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2 1 Introdutionwhih is found to best trade o� various properties suh as estimation auray, easeof implementation, numerial robustness, and omputational burden. Up to now theextended Kalman �lter (EKF) [GKN+74℄, [May82℄, [Lew86℄ has unquestionably beenthe dominating state estimation tehnique. The EKF is based on �rst-order Taylorapproximations of state transition and observation equations about the estimatedstate trajetory. Appliation of the �lter is therefore ontingent upon the assumptionthat the required derivatives exist and an be obtained with a reasonable e�ort.The Taylor linearization provides an insu�iently aurate representation in manyases, and signi�ant bias, or even onvergene problems, are ommonly enountereddue to the overly rude approximation. Several estimation tehniques are availablethat are more sophistiated than the EKF, e.g., re-iteration, higher order �lters,and statistial linearization [GKN+74℄, [May82℄. The more advaned tehniquesgenerally improve estimation auray, but it happens at the expense of a furtherompliation in implementation and an inreased omputational burden.In this paper we propose a new set of estimators, whih are based on polynomialapproximations of the nonlinear transformations obtained with partiular multidi-mensional extension of Stirling's interpolation formula [Ste27℄, [Frö70℄. Conep-tually, the priniple underlying the new �lters resembles that of the EKF and itshigher order relatives. The implementation is, however, quite di�erent. In ontrastto the Taylor approximation no derivatives are needed in the interpolation formula;only funtion evaluations. This aommodates easy implementation of the �lters,and it enables state estimation even when there are singular points in whih thederivatives are unde�ned. Although the implementation is less ompliated thanfor �lters based on Taylor approximations, the omputational burden will often beomparable in size or only slightly bigger. Additionally, under ertain assumptionson the distribution of the estimation errors, the new �lters provide a similar or evensuperior performane.Reently there has been interesting developments in derivative-free state estimationtehniques [JU94℄, [JUDW95℄, [JU97℄, [Sh97℄. It is shown in the paper that these�lters our as speial ases of �lters based on the interpolation formula. The �lterdesribed in [Sh97℄ orresponds to a suboptimal implementation of the �lter derivedusing �rst-order approximations while the �lter proposed in [JU94℄, [JUDW95℄ hasthe same a priori state estimate and a related (but less aurate) ovariane estimateas the �lter derived using seond-order approximations. Due to these relationshipswe have found it natural to adopt some of the ideas on pratial implementationsuggested in [Sh97℄ and to analyze the performane of the �lters by using the sameapproah as in [JU94℄.The paper is organized as follows. First we introdue Stirling's interpolation formulaand disuss under whih irumstanes it an provide more aurate approximationsthan Taylor's formula. A multidimensional extension of the interpolation formulais made, and it is disussed how it an be used for approximation of mean andovariane of stohasti variables generated by nonlinear transformation of stohastivariables with known mean and ovariane. Based on the obtained results, two new



3�lters are proposed. The DD1 �lter is based on �rst-order approximations and theDD2 �lter is based on seond-order approximations. The performane of the new�lters are demonstrated on a benhmark example. Readers only interested in theatual �lter implementation may hoose to skip Setion 2 and Setion 3.2 Power Series RevisitedThis setion deals with polynomial approximations of arbitrary funtions. In par-tiular we will ompare approximations obtained with Taylor's formula, whih om-monly underlies �lters for nonlinear systems, with approximations obtained with aninterpolation formula. Initially, funtions of only one variable will be onsidered.Later the treatment is extended to multiple dimensions.If the funtion f is analyti we an represent it by its Taylor series expanded aboutsome point, x = x̄

f(x) = f(x̄) + f ′(x̄)(x − x̄) +
f ′′(x̄)

2!
(x − x̄)2 +

f (3)(x̄)

3!
(x − x̄)3 + . . . (1)A ommonly used approximation is obtained by trunating the series after a �nitenumber of terms. As more terms are inluded, a loally better approximation isahieved sine the remainder (the sum of high-order terms) onverges as O(|x−x̄|n+1)(this holds even when f is not analyti). The priniple of the Taylor series is thatthe approximation inherits still more harateristis of the true funtion in onepartiular point as the number of terms inreases. Although the assumption that

f is analyti implies that any desired auray an be ahieved provided that asu�ient number of terms are retained, it is in general advied to use a trunatedseries only in the proximity of the expansion point unless the remainder term hasbeen properly analyzed.Several interpolation formulas are available for deriving polynomial approximationsthat are to be used over an interval. Most of these do not require derivatives but areinstead based on a �nite number of evaluations of the funtion. Usually it is thereforemuh simpler to derive approximations with these formulas. Several textbooks areavailable that deal with interpolation, e.g., [DB74℄, [Ste27℄, [Frö70℄. In the followingwe will onsider one partiular formula, namely Stirling's interpolation formula. Letthe operators δ and µ perform the following operations (h denotes a seleted intervallength)
δf(x) = f(x +

h

2
) − f(x − h

2
) (2)

µf(x) =
1

2

(

f(x +
h

2
) + f(x − h

2
)

)

. (3)With these operators Stirling's interpolation formula used around the point x = x̄



4 2 Power Series Revisitedan be expressed as [Frö70℄
f(x) = f(x̄ + ph) = f(x̄) + pµδf(x̄) + p2

2!
δ2f(x̄) +

(

p + 1
3

)

µδ3f(x̄)

+p2(p2−1)
4!

δ4f(x̄) +

(

p + 2
5

)

µδ5f(x̄) + . . .
(4)Commonly, −1 < p < 1, but in our appliation we will allow oasional use outsidethis interval as we shall see in later setions.In this paper the attention is restrited to �rst and seond-order polynomial approx-imations. The formula (4) is in this ase partiularly simple

f(x) ≈ f(x̄) + f ′
DD(x̄)(x − x̄) +

f ′′
DD(x̄)

2!
(x − x̄)2 , (5)where

f ′
DD(x̄) =

f(x̄ + h) − f(x̄ − h)

2h
f ′′

DD(x̄) =
f(x̄ + h) + f(x̄ − h) − 2f(x̄)

h2
. (6)One an be interpret (5) as a Taylor approximation with the derivatives replaed byentral divided di�erenes. To assess the auray of the approximation it is usefulto insert the full Taylor series (1) in plae of f(x̄+h) and f(x̄−h). We must assumethat f is analyti to arry out this analysis

f(x̄) + f ′
DD(x̄)(x − x̄) +

f ′′
DD(x̄)

2!
(x − x̄)2 =

f(x̄) + f ′(x̄)(x − x̄) + f ′′(x̄)
2!

(x − x̄)2

+
(

f(3)(x̄)
3!

h2 + f(5)(x̄)
5!

h4 + . . .
)

(x − x̄) +
(

f(4)(x̄)
4!

h2 + f(6)(x̄)
6!

h4 + . . .
)

(x − x̄)2 .(7)The �rst three terms on the right hand side of (7) are independent of the intervallength, h, and are reognized as the �rst three terms of the Taylor series expansionof f . The �remainder� term given by the di�erene between (7) and the seond-orderTaylor approximation is ontrolled by h and will in general deviate from the higherorder terms of the Taylor series expansion of f . As we shall see in the followingsetion, the possibility of ontrolling the remainder term is what makes the inter-polation formula more attrative than Taylor approximation in some appliations.Certain interval lengths an ensure that the remainder term in some sense will belose to the higher order terms of the full Taylor series. Fig. 1 shows a typialexample on the di�erene between a Taylor approximation and an approximationobtained with the interpolation formula.We will now proeed with the multidimensional ase. Let x be a vetor, x ∈ Rn, andlet y = f(x) be a vetor funtion. There are di�erent ways in whih the interpolation
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Figure 1. Comparison of a seond-order polynomial approximation obtained withTaylor's formula and one obtained with the interpolation formula. The expansionpoint is x̄ = 2.5 and for the interpolation formula the interval length was seleted to
h = 3.5. The solid line shows the true funtion, the dot-dashed line is the seond-order Taylor approximation while the dashed line is the approximation obtained withthe interpolation formula. Obviously, the Taylor polynomial is a better approxima-tion near the expansion point while further away the error is muh higher than forthe approximation obtained with the interpolation formula.formula an be extended to multiple dimensions but before addressing this reall �rstthat the multidimensional Taylor series expansion of f about x = x̄ is given by

y = f(x̄ + ∆x) =
∞
∑

i=0

1

i!
Di

∆xf

= f(x̄) + D∆xf + 1
2!
D2

∆xf + 1
3!
D3

∆xf + . . .

