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Abstract

The Minimum Description Length (MDL) approach to shape modelling seeks
a compact description of a set of shapes in terms of the coordinates of marks
on the shapes. It has been shown that the mark positions resulting from this
optimisation to a large extent solve the so-called point correspondence prob-
lem: How to select points on shapes defined as curves so that the points
correspond across a data set. However, this MDL approach does not capture
important shape characteristics related to the curvature of the curves, and oc-
casionally it places marks in obvious conflict with the humannotion of point
correspondence. This paper shows how the MDL approach can befine-tuned
by adding a term to the cost function expressing the mismatchof curvature
features across the data set. The method is illustrated on silhouettes of adult
heads. The MDL method is able to solve the point correspondence problem
and a classification of the heads into male and female improves dramatically
when using the MDL-generated marks.

Keywords: point correspondence problem, minimum description length, shape
modelling, curvature, face recognition, silhouettes.

1 Introduction

1.1 The Point Correspondence Problem

This paper addresses the point correspondence problem in statistical shape modelling,
which arises when 2D or 3D shapes are generated in terms of a curve or surface with no
landmarks. The problem is how to define points all over the curves or surfaces so that the
points correspond across the set.

First we notice that the solution depends on what we mean by ”correspondence”. A
number of possible qualities of a point assignment can be enumerated:
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1. A suitable class of experts should agree with the point placements.

2. The points should lead to good performance of some subsequent processing, e.g. a
classification task based on the shape points, or a pattern recognition task e.g. an
active shape or active appearance model based on the points.

3. Cross validation: How well does a statistical shape modelbased on the defined
points describe the points on new unseen shapes? This can be measured by leave-
one-out cross validation.

4. The points should to be faithful to the shapes, i.e. the points should not ”cheat” by
avoiding some parts of the shape or by placing points too thinly, so that the details
are not reflected in the point coordinates.

5. The point selection algorithm should behave consistently in the limit of infinitely
densely placed points.

6. The algorithm should be practical, i.e. fast and with few parameters to tweak.

7. The algorithm should generalise from 2D to 3D.

8. Compactness of the shape model of the set as measured by theMDL cost function
or a similar measure.

In 2001-2003 the Minimum Description Length (MDL) approachreceived a lot of
attention [4],[5],[6],[8], because it scores well on many of the virtues above, and this
paper elaborates on the MDL framework starting by an analysis of these virtues:

Item 1 has not been addressed in the MDL literature and is the subject of the present
paper.

Item 2 was addressed by [7] who compared the use of MDL with manual marks in the
subsequent AAM analysis. The use for classification is addressed in this paper in Section
3.2.

Item 3 was examined in [4],[5],[6]. It is not easy because thenew case should be fitted
to the model, i.e. its marks should be optimised before the evaluation can be made.

Item 4 was addressed in [6] which chose a master example with fixed points. It was
further analysed in [8] which proposed adding a controllingterm to the cost imposing a
constraint on the average position of the marks.

Item 5 was addressed in [6] and [8]
Item 6 was addressed in [8] which published a fast Matlab codewith a single essential

parameter, the desired accuracy of the modelling
Item 7 was addressed in [4], [5],[6].
Item 8 is a surrogate quality and sort of self-fulfilling and was used by [4],[5],[6] to

show how much better the MDL result is compared to the manual annotation.
To summarise, items 1-3 are the fundamental goals, items 4-7are technical properties,

while 8 - as explained below - is not an actual goal.

1.2 Ockhams’s Razor

The philosophy of Ockhams’s Razor is that the simplest or most compact description is
truer. So the basic assumption is that if we select the pointson the curves so that we obtain
the simplest model, then the virtues 1-3 will be automatically fulfilled to a high degree.
High simplicity is interpreted as small description length, and the description length is



a functional of the eigenvalue spectrum. Of course one cannot prove Ockhams’s Razor;
ultimately inference is based on assumptions which cannot be proved. So item 8 should
not be regarded as a virtue - it is not the goal; it is rather themeta-principle utilised to
obtain the real goals 1-3.

This paper focuses on how well the MDL approach addresses item 1 and 2, and how
the approach can be enhanced in this respect.

