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Abstract

Given a sparse set of feature matches, we want to
compute an interpolated dense displacement map. The
application may be stereo disparity computation, ow
computation, or non-rigid medical registration. Also
estimation of missing image data, may be phrased
in this framework. Since the features often are very
sparse, the interpolation model becomes crucial. We
show that a maximum likelihood estimation based on
the covariance properties (Kriging) show properties
more expedient than methods such as Gaussian in-
terpolation or Tikhonov regularizations, also includ-
ing scale-selection. The computational complexities
are identical. We apply the maximum likelihood in-
terpolation to growth analysis of the mandibular bone.
Here, the features used are the crest-lines of the object
surface.

1 Introduction

Given images of an object and a deformed version
of the object we wish to compute the displacement
�eld. The overall strategy is to extract features [8],
match these, and then interpolate the displacement
�eld. Since feature extraction and matching is not
ideal operations, only a very sparse set of reliable fea-
tures may be extracted and matched. In our current
application to 3D human bone-growth analysis, we use
the crest-lines of the surface as features [12]. In this
paper, we assume the features and matches are given,
and examine the interpolation problem. Since the im-
ages are very large 3D images, we only consider direct
methods, and not more computational heavy methods
such as those based on functional minimisation [2, 9].

In the following we describe methods such as Gaus-
sian interpolation [6], Tikhonov regularizations [13, 5],
kriging [4], and an adaptive scheme, and describe their
di�erent properties. Finally, we apply the kriging to
the growth analysis on synthetic 3D images of cubes,
and the mandibular bone obtained from 3D CT scans
of the same patient at di�erent time instances [1].

2 Displacement interpolation
The values of a displacement �eld f : IRD 7! IRD is

provided by feature matches in a sparse set of points
~x = [x1; x2; : : : ; xn] as g(~x). In the following, we keep
D = 1 for notational simplicity, whereas D = 3 in the
�nal computational examples. We want the following
properties of the interpolation scheme:

� (i) Approximation criterion. f must approxi-
mate the data values well since localisation of the
features are assumed relatively precise.

� (ii) Regularity criterion. In regions of missing
features a regular solution must be created. In
general, we will require smoothness (C1), but
only C1 and visual regularity (no extra structure
introduced).

� (iii) Asymptotic behaviour. The data must be
able of shadowing each other. That is, in a given
direction only the nearest data must be weighted.

� (iv) Maximum principle. The solution must
not extent the solution to values larger than the
largest data value or smaller that the smallest
data value.

Among the above mentioned interpolation methods,
we analyse for these criteria.

2.1 Tikhonov regularization or thin-plate
splines

A displacement �eld can be reconstructed as a Max-
imum A Posteriori (MAP) estimate given noise esti-
mates and a prior of displacement �elds. Especially,
when the prior is an uncorrelated Gaussian in the dis-
placement gradient magnitude, we obtain Tikhonov
regularization [10]:

f = arg minE[f ];

where

E[f ] =
X
i

(g(xi)� f(xi))
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The solution may be obtained as [11]:

f(x) =
w(x; ~x) � g(~x)
w(x; ~x) �~1

where g(~x) is a vector containing the data values in
the data points x arranged in the vector ~x, ~1 is a vec-
tor containing 1's, and w(x; ~x) is a vector containing

values wi(x) = e�
jx�xij

� . This is also known as the un-
biased estimation of Thin-plate splines [3]. The essen-
tial part here is the shape of the �lter (e�jxj) and that
this may be perceived as a standard �ltering of the un-
evenly distributed data points with a re-normalisation
so that the total �lter weight becomes unity. This
method does not comply with the approximation crite-
rion and the asymptotic behaviour, but does ful�l the
maximum principle. The solutions are not in a mathe-
matical sense smooth, but only C1, which is su�cient
for our applications..

2.2 Gaussian interpolation

Knutson and Westin [6] proposed a similar �ltering,

but based on Gaussian �lters: wi(x) = e�
(x�xi)

2

2�2 . This
�lter shows di�erent properties than the Tikhonov �l-
ter, especially far from data points, which is interest-
ing in the case of very sparse data. It has the required
asymptotic behaviour. A theoretical di�erence is that
Tikhonov regularizations yields C1 functions while the
Gaussian �lter yields C1 functions.

The parameter � yields in both methods a trade o�
between over-smoothing in regions where many data
are given (violation of (i)) and making smooth solu-
tions in areas where only few data are given (property
(ii)).

2.3 Adaptive Gaussian �ltering

A solution to the violations in the normalised �l-
terings may be a local adaption of the scale param-
eter to the distance of the nearest features: �(x) =p
Distance. This, however, has the inexpedient prop-

erty that data points cannot \shadow" each other.
That is, far from a step edge, the solution will take
an intermediate value, thus we have violated property
(iii). Furthermore, in vast regions, structure may be
introduced (violation of (ii)). Other principles of se-
lecting the scale may exhibit di�erent properties.