(8)where the operator desription employed by [JU94℄ has been adopted:
Di

∆xf =

(

∆x1
∂

∂x1

+ ∆x2
∂

∂x2

+ · · · + ∆xn

∂

∂xn

)i

f(x)

∣

∣

∣

∣

∣

x=x̄

. (9)The operators an also be written:
D∆xf =

(

n
∑

p=1

∆xp

∂

∂xp

)

f(x)

∣

∣

∣

∣

∣

x=x̄

D2
∆xf =

(

n
∑

p=1

n
∑

q=1

∆xp∆xq

∂2

∂xp∂xq

)

f(x)

∣

∣

∣

∣

∣

x=x̄

(10)...



6 3 Approximation of Mean and CovarianeBy again restriting our attention to seond-order polynomials we will write themultidimensional interpolation formula as
y ≈ f(x̄) + D̃∆xf +

1

2!
D̃2

∆xf . (11)As the divided di�erene operators, D̃∆x, D̃
2
∆x, we will use

D̃∆xf =
1

h

(

n
∑

p=1

∆xpµpδp

)

f(x̄) (12)
D̃2

∆xf =
1

h2

(

n
∑

p=1

(∆xp)
2δ2

p +
n
∑

p=1

n
∑

q=1,q 6=p

∆xp∆xq(µpδp)(µqδq)

)

f(x̄) , (13)where δp has been introdued as the �partial� di�erene operator
δpf(x̄) = f(x̄ +

h

2
ep) − f(x̄ − h

2
ep) , (14)and ep is the pth unit vetor. A similar extension was made of the average operator

µ.The formula (11) is just one example of a multidimensional extension of the in-terpolation formula. To illustrate how others an be derived, the following lineartransformation of x is introdued:
z = S−1x , (15)and the funtion f̃ is de�ned bỹ

f(z) ≡ f(Sz) = f(x) . (16)While the Taylor approximation of f̃ is idential to that of f , it is obviously not thease that the multidimensional interpolation formula (11) yields the same results for
f and f̃ . Sine

2µpδpf̃(z̄) = f̃(z̄ + hep) − f̃(z̄ − hep) = f(x̄ + hsp) − f(x̄ − hsp) , (17)where sp denotes the pth olumn of S, D̃∆xf and D̃2
∆xf will learly deviate from

D̃∆zf̃ and D̃2
∆zf̃ .In the following setion we are going to use the interpolation formula in a stohastiframework. In this ase a partiularly useful hoie of transformation matrix (S)and interval length (h) exists.3 Approximation of Mean and CovarianeLet x be a vetor of stohasti variables for whih the expetation and ovarianeare available

x̄ = E[x], Px = E
[

(x − x̄)(x − x̄)T
]

. (18)



3.1 A First-order Approximation 7We would now like to determine
ȳT = E[f(x)] (19)

(Py)T = E
[

(f(x) − ȳT )(f(x) − ȳT )T
] (20)

(Pxy)T = E
[

(x − x̄)(f(x) − ȳT )T
]

. (21)As f is nonlinear we annot rely on being able to alulate the exat expetations.Instead it is ustomary to insert a �rst or seond-order polynomial approximation inplae of f before taking the expetations. In this setion we will fous on estimatesof the expetations obtained using the interpolation formula in (11) for approxima-tion of f . Additionally, we shall �nd it partiularly useful to work with a lineartransformation of x as desribed above. The transformation matrix is seleted as asquare Cholesky fator of the ovariane matrix [Sh97℄:
z = S−1

x x, Px = SxS
T
x . (22)This transformation is sometimes said to perform a stohasti deoupling of thevariables in x as the elements of z beome mutually unorrelated (and eah withunity variane):

E
[

(z − E[z])(z − E[z])T
]

= I . (23)We shall in the following use a rather wide interpretation of the so-alled Choleskyfatorization. For any symmetri matrix produt M = SST we will refer to S asa Cholesky fator. Thus, the Cholesky fator need not be square and triangular.However, most often a triangular Cholesky fator is onsidered as omputationallye�ient methods are available for performing suh fatorizations.In the following subsetions we shall work with f̃(z) diretly as this is most onve-nient. A few assumptions on f̃ (f) and z will be invoked. f̃ must in priniple bede�ned for all z ∈ Rn and the elements of ∆z = z − E[∆z] are assumed to belongto the same (zero mean) distribution. In Setion 3.2 it is additionally assumed that
∆z is Gaussian. For analysis purposes it is in Setion 3.3 assumed that f̃ is analytiand that ∆z is Gaussian. It should be stressed, however, that it is not neessary for
f̃ to be analyti to apply the estimators.3.1 A First-order ApproximationFirst estimates of mean and ovariane will be derived by replaing the funtion f̃by a �rst-order approximation

y = f̃(z̄ + ∆z) ≈ f̃(z̄) + D̃∆zf̃ . (24)As the expetation E[∆z] = 0 by de�nition, the expetation of (24) is
ȳ = E[f̃(z̄) + D̃∆zf̃ ] = f̃(z̄) = f(x̄) (25)



8 3 Approximation of Mean and CovarianeAn estimate of the ovariane (20) is derived along the same lines. As before,the �rst-order moments an be negleted sine ∆z is zero mean. Moreover, theross-terms evaluate to zero as z has been generated so that the ross-orrelations
E[∆zi∆zj ] = 0, i 6= j.

Py = E

[

(

f̃(z̄) + D̃∆zf̃ − f̃(z̄)
)(

f̃(z̄) + D̃∆zf̃ − f̃(z̄)
)T
]

= E

[

(

D̃∆zf̃(z)
)(

D̃∆zf̃(z)
)T
]

= E





(

n
∑

p=1

∆zpµpδpf̃(z̄)

)(

n
∑

p=1

∆zpµpδpf̃(z)

)T




= σ2

n
∑

p=1

(

µpδpf̃(z̄)
)(

µpδpf̃(z)
)T

=
1

4h2

n
∑

p=1

(

f̃(z̄ + hep) − f̃(z̄ − hep)
)(

f̃(z̄ + hep) − f̃(z̄ − hep)
)T

. (26)We shall denote the ith moment of an arbitrary element in ∆z by σi. As all elementsare assumed to be equally distributed their moments are obviously idential. Asdisussed above, σ2 = 1. Higher moments depend on the distribution of ∆z.Realling that f̃(z̄ ± hep) = f(x̄± hsx,p), where sx,p is the pth olumn of the squareCholesky fator of the ovariane matrix Sx, (26) an also be written
Py =

1

4h2

n
∑

p=1

(f(x̄ + hsx,p) − f(x̄ − hsx,p)) (f(x̄ + hsx,p) − f(x̄ − hsx,p))
T (27)The estimate of the ross-ovariane matrix an be derived a long the same lines

Pxy = E

[

(x − x̄)
(

f̃(z̄) + D̃∆zf̃ − f̃(z̄)
)T
]

= E

[

(Sx∆z)
(

D̃∆zf̃
)T
]

= E





n
∑

p=1

sx,p∆zp

(

n
∑

p=1

∆zpµpδpf̃(z)

)T




= σ2

[

n
∑

p=1

sx,p

(

µpδpf̃(z)
)T

]

=
1

2h

n
∑

p=1

sx,p

(

f̃(z̄ + hep) − f̃(z̄ − hep)
)T

, (28)



3.2 A Seond-order Approximation 9whih we an also write
Pxy = 1

2h

∑n
p=1 sx,p (f(x̄ + hsx,p) − f(x̄ − hsx,p))

T (29)It is not lear from the derivations how the interval length, h, should be seleted.The mean estimate is independent of the parameter while it has an obvious impaton the estimate of the ovariane matries. In Setion 3.3 overing the analysis ofthe estimates it is shown that the optimal setting of h is ditated by the distributionof ∆z. It turns out that h2 should equal the kurtosis of the distribution, h2 = σ4.3.2 A Seond-order ApproximationMore aurate estimates of mean and ovariane of f̃ an be obtained with a limitedextra e�ort by approximating the funtion with a seond-order polynomial derivedwith the interpolation formula:
y ≈ f̃(z̄) + D̃∆zf̃ +

