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Abstract

Based on regression analysis this paper gives a descrip-
tion for simple image filter design. Specifically 3�3 filter
implementations of a quadratic surface, residuals from this
surface, gradients and the Laplacian are given. For the
residual a 5�5 filter is given also. It is shown that the
3�3 filter for the residual gives low values for horizontal
and vertical lines and edges as opposed to diagonal ones.
Therefore an extension including a rotated version of the
filter for the residual to ensure low values for lines and
edges in all directions is suggested. It is also shown that the
5�5 filter for the residual does not give low values for lines
and edges in any direction. The performance of six noise
models including the ones mentioned above are compared.
Based on visual inspection of results from an example using
a generated image (with all directions and many spatial fre-
quencies represented) it is concluded that if striping is to be
considered as a part of the noise, the residual from a 3�3
median filter seems best. If we are interested in a salt-and-
pepper noise estimator the proposed extension to the 3�3
filter for the residual from a quadratic surface seems best.
Simple statistics and autocorrelations in the estimated noise
images support these findings.

1. Introduction

An important task in image analysis is the estimation of
noise content. This is often done by means of methods that
estimate the noise directly from the data such as residuals
from mean or median filters. In this paper filter implemen-
tations of residuals from a quadratic surface in small (3�3
and 5�5) windows are given. Also 3�3 filters for gradients
and the Laplacian are given. A quadratic surface is cho-
sen for its expected ability to adapt to both dark and bright

lines and edges in all directions. A potential drawback of
this otherwise desired characteristic is 1) the adaption to
the horizontal (across-track) striping often present in data
from whisk-broom scanners such as the (spaceborne) Land-
sat Thematic Mapper (TM) and the Airborne Visible and
Infra-Red Imaging Spectrometer (AVIRIS), and the Digital
Airborne Imaging Spectrometer (DAIS), and 2) the adap-
tion to vertical (along-track) striping often present in data
from push-broom scanners such as the (spaceborne) SPOT
High Resolution Visible (HRV) and the Compact Airborne
Spectrographic Imager (casi), and the (airborne) Reflective
Optics System Imaging Spectrometer (ROSIS). For a de-
scription and comparison of six noise estimators including
the mean and median filters see [9]. Space limitations al-
low neither examples with real world data nor the applica-
tion of the noise models to e.g. comparisons between the
MAF/MNF transformation, [11, 4, 1, 3, 8, 6, 10, 7], and the
principal components (PC) transformation.

2. Quadratic Surface in a 3�3 window

In this section filters based on a quadratic surface in a
3�3 window are deduced. This is done by means of regres-
sion analysis.

2.1. Residuals

Consider a 3�3 univariate imageZ with the following
numbering of pixels

Z1 Z2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

whereZi denotes the pixel value at location[Xi; Yi]
T . We

wish to predict the pixel valuesZi by a quadratic surface



which is chosen for its expected ability to adapt to both dark
and bright lines and edges in all directions present in the
3�3 image

Zi = �0 + �1Xi + �2Yi + �3X
2

i + �4Y
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i + �5XiYi + "i;

i = 1; : : : ; 9

where�i are parameters to be estimated. In matrix notation
we get
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whereZ = [Z1; : : : ; Z9]
T , � = [�0; : : : ; �5]

T and" =
["1; : : : ; "9]

T . For the norm of the residuals" which have
dispersion� we get

jj"jj2 = "
T
�
�1
" = (Z �X�)T��1(Z �X�)

which is a quadratic function in�. To minimise we differ-
entiate and set the derivative to zero
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If we think of the 3�3 image as a window moving over a
larger image to make local estimates of a quadratic surface
and consider the center pixelZ5 as the origin of a coordinate
system that moves with the window, we get

Z5 =
�
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We see that with fixed�we can implement the quadratic
surface estimator for the center pixel as a filter: multiply
the first row of(XT

�
�1
X)�1X

T
�
�1 with Z to obtain

�0. With � = �2I where�2 is the variance of"i andI is
the identity matrix we get (Gaussian or other weights can
be applied through another choice of�)
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In this case we are interested in�0 so we need the first
row of (XT

X)�1X
T only (below we shall need more

rows)
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Because of the special structure of(XT
X)�1 (the three

zeros in columns two, three and six of the first row) and
X

T (rows two, three and six corresponding to theX-, Y -
andXY -terms in the estimator)�0 corresponding to the first
row of (XT

X)�1X
T is independent of theX-, Y - and

XY -terms.
The estimator forZ5 which we callẐ5 is
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or written as a filter forZ
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For the residual"5 = Z5 � Ẑ5 we get
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which is separable. We note that the weights add to zero
and that all rows and columns have weights that add to zero.
Hence horizontal and vertical ideal one-pixel wide lines and
ideal edges have residuals equal to zero. Diagonal ones do
not. The filter for the residual is proportional to the filter
postulated in [5]. The filter weights are independent of the
chosen coordinate system.