1.3 The Rehabilitation of Curvature

Often experts identify points of extreme curvature as landmarks. But in the original for-
mulation of the MDL shape models, curvature was somewhat discredited as being less
”fundamental”:

Shape features (e.g. regions of high curvature) have been used to establish
point correspondences, with boundary length interpolation between these
points. Although this approach corresponds with human intuition, it is still
not clear that it is in any sense optimal. [4]

This paper reconciles the use of MDL with the use of shape features. This is done by
introducing an explicit curvature representation in the MDL formalism.

The standard MDL method seeks compact description of thepositions of the shape
points. But there is more information in a curve than its positions, and the curvatures
are proposed as another salient piece of information. By requiring the model to describe
both positions and curvatures we get a different optimum with point correspondences
that matches both positions and curvatures.

This state of affairs is not unusual in image analysis: segmentation can be intensity-
based as in AAM [1], or edge-based as in ASM [2], and the results will in general differ.
The two features can be combined in a common optimisation by adding edge features to
AAM [3]. Intensity-based methods are in general more robust, owing to their larger basin
of attraction and they are less susceptible to noise, but edge-based methods often agree
more accurately with the expert opinions.

One of the problems with curvature-defined landmarks is thatin biological shapes
these points are not always born out clearly or uniquely by the individual shape, and in
this case the landmarks must be inferred from a more global context. Thus the problem
calls for a way to gracefully combine the position-defined correspondences with curvature
signatures, which are not the same across the set, but variesaccording to a statistical
model.

2 The Model

The description of the models falls in five sections:
1. The dynamic variables - the nodes.
2. The MDL cost of the mark positions.
3. The node cost stabilising the configurations.
4. The curvature cost.
5. The optimisation strategy.



2.1 The Dynamical Variables: The Nodes

The method was described in detail in [8] and is briefly reviewed here.
The algorithm applies to a set of shapes defined as curves in 2Dspace. Shape sets

are classified into three kinds: Closed curves, open curves with fixed end-points and open
curves with free end-points. The arc length along the curve is normalised to run from
0 to 1.

We are seeking a set of 2L +1 marks on each curve, whereL is an integer, to represent
the shape. For closed shapes, the start- and end-points (number 0 and 2L) are identical.
The mark locations are specified in a hierarchical manner onL levels. For closed curves
with 65 marks, we specify on the first level the coordinates ofmark 0 and 32 by their
absolute arc length position. On the second level, mark 16 and 48 are specified by pa-
rameters between 0 and 1. For example mark 16 can be anywhere on the curve between
mark 0 and 32, corresponding to the extremes 0 and 1. On the third level the marks 8, 24,
40 and 56 are specified in between already fixed marks. This is continued until level 6 so
that all marks are specified.

For open f ixed-end curves, level 1 places only mark 32, while for openf ree-end
curves there are three marks on level 1, namely 0, 32 and 64.

The end-marks are defined by two positive parameters describing the distance of the
end-marks from the curve ends.

The initial shape can be defined by marks placed evenly in arc length by setting all
parameters toa = 0.5 (except for the end-marks). Alternatively a priori knowledge of
a good starting guess can be used. On closed curves mark 0 should be approximately
aligned initially.

To save computation, the optimisation is usually only done on a subset of marks, these
active marks are callednodes, depending on the level of detail. The optimisation adjusts
the node parameters to optimise the correspondence of all the marks over the set of ex-
amples. The parameters of the passive marks are frozen at 0.5corresponding to even
distribution in arc length.

2.2 The MDL Cost of the Mark Positions

Statistical shape analysis is performed on the mark positions in the usual way. The number
of marks isN = 2L for closed curves andN = 2L + 1 for open curves (free as well as
fixed). First the shapes are centred and aligned to the mean shape normalised to one. The
covariance matrix of the aligned shapes is formed and principal component analysis is
performed yielding the eigenvalue spectrum. The objectivefunction is defined from the
eigenvalue spectrum and a parameterλcut.

Description Length= ∑Lm

Lm = 1+ log(λm/λcut) for λm ≥ λcut

Lm = λm/λcut for λm < λcut

(1)

This cost is continuous atλcut and independent ofN in the large-N limit.

2.3 The Node Cost of the Mark Positions

Some mechanism must be introduced to prevent that marks pileup in some regions and
dilute in others. [6] suggested fixing the marks of a master example, and this works



approximately OK, but still means the master can become an outlier in the resulting sta-
tistical distribution.