1

2
D̃2

∆zf̃

= f̃(z̄) +
1

h

(

n
∑

p=1

∆zpµpδp

)

f̃(z̄)

+
1

2h2

(

n
∑

p=1

(∆zp)
2δ2

p +

n
∑

p=1

n
∑

q=1,q 6=p

∆zp∆zq(µpδp)(µqδq)

)

f̃(z̄) . (30)To obtain useful results the assumptions on ∆z will now be slightly more restritiveas we demand that it is Gaussian. Sine ∆z is zero mean and the elements areunorrelated, this new assumption implies that the elements are independent andthe distribution is symmetri. The assumption is not needed for derivation of themean estimate, but it is important when deriving the improved ovariane estimate.Utilizing that ∆z is zero mean and its elements are unorrelated, the expetation of
f̃ an be estimated by

ȳ = E

[

f̃(z̄) +
1

2

(

n
∑

p=1

(∆zp)
2δ2

p

)

f̃(z̄)

]

= f̃(z̄) +
σ2

2

n
∑

p=1

δ2
p f̃(z̄)

= f̃(z̄) +
1

2h2

n
∑

p=1

(

f̃(z̄ + hep) + f̃(z̄ − hep)
)

− n

h2
f̃(z̄)

=
h2 − n

h2
f̃(z̄) +

1

2h2

n
∑

p=1

(

f̃(z̄ + hep) + f̃(z̄ − hep)
) (31)



10 3 Approximation of Mean and Covariane
m

ȳ =
h2 − n

h2
f(x̄) +

1

2h2

n
∑

p=1

f(x̄ + hsx,p) + f(x̄ − hsx,p) (32)We will now proeed with a derivation of a ovariane estimate. First we observethat
(Py)T = E[(y − ȳ)(y − ȳ)T ]

= E[(y − f̃(z̄))(y − f̃(z̄))T ] − E[y − f̃(z̄)]E[y − f̃(z̄)]T . (33)The estimate an therefore be written
Py = E

[

(

D̃∆zf̃ +
1

2
D̃2

∆zf̃

)(

D̃∆zf̃ +
1

2
D̃2

∆zf̃

)T
]

− E

[

D̃∆zf̃ +
1

2
D̃2

∆zf̃

]

E

[

D̃∆zf̃ +
1

2
D̃2

∆zf̃

]T

= E

[

D̃∆zf̃
(

D̃∆zf̃
)T
]

+
1

4
E

[

D̃2
∆zf̃

(

D̃2
∆zf̃
)T
]

− 1

4
E
[

D̃2
∆zf̃
]

E
[

D̃2
∆zf̃

]T

. (34)The seond step was taken by using the fat that all odd order moments anel asthe elements of ∆z are independent and the distribution symmetri. The �rst termin (34) is reognized as the ovariane based on a �rst-order approximation of f̃ andhas already been dealt with. Let us instead take a loser look at the two remainingterms:
E

[

D̃2
∆zf̃

(

D̃2
∆zf̃
)T
] is omposed of 3 kinds of terms

E

[

(

(∆zi)
2δ2

i f̃
)(

(∆zi)
2δ2

i f̃
)T
]

=
(

δ2
i f̃
)(

δ2
i f̃
)T

σ4 , (35)
E

[

(

(∆zi)
2δ2

i f̃
)(

(∆zj)
2δ2

j f̃
)T
]

=
(

δ2
i f̃
)(

δ2
j f̃
)T

σ2
2 , (36)

E

[

(

∆zi∆zjµiδiµjδj f̃
)(

∆zi∆zjµiδiµjδj f̃
)T
]

=
(

µiδiµjδj f̃
)(

µiδiµjδj f̃
)T

σ2
2 .(37)

E
[

D̃2
∆zf̃
]

E
[

D̃2
∆zf̃
]T is omposed of 2 kinds of terms

E
[

(∆zi)
2δif̃

]

E
[

(∆zi)
2δif̃

]T

=
(

δ2
i f̃
)(

δ2
i f̃
)T

σ2
2 , (38)

E
[

(∆zi)
2δif̃

]

E
[

(∆zj)
2δj f̃

]T

=
(

δ2
i f̃
)(

δ2
j f̃
)T

σ2
2 . (39)



3.2 A Seond-order Approximation 11All of the above terms appear for ∀i, ∀j, i 6= j.The terms in (36) and (39) are idential and anel when subtrated. Additionally,we will disard the terms ontaining ross-di�erenes (37). This is done beause theirinlusion would lead to an exessive inrease in the amount of omputations as thenumber of suh terms grows rapidly with the dimension of z. Moreover, the termseah require four additional evaluations of f for eah dimension. The reason for notonsidering the extra e�ort worthwhile is that we are unable to apture all fourthmoments anyway. This would require that f was approximated by a third-orderpolynomial (more details on this are given in Setion 3.3).Thus, we arrive at the following ovariane estimate
Py = σ2

n
∑

p=1

(

µpδpf̃(z̄)
)(

µpδpf̃(z)
)T

+
σ4 − σ2

2

4

n
∑

p=1

(

δ2
p f̃(z̄)

)(

δ2
p f̃(z)

)T

=
σ2

4h2

n
∑

p=1

(

f̃(z̄ + hep) − f̃(z̄ − hep)
)(

f̃(z̄ + hep) − f̃(z̄ − hep)
)T

+
σ4 − σ2

2

4h4

n
∑

p=1

(

f̃(z̄ + hep) + f̃(z̄ − hep) − 2f̃(z̄)
)

×

(

f̃(z̄ + hep) + f̃(z̄ − hep) − 2f̃(z̄)
)T

. (40)Inserting that σ2 = 1 and setting h2 = σ4 (= 3 for a Gaussian distribution) give
Py = 1

4h2

∑n

p=1 [f(x̄ + hsx,p) − f(x̄ − hsx,p)] [f(x̄ + hsx,p) − f(x̄ − hsx,p)]
T

+ h2−1
4h4

∑n

p=1 [f(x̄ + hsx,p) + f(x̄ − hsx,p) − 2f(x̄)]×
[f(x̄ + hsx,p) + f(x̄ − hsx,p) − 2f(x̄)]T (41)As

σ4 − σ2
2 = E[(∆z)4] − E[(∆z)2]2 = V ar[(∆z)2] > 0 , (42)

σ4 ≥ σ2
2 for all probability distributions. Therefore, we should always selet h2 ≥ 1.Obviously, this implies that the ovariane estimate will always be positive semidef-inite.The ross-ovariane estimate, Pxy, turns out to be the same as when the �rst-orderapproximation is employed (29):

Pxy = E

[

(Sx∆z)

(

D̃∆zf̃ +
1

2
D̃2

∆zf̃

)T
]

= E

[

(Sx∆z)
(

D̃∆zf̃
)T
]

=
1

2h

n
∑

p=1

sx,p (f(x̄ + hsx,p) − f(x̄ − hsx,p))
T . (43)



12 3 Approximation of Mean and Covariane3.3 Analysis of the ApproximationsIn this setion the performane of the proposed mean and ovariane estimators willbe evaluated. The analysis proeeds aording to the approah employed in [JU94℄.That is, under the assumption that z is Gaussian and the funtion f is analyti,the Taylor series of the true mean and ovariane are ompared on a term-by-termbasis with the Taylor series expansion of the estimators.The derivative operator, Di
∆z, has already been introdued in (9):

Di
∆zf̃ =

(

n
∑

p=1

∆zp

∂

∂zp

)i

f̃(z)

∣

∣

∣

∣

∣

∣

z=z̄

. (44)Additionally, the following partial derivative operator will be useful during the anal-ysis:
Di

hep
f̃ = hi∇i

pf̃ = hi ∂
if̃(z)

∂zi
p

∣

∣

∣

∣

∣

z=z̄

. (45)It is not di�ult to see that
1

h2

n
∑

p=1

Di
hep

f̃ = hi−2
n
∑

p=1

∇i
pf̃ (46)