2.2. Gradients

To obtain gradients in the column and row directions we
find

@Z5

@X5

= �1 + 2�3X5 + �5Y5 = �1

@Z5

@Y5
= �2 + 2�4Y5 + �5X5 = �2:

From equation 1 we get the filters
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2.3. The Laplacian

To obtain the Laplacian we find
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= 2�4 and r2 = 2(�3 + �4):

From equation 1 we get the filter
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3. Quadratic Surface in a 5�5 window

As in the 3�3 case for a 5�5 window with this pixel
numbering

Z1 Z2 Z3 Z4 Z5

Z6 Z7 Z8 Z9 Z10

Z11 Z12 Z13 Z14 Z15

Z16 Z17 Z18 Z19 Z20

Z21 Z22 Z23 Z24 Z25

we get for the center pixelZ13 = �0 + "13 with Z =
[Z1; : : : ; Z25]

T , � = [�0; : : : ; �5]
T = (XT
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is now 25 rows by 6 columns)," = ["1; : : : ; "25]
T .

For the residual"13 = Z13 � Ẑ13 we get
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:

We note that the weights add to zero and that no rows or
columns have weights that add to zero. We see that we do
not obtain the same desired filter characteristics as with the
3�3 filter.

In a similar fashion we could obtain filters for gradients
etc. with other filter sizes.

4. An Extension to the 3�3 filter

In the 3�3 case we saw that horizontal and vertical lines
and edges have low residuals as opposed to diagonal ones.
Therefore the following extension to the simple 3�3 filter
is suggested: first apply the simple filter derived above, then
apply the same filter rotated 45� and use the residual closer
to zero. This ensures low residuals for both horizontal, ver-
tical and diagonal lines and edges.

5. Example

An example with a generated image is shown. The gen-
erated image features all directions and many spatial fre-
quencies. Results from six noise estimators are shown,
namely

1. simple differencing with the immediate north and east
neighbours corresponding to this 2�2 filter (with the
center pixel placed in the lower left corner)

1

2

�1 0
2 �1

;

this is used in [2] which is a commercial software
package that offers an MNF transformation;

2. residual from a 3�3 mean filter

1

9

�1 �1 �1
�1 8 �1
�1 �1 �1

;

it is seen that this filter results in high residuals for lines
and edges in all directions;

3. residual from a 3�3 median filter;

4. residual from the 3�3 filter for a quadratic surface de-
rived above
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;

5. residual from the 3�3 filter for a quadratic surface de-
rived above rotated 45�

1

9

�2 1 �2
1 4 1

�2 1 �2
;

it is seen that this filter results in low residuals for di-
agonal lines and edges;



6. residual from the extended 3�3 filter for a quadratic
surface proposed in this paper (i.e., choose the residual
closer to 0 from the two filters mentioned immediately
above).

The generated 256�256 image which features all direc-
tions and many spatial frequencies is shown in Figure 1.
The left column shows the generated image itself (top)
and the generated image with pseudo-random, indepen-
dent, zero-mean, Gaussian noise with a signal-to-noise ratio
equal to one added (bottom). The right column shows the
corresponding noise images as estimated by means of the
residual from a quadratic surface in a 5�5 window. Table 1
shows simple statistics and autocorrelations between E-W,
N-S, SW-NE, SE-NW neighbours and their mean value in
these images.

Figures 2 and 3 show noise as estimated from the six 3�3
filters given above stretched linearly between minimum and
maximum, Figure 2 on the image in Figure 1 top-left, and
Figure 3 on the image in Figure 1 bottom-left. Tables 2 and
3 show simple statistics and autocorrelations between E-W,
N-S, SW-NE, SE-NW neighbours and their mean value in
the images in Figures 2 and 3, respectively.