A more satisfactory method was introduced in [8]. One introduces a targetatarget
i for

theaverage parameteraaverage
i for each nodei by means of a quadratic cost:

NodeCost= ∑(aaverage
i −atarget

i )2/T 2 (2)

whereT is a chosen tolerance.

2.4 The Curvature Variation Cost

Curvature is computed along the shape as follows

ti = ri+1− ri−1

ci = πN(ri+1− ri−1−2ri) · t̂i/t2
i

(3)

whereri is the 2-vector coordinates of pointi, ti is the tangent, and̂ti is the normal. This
curvature expression is independent of the pose of the shapeand it is 1 for a circle. The
curvaturesci are then smeared with a Gaussian filter, which in this study has sigma 1.5
(this should scale withN). The smeared curvature value at marki of for exampler is
denotedkir. For open curves the curvature cannot be computed at the ends, and close to
the ends it also becomes noisier due to the smearing. Therefore curvature near the ends is
not included, and for the silhouette data set below using 64+1 marks, 5 curvatures at each
end are skipped, i.e. 55 curvatures are used.

The curvatures could now be weighted with a factor and appended to the aligned
position coordinates and included in the PCA. However, a simpler method is used here.
The following extra term to the cost function is constructedto measures the compactness
of the curvature description of the set:

CurvatureCost= C
1
N

1
s ∑

i,r
(kir − kmean

i )2

kmean
i =

1
s ∑

r
kir

(4)

Heres is the number of shapes andC is a weighting factor for this term. The curvature
cost is independent of the resolution, as the other terms in the cost function.

This simple curvature model states that all shapes have the same curvature signature,
and the cost measures the deviation from the mean.

2.5 Optimisation Strategy

The iterative optimisation can then begin. The nodes, e.g. 8, are ordered according to
ascending level. Each node is associated with a step length,initially set to 0.01. These 8
step lengths are automatically decreased by the algorithm.Now the parameters a(node)
for each node and each example are probed, one at a time according to the following
pseudo-code, which runs over a number of passes, until the results has stabilised.



Loop over passes

Loop over nodes

Loop over 5 steps

Loop over examples

Loop over + and - step

Probe a(node) = a(node) +- step of example

Recompute marks of example

Do Procrustes of set

Do PCA of set

Compute new MDL

If new MDL is lower, accept and break loop

Undo a(node) change

End of +- step loop

End of example loop

If < 5% of a(node)’s changed, divide step(node) by 2

If >20% of a(node)’s changed, multiply step(node) by 2

End of step loop

End of node loop

End of passes loop

Intensity-based methods are often more robust than edge-based methods, and likewise
we expect position- based shape matching to be more robust than curvature-based. Cur-
vature is a more futile feature; a given curvature feature can sometimes be weaker or even
disappear, and curvature is more vulnerable to noise. Therefore the curvature term is used
only in the later stages of optimisation to fine-tune the result of the two other cost terms,
i.e. the following strategy is used:

1) Optimise with MDL position cost, i.e. without curvature cost.
2) Reset step lengths to 0.01.
3) Optimise with total cost including curvature cost.
4) Optionally repeat from 2 using a larger weightC on the curvature cost.

3 Results

3.1 The Silhouette Case

22 silhouettes of heads shown in Figure 2 are used as a test case. No master example is
used - instead the node cost is used (withT=0.05) so that the curves are represented by
marks, which on average are evenly distributed in arc length(see [8] for details). The start
and end locations of the shapes are also optimised, and here the node cost requires that
an average of 12% is skipped in the top, and 7% in the bottom. 18nodes parameters are
optimised, chosen more finely near the lips and the eyes.

λcut = 0.032 is used, and the first 4 passes are performed without curvature term lead-
ing to the result in Figure 1.

Then 6 passes are run with curvature cost withC = 150, and this leads to the remark-
ably accurate assignment of points seen in Figure 2. The curvatures before and after the



inclusion of curvature cost are shown in Figure 3. At convergence, MDL cost= 35.85,
curvature cost= 18.96 and node cost= 1.79. The entire optimisation takes 5 minutes on
a 1.2 GHz PC under Matlab. If the curvature cost is turned off again, and the optimi-
sation continued, the solution stays close to the solution in Figure 2 and reaches MDL
cost= 31.60, 3.13 lower than in Figure 1 - which thus is a local minimum. Hencethe
curvature cost also works as a catalyst for minimising the MDL cost.