E
[

Di
∆zf̃
]

= σi

n
∑

p=1

∇i
pf̃ + [ross-terms if i ≥ 4] . (47)It was mentioned previously that the Gaussian assumption implies that the elementsof ∆z are mutually independent and that the distribution of ∆z is symmetri. Thus,all odd moments evaluate to zero in (47). The ross-terms are terms ontaining prod-uts of derivatives w.r.t. di�erent variables and terms ontaining ross-derivatives.In a similar fashion we an evaluate the produts:

1

h2

n
∑

p=1

Di
hep

f̃
(

Dj
hep

f̃
)T

= hi+j−2
n
∑

p=1

(

∇i
pf̃
)(

∇j
pf̃
)T (48)

E

[

Di
∆zf̃

(

Dj
∆zf̃

)T
]

= σi+j

n
∑

p=1

(

∇i
pf̃
)(

∇j
pf̃
)T

+ [ross-terms if i + j ≥ 4] . (49)For the reasons alled attention to above, (49) evaluate to zero for i + j odd.If, for a moment, we neglet the ross-terms in (47) and (49), the di�erene betweenthe pair (46), (48) and the pair (47), (49) is for the even terms alone given bythe disrepany between hi+j and σi+j+2. As ∆z is Gaussian we have that [Pap84℄
σ2i = 1×3×· · ·× (2i−1)σi

2. Thus, the moment grows fatorially with i. As σ2 = 1



3.3 Analysis of the Approximations 13we have σ2i = {1, 3, 15, 105, ...}. In the seond-order ase (i.e., i = 2 or i = j = 1,respetively) the terms will agree regardless of the hoie of h. If we selet h2 asthe kurtosis, h2 = σ4 = 3, the terms will also agree in the fourth-order ase (exeptfor the ross-terms, whih remain unmathed). In the higher order ases, (46) and(48) will underestimate (47) and (49), respetively, as h2(i+j) grows geometriallyand therefore will be exeeded by σ2i+2j+2 from the sixth order.Series expansion of the true quantitiesFirst the Taylor series expansion of the true expressions for mean and ovarianes(19), (20), (21) are determined. As the Taylor series of f̃ expanded around z = z̄ isgiven by
y = f̃(z) +

∞
∑

i=1

D2i
∆zf̃

(2i)!
(50)we have for the true mean

ȳT = E[y] = f̃(z̄) + E

[

∞
∑

i=1

D2i
∆zf̃

(2i)!

]

= f̃(z̄) +

∞
∑

i=1

σ2i

(2i)!

n
∑

p=1

∇2i
p f̃ + [ross-terms if i ≥ 4]. (51)For the true ovariane we get

(Py)T = E[(y − f̃(z̄))(y − f̃(z̄))T ] − E[y − f̃(z̄)]E[y − f̃(z̄)]T

= E

[

∞
∑

i=1

Di
∆zf̃

i!

∞
∑

j=1

(Dj
∆zf̃)T

j!

]

− E

[

∞
∑

i=1

D2i
∆zf̃

(2i)!

]

E

[

∞
∑

i=1

D2i
∆zf̃

(2i)!

]

= E

[

D∆zf̃
(

D∆zf̃
)T

+
D∆zf̃(D3

∆zf̃)T

3!
+

D2
∆zf̃(D2

∆zf̃)T

2 × 2!
+

D3
∆zf̃(D∆zf̃)T

3!

]

− E

[

D2
∆zf̃

2!

]

E

[

D2
∆zf̃

2!

]T

+ · · ·

=
∞
∑

i=0

∞
∑

j=0

σ2(i+j)+2

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃

)(

∇2j+1
p f̃

)T

+

∞
∑

i=1

∞
∑

j=1

σ2(i+j) − σ2iσ2j

(2i)!(2j)!

n
∑

p=1

(

∇2i
p f̃
)(

∇2j
p f̃
)T

+ [ross-terms if i + j ≥ 4] (52)while for the ross-ovariane we have
(Pxy)T = E

[

(x − x̄)(f̃(z) − ȳT )T
]
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= E

[

(x − x̄)(f̃(z) − f̃(z̄))T
]

= E

[

Sx∆z

(

∞
∑

i=0

(D2i+1
∆z f̃)T

(2i + 1)!

)]

= E

[

Sx∆z
(

D∆zf̃
)T
]

+ E

[

Sx∆z(D3
∆zf̃)T

(3)!

]

+ · · ·

=

n
∑

p=1

sx,p

(

∞
∑

i=0

σ2i+2

(2i + 1)!
∇2i+1

p f̃

)T

+ [ross-terms if i ≥ 3] . (53)Series expansion of the mean estimatesThe mean estimate based on the �rst-order approximation of f̃ (25) is simply the�rst term of the Taylor series:
ȳ = f̃(z̄) (54)while the Taylor series expansion of the mean estimate based on the seond-orderapproximation in (31) is

ȳ =
h2 − n

h2
f̃(z̄) +

1

2h2

n
∑

p=1

f̃(z̄ + hep) + f̃(z̄ − hzp)

=
h2 − n

h2
f̃(z̄) +

1

2h2

n
∑

p=1

(

2f̃(z̄) +

∞
∑

i=0

Di
hep

f̃(z̄)

i!
+

(−Dhep
)if̃(z̄)

i!

)

= f̃(z̄) +
1

h2

∞
∑

i=1

n
∑

p=1

D2i
hep

f̃(z̄)

(2i)!

= f̃(z̄) +
∞
∑

i=1

h2i−2

(2i)!

n
∑

p=1

∇2i
p f̃ . (55)The estimate based on a �rst-order approximation (54) is the same as if we had usedan ordinary Taylor linearization of f . That is, the approximation error equals theseond and higher order terms in the series expansion of the true mean (51).For the estimate based on the seond-order approximation we have the followingapproximation error for element k (obtained by subtrating (55) from (51)):

R̄2(k) =

∞
∑

i=3

σ2i − h2i−2

(2i)!

n
∑

p=1

∇2i
p f̃k + ross-terms. (56)Notie that the outer sum starts in i = 3 as h2 = σ4. Fourth-order derivatives are stillpresent in the ross-terms, however. It is interesting to ompare this approximation



3.3 Analysis of the Approximations 15error to the error of a mean estimate obtained by employing a seond-order Taylorapproximation of f̃ as this is the traditional approah:
R2(k) =

∞
∑

i=2

σ2i

(2i)!

n
∑

p=1

∇2i
p f̃k + ross-terms. (57)In the general ase it is not possible to onlude that |R̄2(k)| always will be smallerthan |R2(k)| as the various derivatives an take any sign. However, one thing thatan be said is that the magnitude of R2(k) will be bounded from above by

|R2(k)| ≤ M2 =

∞
∑

i=2

σ2i

(2i)!

∣

∣

∣

∣

∣

n
∑

p=1

∇2i
p f̃k

∣

∣

∣

∣

∣

+ |ross-terms| (58)while |R̄2(k)| will be bounded by
|R̄2(k)| ≤ M̄2 =

∞
∑

i=3

σ2i − h2i−2

(2i)!

∣

∣

∣

∣

∣

n
∑

p=1

∇2i
p f̃k

∣

∣

∣

∣

∣

+ |ross-terms| . (59)As h2i−2 < σ2i, ∀i ≥ 3 we have that M̄2 ≤ M2. The equality sign holds only whenall the sums of derivatives in (58), (59) are 0. Thus, in general |R̄2(k)| has a lowerupper bound than |R2(k)|.To get an impression of the magnitude of the upper bound we observe that (reallthat σ2 = 1, h2 = σ4 = 3, σ2i = 1 × 3 × · · · × (2i − 1)σ2i
2 ):

{

σ2i

(2i)!

}∞

1

=

{

1

2
× 1

4
× 1

6
× · · · × 1

2i

}∞

1

= {0.5, 0.125, 0.0208, 0.0026, . . .} (60)
{

h2i−2

(2i)!

}∞

1

=

{

1

2
,
1

8
,

1

48
,

1

384
, . . .

}

= {0.5, 0.125, 0.0125, 0.00067, . . .} . (61)Both frations deay rapidly with i. Espeially the frations in (61) as the numeratorin this ase does not grow fatorially. It is therefore reasonable to assume that also
σ2i

(2i)!