6. Discussion and Conclusions

Figure 1 shows that the 5�5 quadratic surface residual
filter does not give low values in any direction for interme-
diate and high spatial frequencies. Figures 2 and 3 show
that 1) noise model 1 leaves more visual structure than the
other noise models, noise estimated from models 1, 2, 3 and
5 contain horizontal and vertical striping (which for model
5 complies with the filter weights), noise estimated from
model 4 contains diagonal structure for intermediate and
high spatial frequencies, noise estimated from model 5 con-
tains low and intermediate spatial frequency diagonal struc-
ture, and noise estimated from model 6 contains intermedi-
ate spatial frequency diagonal structure; 2) for noise model
4 we get low estimates in the E-W and N-S directions for
all spatial frequencies also with severe noise present (the
signal-to-noise ratio is one); 3) for noise model 5 we get
low estimates in the SW-NE and SE-NW directions for high
spatial frequencies; and 4) for noise model 6 we get a com-
bination of the characteristics of models 4 and 5.

Remarks based on inspection are supported by the sim-
ple statistics and autocorrelations calculated. If striping is
to be considered as a part of the noise, model 3 seems to
be the best noise detector since it picks up both salt-and-
pepper noise and striping in all directions at many spatial
frequencies. The suggested noise model 6 seems to be the
best salt-and-pepper noise detector.
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Table 1. Generated image, top: simple statis-
tics, bottom: autocorrelations between E-
W, N-S, SW-NE, SE-NW neighbours and their
mean value.

Image Mean Stddev Min Max
top-left –0.00 0.71 –1.00 1.00
top-right –0.00 0.56 –1.32 1.31
bot-left –0.00 1.00 –3.69 3.65
bot-right –0.00 0.85 –3.58 3.70

Image E-W N-S SW-NE SE-NW Mean
top-left 0.37 0.37 0.14 0.14 0.25
top-right 0.07 0.07 –0.06 –0.06 0.01
bot-left 0.18 0.19 0.07 0.07 0.13
bot-right –0.08 –0.07 –0.11 –0.11 –0.09

Table 2. Generated image noise estimates,
top: simple statistics, bottom: autocorre-
lations between E-W, N-S, SW-NE, SE-NW
neighbours and their mean value.

Model Mean Stddev Min Max
1 0.00 0.64 –1.76 1.76
2 –0.00 0.51 –1.05 1.05
3 –0.00 0.47 –1.51 1.40
4 –0.00 0.20 –0.97 1.05
5 0.00 0.38 –1.03 1.03
6 0.00 0.14 –0.50 0.49

Model E-W N-S SW-NE SE-NW Mean
1 0.12 0.12 0.21 –0.23 0.06
2 0.15 0.15 –0.08 –0.08 0.04
3 0.12 0.12 –0.10 –0.10 0.01
4 –0.19 –0.19 0.04 0.04 –0.08
5 0.29 0.29 –0.12 –0.12 0.09
6 0.00 0.00 –0.06 –0.06 –0.03

Table 3. Generated image (with noise) noise
estimates, top: simple statistics, bottom: au-
tocorrelations between E-W, N-S, SW-NE, SE-
NW neighbours and their mean value.

Model Mean Stddev Min Max
1 0.00 1.08 –4.59 4.46
2 –0.00 0.84 –3.47 3.70
3 0.00 0.85 –3.83 4.11
4 0.00 0.51 –2.28 2.17
5 0.00 0.60 –2.53 2.22
6 0.00 0.33 –1.65 1.80

Model E-W N-S SW-NE SE-NW Mean

1 –0.17 –0.17 0.19 –0.08 –0.06
2 –0.05 –0.04 –0.15 –0.15 –0.10
3 –0.03 –0.03 –0.12 –0.12 –0.07
4 –0.59 –0.59 0.38 0.38 –0.11
5 0.11 0.12 –0.27 –0.28 –0.08
6 –0.11 –0.10 0.02 0.02 –0.04

Figure 1. Generated image (top-left), corre-
sponding 5 �5 noise image (top-right), gen-
erated image with noise added (bottom-left),
corresponding 5 �5 noise image (bottom-
right), all with linear stretching between min-
imum and maximum.



Figure 2. Generated - row-wise, noise as estimated from the six models mentioned above, linear
stretching between minimum and maximum.

Figure 3. Generated with noise - row-wise, noise as estimated from the six models mentioned above,
linear stretching between minimum and maximum.