2.4 Kriging or Gaussian regression

The basic problem of the normalised �ltering
method is that the belief in the smoothness of the
solution and the belief in the accuracy of the data val-
ues are merged into one smoothness parameter �. We
can phrase the statistical inference problem a little dif-
ferently and then separate these two parameters, thus
yielding kriging [4]:

Assume, instead of a prior on the derivative, that
the covariance function C(x; x0) is known. The co-
variance function expresses the covariance of the data
values in two points x and x0. Typically the closer
points are, the more correlated their data values are
assumed to be. An interesting aspect is that if this
covariance de�nes a distribution of functions, and

if C(x; x0) = e
�
�
jx�x0j

�

��
, some well-known function

classes appear with probability 1, for di�erent choices
of �: � = 0 yields white noise, � 2]0; 2[ yields frac-
tional Brownian motions with � = 1 as the classi-
cal Brownian motion [7], while � = 2 (the Gaussian)
yields C1 functions.

Given the covariance function C(x; x0) and an ex-
pression of the belief in data as the assumed variance
of data values r2, we can make a maximum likelihood
estimation of f(x) as [14]

f(x) =
w(x; ~x)Q�1g(~x)

w(x; ~x)Q�1~1

where w(x; ~x) is a vector containing wi = C(x; xi), and
Q is a matrix containing Qij = C(x1; x2)+ r2�ij . The
intuitive interpretation of the introduction of Q�1 is
that, prior to the regularizations based on the covari-
ance function, an inverse �ltering is performed to make
the samples uncorrelated. In terms of scale-space we
might say that we have data given at some scale �. To
interpolate we �rst perform a deblurring to scale zero,
interpolate, and then blur back to the current scale.
The solution has the same regularity properties as the
corresponding normalised �ltering (� = 1, thin-plate
splines are C1 and � = 2, normalised Gaussian �lter-
ing is C1). Varying the parameter r yields di�erent
properties of the solutions, and in the limit r 7! 1,
we are back to normalised �ltering.

3 Interpolation properties
The properties of the di�erent interpolation models

are noted in the �gure captions below. Below we give
a table indicating properties. Notice that all meth-
ods except the adaptive scale method may be formu-
lated as Kriging. If � = 1 and r2 = 1 Kriging yields
Tikhonov regularization, while � = 2 and r2 = 1
yields Gaussian interpolation.

Method (i) (ii) (iii) (iv)
� = 1; r2 = 0 + C1 + +
� = 1; r2 = 1 - C1 - +
� = 1; r2 =1 - C1 - +
� = 2; r2 = 0 + C1 - -
� = 2; r2 = 1 - C1 - -
� = 2; r2 =1 - C1 + +
Adaptive scale + C1 - +



Figure 1: Adaptive �ltering, � = 2. This violates the principle
of asymptotic behaviour, only the closest value should be used.
Furthermore notice the bump in the middle; extra structure is
introduced thus violating the regularity criterion.

Figure 2: Crest-lines and their matchings on two cubes of
same orientation and position, but with a relative size change of
1/3. Results are obtained automatically. Notice the erroneous
matching so that only the central part of the crest-lines at the
larger cube is used. This is made deliberately so as to expose
the interpolation properties.

4 Summary

We are given very reliable, but also very sparse fea-
ture matches. Based upon this situation we have for-
mulated 4 criteria for a displacement interpolation.
Among standard regularization schemes they cannot
be ful�lled simultaneously. Using a formulation of
the interpolation problem normally applied in geo-
statistics, Kriging, we may ful�l all criteria simulta-
neously, having only one free scale parameter. This
has been applied to 3D growth analysis based upon
crest-line matches.
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Figure 3: Kriging, � = 1, � = 50, from left to right r2 = 0, r2 = 1, r2 � 1. The vertical lines corresponds to data points with
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Figure 4: Kriging, � = 1, � = 5, from left to right r2 = 0, r2 = 1, r2 � 1. This �gure is identical to the above with the exception
of a smaller scale, which makes the solution go towards a step function.

Figure 5: Kriging, � = 2, � = 50, from left to right r2 = 0, r2 = 1, r2 � 1. Here, the left violates the maximum principle and the
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Figure 6: Kriging, � = 2, � = 5, from left to right r2 = 0, r2 = 1, r2 � 1. The same as the above, but width smaller scale. Here
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making the above criteria violations smaller.
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� = 2, r2 � 1 (right). The leftmost corresponds to the only interpolation not violating any criteria. The central does not satisfy the
maximum principle, and the asymptotic behaviour, while the rightmost does not satisfy approximation criterion, hence the resulting
cube is too small.
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