∣

∣

∣

∣

∣

n
∑

p=1

∇2i
p f̃k

∣

∣

∣

∣

∣

(62)typially will deay rapidly with i and that the �rst few terms of the sum in (58)will dominate. If the upper bounds, M̄2, M2, are not dominated by the ross-terms,
M̄2 ≪ M2 as σ2i−h2i−2

(2i)!

∣

∣

∣

∑n
p=1 ∇2i

p f̃k

∣

∣

∣
is 0 for i = 2 and less than half the size of (62)for i = 3. Reall that in the one-dimensional ase there are no ross-terms. In thisase errors are not introdued until the terms of order 6; i.e., a sixth-order Taylorapproximation of f̃ would be neessary to ahieve a better auray than what iso�ered by (55).



16 3 Approximation of Mean and CovarianeSeries expansion of the ovariane estimatesThe same approah as above will now be used for assessing the auray of theovariane estimates. Note �rst that
1

2h

(

f̃(z̄ + hep) − f̃(z̄ − hep)
)

=
1

2h

∞
∑

i=0

Di
hep

f̃

i!
−
(

−Dhep

)i
f̃

i!

=
1

h

∞
∑

i=0

D
(2i+1)
hep

f̃

(2i + 1)!
(63)

1

2

(

f̃(z̄ + hep) + f̃(z̄ − hep) − 2f̃(z̄)
)

=
1

2h

∞
∑

i=0

Di
hep

f̃

i!
+

(

−Dhep

)i
f̃

i!

=
∞
∑

i=1

D2i
hep

f̃

(2i)!
. (64)Thus, when inserting the Taylor series in the estimate based on the �rst-order ap-proximation (26) the following is obtained

Py =
1

h2

∞
∑

i=0

∞
∑

j=0

n
∑

p=1

D
(2i+1)
hep

f̃

(2i + 1)!

(

D
(2j+1)
hep

f̃
)T

(2j + 1)!

=
1

h2

n
∑

p=1

Dhep
f̃
(

Dhep
f̃
)T

+
1

h2

n
∑

p=1

(

Dhep
f̃(D3

hep
f̃)T

3!
+

D3
hep

f̃(Dhep
f̃)T

3!

)

+ · · ·

=
∞
∑

i=0

∞
∑

j=0

h2(i+j)

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃

)(

∇2j+1
p f̃

)T

. (65)Similarly, we get for the estimate based on the seond-order approximation (41):
Py =

1

h2

n
∑

p=1

(

∞
∑

i=0

D2i+1
hep

f̃

(2i + 1)!

)(

∞
∑

i=0

D2i+1
hep

f̃

(2i + 1)!

)T

+
1

h2

n
∑

p=1

(

∞
∑

i=1

D2i
hep

f̃

(2i)!

)(

∞
∑

i=1

D2i
hep

f̃

(2i)!

)T

− 1

h4

n
∑

p=1

(

∞
∑

i=1

D2i
hep

f̃

(2i)!

)(

∞
∑

i=1

D2i
hep

f̃

(2i)!

)T

=
1

h2

n
∑

p=1

Dhep
f̃
(

Dhep
f̃
)T
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+

1

h2

n
∑

p=1

(

Dhep
f̃(D3

hep
f̃)T

3!
+

D2
hep

f̃(D2
hep

f̃)T

(2!)(2!)
+

D3
hep

f̃(Dhep
f̃)T

3!

)

− 1

h4

n
∑

p=1

(

D2
hep

f̃(D2
hep

f̃)T

(2!)(2!)

)

+ · · ·

=

∞
∑

i=0

∞
∑

j=0

h2(i+j)

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃

)(

∇2j+1
p f̃

)T

+
∞
∑

i=1

∞
∑

j=1

h2(i+j)−2 − h2i−2h2j−2

(2i)!(2j)!

n
∑

p=1

∇2i
p f̃
(

∇2j
p f̃
)T

. (66)As before we will ompare the new estimates with estimates obtained using Taylorapproximations in plae of f̃ . For onveniene we shall �rst look at the seond-order approximation. The approximation error for element (k, l) in the ovarianeestimate obtained by employing a seond-order Taylor approximation in plae of f̃is
Q2(k, l) =

∞
∑

i=0
j 6=0

∞
∑

j=0
i6=0

σ2(i+j)+2

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃k

)(

∇2j+1
p f̃l

)T

+

∞
∑

i=1
j 6=1

∞
∑

j=1
i6=1

σ2(i+j) − σ2iσ2j

(2i)!(2j)!

n
∑

p=1

(

∇2i
p f̃k

)(

∇2j
p f̃l

)T

+ [ross-terms] . (67)The subsripts on the �rst double sum mean that the ase i = j = 0 is not inluded.Likewise, for the seond double sum the ase i = j = 1 is not inluded. To allowa omparison, the terms ontaining produts of seond-order ross-derivatives havebeen disarded as (37) was disarded for omputational onveniene (i.e., the termsare inluded in the �ross-terms�). It should be notied that in the ovariane es-timate employed by the onventional seond-order Gaussian �lter these terms areusually alulated.In a similar fashion as above, by subtrating (52) and (66), it is possible to write upthe approximation error for the ovariane estimate based on the new seond-orderapproximation of f̃ :
Q̄2(k, l) =

∞
∑

i=1

∞
∑

j=1

σ2(i+j)+2 − h2(i+j)

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃k

)(

∇2j+1
p f̃l

)T

+

∞
∑

i=1
j 6=1

∞
∑

j=1
i6=1

σ2(i+j) − σ2iσ2j − h2(i+j)−4(h2 − 1)

(2i)!(2j)!

n
∑

p=1

(

∇2i
p f̃k

)(

∇2j
p f̃l

)T

+ [ross-terms] . (68)As
σ2(i+j)+2 > σ2(i+j)+2 − h2(i+j) > 0

σ2(i+j) − σ2iσ2j > σ2(i+j) − σ2iσ2j − h2(i+j)−4(h2 − 1) > 0 ,
(69)



18 4 State Estimation for Nonlinear Systemswe an use the same argumentation as was applied to evaluate the mean estimatesand onlude that |Q̄2(k, l)| has a lower upper bound than |Q2(k, l)|. The newovariane estimate is therefore better than if we had inserted a seond-order Taylor-approximation (without the ross-derivatives) of f̃ . The missing fourth-order termsin (66) are the terms taking the form ( ∂f̃

∂zp

)(

∂3f̃

∂zp∂z2
q

)T

σ2
2 and ( ∂2f̃

∂z2
p∂z2

q

)(

∂2f̃

∂z2
p∂z2

q

)T

σ2
2 .The last mentioned terms ould have been present in the estimate had the ross-di�erenes (37) not been disarded from the approximation of f̃ .Notie that for the one-dimensional ase there are no ross-terms and all the sumsare made over positive numbers. Thus, one an in this ase skip the |·|. Additionally,errors will obviously not appear until in the sixth-order terms for the estimate (66).The approximation error for the ovariane estimate based on the divided di�erenelinearization of f̃ is

Q̄1(k, l) =

∞
∑

i=1

∞
∑

j=1

σ2(i+j)+2 − h2(i+j)

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃k

)(

∇2j+1
p f̃l

)T

+

∞
∑

i=1

∞
∑

j=1

σ2(i+j) − σ2iσ2j

(2i)!(2j)!

n
∑

p=1

(

∇2i
p f̃k

)(

∇2j
p f̃l

)T

+ [ross-terms] (70)The approximation error for the ovariane estimate based on a Taylor lineariza-tion of f̃ , Q1(k, l), is idential exept that the quantity h2(i+j) is not subtrated.Obviously, |Q̄1(k, l)| will therefore have a lower upper bound than |Q1(k, l)|. Theestimate will also have a lower upper bound than the estimate suggested in [Sh97℄as in this paper h = 1.For the estimate of the ross-ovariane matrix, Pxy, given by (28) we have
Pxy =

1

h

n
∑

p=1

sx,p

(

∞
∑

i=0

D2i+1
hep

f̃

(2i + 1)!