Figure 1: MDL without curvature cost: Notice the problems atthe top of the nose, and
at the joining of the lips. The points are the extremes of the curvature of the mean shape
after convergence expressed as interpolations of the 65 shape points. In addition, the start
and end of the shapes found by the algorithm are indicated by points.

Figure 2: Result of MDL with curvature cost
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Figure 3: Smeared curvature before and after optimisation with the curvature cost. The
before-plot shows three examples with bad upper limit of thenose.

3.2 Classification of silhouettes

A quantitative comparison of marks placed by MDL and manually placed marks is per-
formed according to the following analysis. An additional 17 silhouettes are collected,
yielding in total 20 male and 19 female adults. A manual annotation of the silhouettes is
performed and an automatic MDL placement is generated.

A statistical model is made to predict the gender of the profile using logistic regres-
sion on a subset of the PCA scores as inputs, determined by backwards elimination using
a classical statistical test for significance. The p-valuesof the manual and MDL models
are determined. In addition a leave-one-out cross-validation of the regression models is
performed. The variable selection is also part of the leave-one-out process. The number
of correct classification is presented in Table 1. Finally 8 human observers are asked to
classify the silhouettes. The number of correct evaluations and standard deviation among
the 8 evaluations are recorded as shown in Table 1.

p-value Percentage correct
Manual marks 0.03 65
MDL marks 0.00003 85
Direct human scoring - 65±5

Table 1: Gender determination using various models.

From Table 1, it is seen that MDL gives significantly better models of the gender
than manual marks, and it outperforms by far the direct humanobservers. It was found
important to include the chin of the faces to obtain this goodperformance (approximately
as much as in Figure 2) - as men have larger chins. For this reason, care was taken to
ensure that the two sets of marks on average cover the same amount of the front and the
chin. The direct human scoring uses the full curve, i.e., more than covered by the marks,
but despite of this, it performs worse. Figure 4 shows a few examples of classification
using MDL annotation.
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  p(male)=0.000532

Female 
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Female 
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Male 
  p(male)=0.0456

Male 
 0.459

Male 
 0.54

Male 
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Male 
 0.994

Figure 4: Classification of silhouettes using MDL annotation. True gender andp(male)
from logistic regression model.

4 Discussion and Conclusion

The curvature at marki is defined solely fromri−1, ri andri+1 so it may seem that the
curvature is redundant information. However, it amplifies second-order derivative content
of the curve, which plays a negligible role in the PCA of the positions. So the curvature
digs out more information from the curves. Of course this should only be used when the
data is known to have sufficiently low noise to allow for this.

The method unifies the intuitive idea of matching points withhigh curvature with the
MDL approach yielding automation, robustness and accuracy. Computer vision rarely
allows for a unique and perfect solution; instead the methodseeks an optimum, which is
a trade- off between competing and frequently contradictory requirements, and controlled
by the weighting factorC of the curvature term.

The vision of the approach is that simplicity implies truth. Now we can see that this
truth depends on the input: Adding curvature explicitly changes the simplest solution. So
in order to find the truth, your representation of the data must be chosen carefully. If the
curve is noisy, curvature is not a true feature of the data. Sothe moral of the story is that
care is needed when defining the representation.

As for the faces the noise is not in the curvature but rather inlong-range x-y-positions:
Noise appears when the viewing of the head is not strictly lateral, but somewhat from
above or slightly towards frontal. Finally the distance to the head gives perspective dis-
tortions. These three degrees of freedom affects the location more than the curvatures.



The feature vector can either be position and curvature described by a common PCA,
or it can be two separate cost functions of position and curvature respectively. In the
first case the model can exploit correlations between positions and curvature and form a
compact description. In the latter case curvature and position are required to be compact
by themselves. This paper explored the division of cost intotwo terms which is easy to
control and computationally fast, and it leads to a solutionof the point correspondence
problem for the silhouette case in excellent agreement withhuman experts and based on
a principled approach. Classification of shapes was greatlyimproved using the MDL
method.

Jesper Skjerning is acknowledged for providing the first 22 silhouettes.
The Matlab software source code is available from www.imm.dtu.dk/∼hht.
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