frame-/hop size of2/1 second was ob-
served. The various combinations investigated have been
described in more detail in table 1. For the mixture of
Gaussian model incorporated in a product probability ker-
nel (MOG,PPK) the optimal model order for each music
snippet of30 seconds were selected by varying the model
order between2 − 6 mixtures, and selecting the optimal
order from the Bayesian Information Criterion (BIC).

The average accuracy over the ten runs of the various
combinations illustrated in table 1 have been plotted in fig-
ure 2 (upper figure) with a95% binomial confidence ap-
plied to the average values. From the accuracy plot there
is a clear indication that the MAR model is performing
better than the GM for both theSVMandLNN classifier.
Performing a McNemar test, see e.g. [19], on the mixture
of Gaussian model (MOGPPK) and the Gaussian model in
a product probability kernel (GMPPK) the probability that

4The investigated frame-/hop sizes were:{1s/0.5s, 1.5s/0.75s,
2s/1s, 2.5s/1.25s, 3s/1.5s, 3.5s/1.75s}.
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Figure 2:Upper: Average accuracy at30 seconds shown with
a 95% binomial confidence interval for all investigated combi-
nations. The larger confidence interval for humans is due to only
nine persons evaluating a part of the test-data.Lower: Aver-
age accuracy with95% confidential interval of each genre at a
time scale of30 seconds using the two best performing combi-
nations,MARMV andMARPPK. The average human accuracy
in each genre is also shown with a75% confidence interval.

the two models are equal is76%, hence the hypothesis that
the models are equal cannot be rejected on a5% signifi-
cance level. This observation, together with the good per-
formance of the MAR model illustrate the importance of
the temporal information in the short time features. Even
with the various techniques applied in this setup we are
still around∼ 8% from the average human accuracy of
∼ 52% on this data set, but it is interesting to notice that
reasonable performance is achieved with fairly simple fea-
ture integration models and fusion techniques using only
the first seven MFCCs. The two best performing mod-
els are the MAR model in a product probability kernel
(MARPPK) and the MAR model modelled at2 seconds,
after which majority voting is applied on the LNN outputs
(MARMV), see figure 2 (upper). The McNemar test on
these two models showed a43% significance level thus it
can not be rejected that the two models are similar.

The advantage of the MARPPK model is that we only
need to store the model parameters at30 seconds, while



for the MARMV model a sequence of model parameters
need to be saved for each music snippet. The computa-
tional workload though, is a little larger for the MARPPK
model when compared to the MARMV model.

Figure 2 (lower) shows the accuracy on each of the
11 genres of the two models MARMV and MARPPK.
The MARPPK seem to be more robust in classifying all
genres, whereas the MARMV is much better at specific
genres such asRap & Hiphop and Reggae. However,
the MARMV does not capture any of theRock pieces,
but generally confuses them withAlternative(not shown
here). Also illustrated in this figure is the human perfor-
mance in the different classes. A confidence interval of
75% has been shown on the human performance, due to
the few test persons involved in the test. The humans are
much better at genres such asRap & HiphopandReggae
than, e.g.Alternative, which also corresponds to some of
the behavior observed with the MARMV method.

5 CONCLUSION

The purpose of this work has partly been to illustrate
the importance of modelling the temporal structure in the
short time features, and secondly how models of short
time features can be integrated into kernels, such that the
support vector machine can be applied. In the music genre
setup the best performance was achieved with the MAR
model in a product probability kernel (MARPPK) used in
combination with an SVM and with the MAR model used
in combination with majority voting (MARMV) in a lin-
ear neural network. The average accuracy of these two
methods were∼ 43% compared to a human average ac-
curacy of∼ 52%.

Even though the results presented in this article were a
music genre setup, the general idea of feature integration
and generating a kernel function, which efficiently evalu-
ates the difference between audio-models can be general-
ized and used in other fields ofMIR.
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