)T

=
1

h

n
∑

p=1

sx,p

(

∞
∑

i=0

h2i+1

(2i + 1)!
∇2i+1

p f̃

)T

. (71)The onlusions above are valid for this estimate as well. The errors are againintrodued on fourth-order terms in the series as the ross-derivative terms,
sx,p

(

∂3f̃

∂zp∂z2
q

)T

σ2
2, p 6= q, do not appear in the series expansion of the estimate.However, unlike for the estimate based on a Taylor approximation, some of thefourth-order terms are mathed with the new estimate.4 State Estimation for Nonlinear SystemsWe have now arrived at the entral issue of this note, namely state estimation fornonlinear systems. Two new �lters will be suggested that are based on the previ-ously derived polynomial approximations. The �lters are fundamentally di�erent



4.1 Review of State Estimation for Nonlinear Systems 19from �lters based on Taylor approximations in that the polynomial approximationsunderlying the new �lters take into aount the unertainty on the state estimate.The Taylor approximation underlying onventional �lter designs for nonlinear sys-tems, suh as the EKF, depends only on the urrent state estimate and not on itsvariane. Nevertheless, the new �lters an generally be implemented more easily asno derivatives are required.The �rst �lter we shall derive is based on a �rst-order polynomial approximation.This estimator is a generalized version of the �lter presented in [Sh97℄. Subse-quently, a more aurate �lter will be derived that also inludes seond-order terms.It turns out that this �lter has ertain similarities with the unsented �lter desribedin [JU94℄, [JUDW95℄.4.1 Review of State Estimation for Nonlinear SystemsConsider the following general nonlinear model of a dynami system whose statesare to be estimated
xk+1 = f(xk, uk, vk) (72)

yk = g(xk, wk) . (73)
vk and wk are assumed i.i.d. and independent of urrent and past states, vk ∼
(v̄k, Q(k)), wk ∼ (w̄k, R(k)).The ommonly used state estimation priniple for nonlinear systems is brie�y out-lined in the following. In-depth treatments of the topi an be found in [Lew86℄,[GKN+74℄, [May82℄. Ideally, we would like to determine the a priori state and o-variane estimates like in the Kalman �lter. That is, as the onditional expetations

x̄k = E[xk|Y k−1] (74)
P̄ (k) = E

[

(xk − x̄k)(xk − x̄k)
T |Y k−1

]

, (75)where Y k−1 is a matrix ontaining the past measurements
Y k−1 =

[

y0 y1 ... yk−1

]T
. (76)For onveniene, the measurement (a posteriori) update of the state estimate isusually restrited to be linear in the measurements. Seleting the update so thatthe (onditional) ovariane of the estimation error is minimized, we obtain thefollowing [Lew86℄:

Kk = Pxy(k)P−1
y (k) (77)

x̂k = x̄k + Kk[yk − ȳk] , (78)where
ȳk = E[yk|Y k−1] (79)

Pxy(k) = E
[

(xk − x̄k)(yk − ȳk)
T |Y k−1

] (80)
Py(k) = E

[

(yk − ȳk)(yk − ȳk)
T |Y k−1

]

. (81)



20 4 State Estimation for Nonlinear SystemsThe orresponding update of the ovariane matrix is
P̂ (k) = E

[

(xk − x̂k)(xk − x̂k)
T |Y k

]

= P̄ (k) − KkPyy(k)KT
k . (82)As the various expetations generally are intratable, some kind of approximationis ommonly used; e.g., it is well-known that the extended Kalman �lter is based onTaylor linearization of state transition and output equations (72), (73). The EKFequations are listed below to allow the reader to ompare its omplexity with thatof the �lters derived in the following. A treatment of the seond-order �lters maybe found in [May82℄.The state transition and observation equations are approximated by �rst-order poly-nomials

xk+1 ≈ f(x̂k, uk, v̄k) + Fx(k)(xk − x̂k) + Fv(k)(vk − v̄k) (83)
yk ≈ g(x̄k, w̄k) + Gx(k)(xk − x̄k) + Gw(k)(wk − w̄k) , (84)where

Fx(k) =
∂f(x, uk, v̄k)

∂x

∣

∣

∣

∣

x=x̂k

Fv(k) =
∂f(x̂k, uk, v)

∂v

∣

∣

∣

∣

v=v̄k

Gx(k) =
∂g(x, w̄k)

∂x

∣

∣

∣

∣

x=x̄k

Gw(k) =
∂f(x̄k, w)

∂w

∣

∣

∣

∣

w=w̄k

. (85)When these approximations are inserted we arrive at [Lew86℄:A priori update:
x̄k+1 = f(x̂k, uk, vk) (86)

ȳk = g(x̄k, wk) (87)
P̄ (k + 1) = Fx(k)P̂ (k)Fx(k)T + Fv(k)Q(k)Fv(k)T (88)A posteriori updates:

Kk = P̄ (k)Gx(k)T
[

Gx(k)P̄ (k)Gx(k)T + Gw(k)R(k)Gw(k)T
]−1 (89)

x̂k = x̄k + Kk[yk − ȳk] (90)
P̂ (k) = [I − KkGw(k)] P̄ (k) (91)In the following subsetions we will pursue the use of approximations obtained withthe interpolation formula for derivation of state estimators for nonlinear systems.4.2 The DD1 FilterIn this setion a generalized version of the nonlinear state estimation sheme sug-gested in [Sh97℄ will be desribed. The �lter is derived by employing the �rst-order



4.2 The DD1 Filter 21approximation presented in Setion 3.1. In priniple this orresponds to the EKFexept that the Jaobians (85) are replaed by divided di�erenes. The state up-date is therefore the same as in the extended Kalman �lter. The di�erene is alonefound in the update of the various ovariane matries. Generally, they an be im-plemented more easily. We will use an approah muh like the one suggested in[Sh97℄. One of the partiularly useful ideas provided in this paper is to update theCholesky fators of the ovariane matries diretly.First we will introdue the following four square Cholesky fatorizations
Q = SvS

T
v R = SwST

w

P̄ = S̄xS̄
T
x P̂ = ŜxŜ

T
x .

(92)Let the jth olumn of S̄x be denoted s̄x,j and vie versa for the other fators. Fourmatries ontaining divided di�erenes are now de�ned by
S

(1)
xx̂ (k) =

{

S
(1)
xx̂ (i, j)

}

= {(fi(x̂k + hŝx,j, uk, v̄k) − fi(x̂k − hŝx,j, uk, v̄k))/2h}
S(1)

xv (k) =
{

S(1)
xv (i, j)

}

= {(fi(x̂k, uk, v̄k + hsv,j) − fi(x̂k, uk, v̄k − hsv,j))/2h}
S

(1)
yx̄ (k) =

{

S
(1)
yx̄ (i, j)

}

= {(gi(x̄k + hs̄x,j, w̄k) − gi(x̄k − hs̄x,j, w̄k))/2h}
S(1)

yw (k) =
{

S(1)
yw (i, j)

}

= {(gi(x̄k, w̄k + hsw,j) − gi(x̄k, w̄k − hsw,j))/2h} . (93)The a priori updateTo understand how the results from Setion 3.1 an be applied in a state estimationontext it is useful to think o� an augmented state vetor onsisting of state vetorand proess (or measurement) noise:
x̆ =

[

˘̄x + ∆x̆
]

=

[

x̂ + ∆x
v̄ + ∆v

]

. (94)As the proess noise is assumed to be independent of the state, the (onditional)ovariane of ∆x̆ is
P̂x̆ =

[

P̂ 0
0 Q

]

=

[

Ŝx 0
0 Sv

] [

Ŝx 0
0 Sv

]T

= Ŝx̆Ŝ
T
x̆ . (95)Introduing the vetor z by stohastial deoupling of x̆, x̆ = Sx̆z, it is not di�ultto see how the state estimation problem an be mapped into the treatment of thegeneral vetor funtion f̃(z), whih was presented in Setion 3.1.For the a priori update of the state estimate we will use (25):

x̄k+1 ≈ f̃(z̄k) = f(x̂k, uk, v̄k) (96)whih is the same as for the EKF.



22 4 State Estimation for Nonlinear SystemsAs the basis of the ovariane update we shall use (27). By appliation of thematries de�ned in (93) the update an obviously be expressed in the followingmatrix notation̄
P (k + 1) =

[

S
(1)
xx̂ (k) S

(1)
xv (k)

] [

S
(1)
xx̂ (k) S

(1)
xv (k)

]T

= S
(1)
xx̂ (k)

(

S
(1)
xx̂ (k)

)T

+ S(1)
xv (k)

(

S(1)
xv (k)

)T
. (97)Due to the assumed independene between vk and xk, the update an be written asa sum of two matrix produts.It is well-known that a straightforward �text-book� implementation of the (extended)Kalman �lter results in numerial problems after a number of iterations as the e�etof round-o� errors aumulates, thus making the ovariane matrix asymmetri andnon-positive de�nite. The usual remedy for this is to use a fatored update. Asthe ovariane update (97) is a sum of two quadrati terms, numerial problems ofthis kind should not our with this update. Nevertheless, it is tempting to use afatored update anyway sine the fator will be needed for the a posteriori update.Moreover, the (retangular, nontriangular) Cholesky fator is immediately availableas the following ompound matrix:

S̄x(k + 1) =
[

S
(1)
xx̂ (k) S

(1)
xv (k)

] (98)This is a retangular matrix and for later use it must be transformed to a squareCholesky fator. This an be ahieved through Householder triangularization [GA93℄,[GL89℄.The a posteriori updateThe a priori estimate of output and ovariane matrix for the output estimationerror is derived in a similar fashion. The output estimate is given by
ȳk = g(x̄k, w̄k) , (99)and the ompound matrix

Sy(k) =
[

S
(1)
yx̄ (k) S

(1)
yw (k)

] (100)is a Cholesky fator of the ovariane of the output estimation error,
Py(k) = Sy(k)Sy(k)T . (101)As for S̄x, Sy(k) should be transformed to a quadrati matrix by Householder tri-angularization.



4.3 The DD2 Filter 23For approximation of the ross-ovariane between state and output estimation errorwe will use the result in (29)
Pxy(k) = S̄x(k)

(

S
(1)
yx̄ (k)

)T

. (102)The Kalman gain an now be alulated aording to (77)
Kk = Pxy(k)

[

Sy(k)Sy(k)T
]−1 (103)and the state vetor is updated aording to to (78)

x̂k = x̄k + Kk (yk − ȳk) (104)The fatorization of Py has deliberately been maintained in (103) beause it is use-ful in the pratial omputation of the gain. Sine Sy is triangular the equation
[

Sy(k)Sy(k)T
]

Kk = Pxy(k) is easily solved using only forward and bak substitu-tions.The a posteriori ovariane an be updated aording to (82). However, as suggestedin [Sh97℄ one an also in this ase update its Cholesky fator diretly. As thefollowing expressions are idential
KPyK

T = S̄x

(

S(1)
yx

)T
KT

= KS(1)
yx ST

x

= KS(1)
yx

(

S(1)
yx

)T
KT + KS(1)

yw

(

S(1)
yw

)T
KT ,the a posteriori update an learly be rewritten as

P̂ = P̄ − KPyK
T

= P̄ − KPyK
T − KPyK

T + KPyK
T

= S̄xS̄
T
x − S̄x

(

S
(1)
yx

)T

KT − KS
(1)
yx ST

x + KS
(1)
yx

(

S
(1)
yx

)T

KT + KS
(1)
yw

(

S
(1)
yw

)T

KT

=
(

S̄x − KS
(1)
yx

)(

S̄x − KS
(1)
yx

)T

+ KS
(1)
yw

(

KS
(1)
yw

)T

,(105)implying that a square Cholesky fator of the ovariane matrix an be obtained bytriangularization of the ompound matrix
Ŝ(k) =

[

S̄x(k) − KkS
(1)
yx (k) KkS

(1)
yw (k)

] (106)4.3 The DD2 FilterThe DD2 �lter is obtained by using the estimates of mean and ovariane derivedin Setion 3.2. First we shall de�ne four additional matries ontaining divided



24 4 State Estimation for Nonlinear Systemsdi�erenes
S

(2)
xx̂ (k) =

{
√

h2 − 1

2h2
(fi(x̂k + hŝx,j, uk, v̄k) + fi(x̂k − hŝx,j, uk, v̄k) − 2fi(x̂k, uk, v̄k))

}

S(2)
xv (k) =

{
√

h2 − 1

2h2
(fi(x̂k, uk, v̄k + hsv,j) + fi(x̂k, uk, v̄k − hsv,j) − 2fi(x̂k, uk, v̄k))

}

S
(2)
yx̄ (k) =

{
√

h2 − 1

2h2
(gi(x̄k + hs̄x,j, w̄k) + gi(x̄k − hs̄x,j, w̄k) − 2gi(x̄k, w̄k))

}

S(2)
yw (k) =

{
√

h2 − 1

2h2
(gi(x̄k, w̄k + hsw,j) + gi(x̄k, w̄k − hsw,j) − 2gi(x̄k, w̄k))

}

.

The a priori updateProeeding as for the DD1 �lter, we an obtain an improved state estimate by using(32):
x̄k+1 = h2−nx−nv

h2 f(x̂k, uk, v̄k)

+ 1
2h2

∑nx

p=1 f(x̂k + hŝx,p, uk, v̄k) + f(x̂k − hŝx,p, uk, v̄k)

+ 1
2h2

∑nv

p=1 f(x̂k, uk, v̄k + hsv,p) + f(x̂k, uk, v̄k − hsv,p)

(107)
nx denotes the dimension of the state vetor and nv denotes the dimension of proessnoise vetor. It turns out that this estimate of the mean is idential to the oneproposed in [JU94℄, [JUDW95℄. This is interesting as the approah used in thesepapers is quite di�erent from the one used here.In agreement with the ovariane estimate in (27), a triangular Cholesky fator ofthe a priori ovariane is obtained by Householder transformation of the followingompound matrix̄

Sx(k + 1) =
[

S
(1)
xx̂ (k) S

(1)
xv (k) S

(2)
xx̂ (k) S

(2)
xv (k)

] (108)The ovariane estimate S̄xS̄
T
x is not the same as the one derived in [JU94℄, [JUDW95℄,whih was the ase for the mean estimate. In Appendix A it is shown how the o-variane estimate of [JU94℄ (whih is less aurate than the one presented here) anbe derived along the same lines as above.



4.4 The Complete Filter Algorithm 25The a posteriori updateThe a priori estimate of the output and its ovariane is alulated in a similarfashion as for the states
ȳk = h2−nx−nw

h2 g(x̄k, w̄k)

+ 1
2h2

∑nx

p=1 g(x̄k + hs̄x,p, w̄k) + g(x̄k − hs̄x,p, w̄k)

+ 1
2h2

∑nw

p=1 g(x̄k, w̄k + hsw,p) + g(x̄k, w̄k − hsw,p)

(109)and
Sy(k) =

[

S
(1)
yx̄ (k) S

(1)
yw (k) S

(2)
yx̄ (k) S

(2)
yw (k)

]

. (110)
nw denotes the dimension of the measurement noise vetor.It follows from the disussion in Setion 3.2 and (43) that the a priori ross-ovariane matrix is the same as for the DD1 �lter (102):

Pxy(k) = S̄x(k)Syx̄(k)T . (111)Kalman gain and a posteriori update of the state is arried out exatly as for theDD1 �lter:Kalman gain:
Kk = Pxy(k)

[

Sy(k)Sy(k)T
]−1 (112)A posteriori update of state vetor

x̂k = x̄k + Kk (yk − ȳk) (113)The a posteriori update of the estimation error ovariane has a few additionalterms. Following the derivations in (105) we an write the ovariane matrix
P̂ =

(

S̄x − KS
(1)
yx

)(

S̄x − KS
(1)
yx

)T

+ KS
(1)
yw

(

KS
(1)
yw

)T

+ KS
(2)
yx

(

KS
(2)
yx

)T

+ KS
(2)
yw

(

KS
(2)
yw

)T , (114)whih obviously has the Cholesky fator
Ŝx(k) =

[

S̄x(k) − KkS
(1)
yx (k) KkS

(1)
yw (k) KkS

(2)
yx (k) KkS

(2)
yw (k)

] (115)4.4 The Complete Filter AlgorithmThe following proedure outlines the implementation of the new �lters. Reall that
h2 = 3 sine σ4 = 3σ2 for a Gaussian distributed variable.1. Initialize x̄0, P̄ (0), k = 0. a posteriori update



26 5 Example2. Compute ȳk, S
(1)
yx̄ (k), S

(1)
yw (k), S

(2)
yx̄ (k), S

(2)
yw (k)3. Compute Pxy aording to (102) and determine Sy(k) using Householder tri-angularization on (100) or (110).4. Solve Kk

[

S̄y(k)Sy(k)T
]

= Pxy for the Kalman gain. Sine Sy is square andtriangular only forward and bak-substitutions are needed: First solve for k′:
k′ST

y = Pxy and then solve for Kk: KkSy = k′.5. A posteriori update of the state estimate x̂k = x̄k + Kk (yk − ȳk)6. A posteriori update of ovariane matrix fator, Ŝx(k), is performed usingHouseholder triangularization on (106) or (115).a priori update7. Determine x̄k+1, S
(1)
xx̂ (k + 1), S

(1)
xw(k + 1), S

(2)
xx̂ (k + 1), S

(2)
xw(k + 1).8. Use Householder triangularization on (98) or (108) to ompute S̄x(k)9. k = k + 1, go to step 2Several textbooks provide details on how to perform the Householder triangulariza-tion, e.g., [PFTV88℄, [GL89℄, [GA93℄.5 ExampleTo demonstrate the performane of the new �lters they will in this setion be eval-uated on the often used vertially falling body example originating from [AWB68℄.Several �lter designs have been evaluated on this example [AWB68℄, [May82℄, [JU94℄.The setup is brie�y outlined below. The reader is referred to [AWB68℄ for a moredetailed introdution to the problem.We wish to estimate altitude (x1), downward veloity (x2), and a (onstant) ballistiparameter (x3) of a vertially falling body. The setup is depited in Fig. 2.The radar measures the range (r). The measurements, whih appear with intervalsof 1 seond, are a�eted by additive, white Gaussian noise.The model has the following form:

ẋ1(t) = −x2(t) (116)
ẋ2(t) = −e−γx1(t)x2(t)

2x3(t) (117)
ẋ3(t) = 0 (118)

yk = rk + wk =
√

M2 + (x1,k − H)2 + wk . (119)



27RANGE, r ALTITUDE, x1

x2

H M
Figure 2. Geometry of the vertially falling body problem.The model parameters are given by:

M = 100, 000 ft
H = 100, 000 ft
γ = 5 × 10−5

E[w2
k] = 104 ft2 (120)and the initial state of the system is







x1,0 = 300, 000 ft
x2,0 = 20, 000 ft/s
x3,0 = 10−3

(121)We will ompare the performanes of the DD1 and DD2 �lters with those of theEKF and the modi�ed Gaussian seond-order �lter [AWB68℄. The reader is referredto [JU94℄ for an evaluation of the unsented �lter. Due to the nature of the problemit is ommon pratie to employ a ontinuous-disrete �lter implementation. Thestate equations (116)-(118) are integrated using a fourth-order Runge-Kutta methodwith 64 steps taken between eah observation. It is straightforward to implementontinuous-disrete versions of the DD1 and DD2 �lters as there is no proess noise.In [AWB68℄ it is desribed how to implement the EKF and the modi�ed Gaussianseond-order �lter for the onsidered appliation.In aordane with [AWB68℄ and [JU94℄ the following initialization of the stateestimates is used






x̂1,0 = 300, 000 ft
x̂2,0 = 20, 000 ft/s
x̂3,0 = 3 × 10−5

(122)and the ovariane matrix is initialized to
P̂ (0) =





106 0 0
0 4 × 106 0
0 0 10−4



 . (123)



28 5 ExampleTo enable a fair omparison of the estimates produed by eah of the four �lters,the estimates are averaged aross a Monte Carlo simulation onsisting of 50 runs.Eah run is arried out with a di�erent noise sample.The results of the Monte Carlo simulation are shown in Figure 3�Figure 5.

0 10 20 30 40 50 60
0

50

100

150

200

250

300

DD2

EKF

DD1

Sec

Time (sec)

A
bs

ol
ut

e 
va

lu
e 

of
 a

ve
ra

ge
 a

lti
tu

de
 e

rr
or

 (
ft)

Comparison of DD1−filter, DD2−filter, EKF, and second−order filter
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Figure 4. Absolute error in veloity esti-mate (50 run average).
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Figure 5. Absolute error in estimate ofballisti oe�ient (50 run average). 0 10 20 30 40 50 60
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Figure 6. �Atual� (50 run average) RMSaltitude errors ompared with the estimatedRMS error, √P̂11(k) for the DD2 �lter.Not surprisingly, Figure 3�Figure 5 show that the DD2 �lter exhibits a performanewhih is ompletely superior to the EKF and the DD1 �lter. It is even betterthan the performane of the seond-order �lter. However, in ontrast to what wewould expet, the performane of the DD1 �lter is slightly worse than that of theEKF. The di�erene is, however, marginal and must be ontributed to the fat thatthe assumptions on whih the auray of the DD1 �lter was analyzed are partlyviolated. In partiular, the assumption that the state estimate is unbiased is farfrom being satis�ed here.



29Comparison with the study of the unsented �lter arried out in [JU94℄ shows thatthe performanes of the unsented �lter and the DD2 �lter are similar. This agreeswell with our expetations as the a priori state estimate is the same and the di�erenebetween the ovariane updates are limited to fourth and higher order terms in theirrespetive series expansions.The RMS value of the altitude error is shown in Figure 6 for eah of the four �lters.For omparison, the estimated values √P̂11 have also been plotted for the DD2 �l-ter. Note that the variations in the performane of the DD2 �lter are seeminglysmaller than for the EKF and DD1 �lters. For all four �lters, the atual estimationerror varianes exeed the variane estimates produed by the �lters. However, theestimated variane is loser to the atual variane of the DD2 estimates than for theother three �lters.It should be noted that the simulation study also showed that there is little di�erenebetween the estimates of √P̂11 produed by the four �lters. This is why only theestimates produed by the DD2 �lter have been plotted in Figure 6. The marginaldi�erene might lead to the suggestion that the (a priori) state estimate of theDD2 �lter is used in onjuntion with the ovariane estimate of the DD1 �lter inorder to save omputations.6 ConlusionsIn this paper we have proposed two new �lters for nonlinear state estimation.Whereas �lters for nonlinear systems ommonly are based on polynomial approx-imations obtained with Taylor's formula, the approximations underlying the new�lters are obtained with a multivariable extension of Stirling's interpolation for-mula. The �lters are extremely simple to implement as no derivatives are needed,yet they provide an exellent auray. The DD1 �lter is the simplest of the two�lters. Essentially, it is similar to the �lter proposed in [Sh97℄. However, as itappears from Setion 3.3, the (a priori) estimate of the ovariane represents a more�faithful� approximation of the true ovariane. The most important ontribution ofthis note is the superior DD2 �lter. This �lter has the same a priori estimate as the�unsented� �lter desribed in [JU94℄, [JUDW95℄, but a better ovariane estimate.The harateristis of the �lters are brie�y summarized below:
• Based on Gaussian assumptions, the auray of the DD1 �lter will be om-parable to the EKF in terms of expeted error. The auray of the DD2 �lteris omparable to the modi�ed Gaussian seond-order �lter. As the employedpolynomial approximations utilize knowledge about the ovariane of the stateestimates, we expet that the new �lters will be superior to onventional (Tay-lor approximation based) �lters for highly nonlinear systems, and systems withhigh noise levels.
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32 A An Alternative Approximation of the CovarianeA An Alternative Approximation of the CovarianeIt was mentioned in Setion 4.3 that the a priori state estimate of the DD2 �lter isthe one used in the unsented �lter desribed in [JU94℄, [JUDW95℄. In this appendixit is shown that also the ovariane estimate of the unsented �lter an be derivedby following an approah similar to ours. This estimate is less aurate than theone presented previously in this paper. Moreover, it might oationally lead to anestimate whih is non-positive semide�nite.Reall from (34) that
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ȳ − f̃(z̄)
)T

=
σ2

4h2

n
∑

p=1

[

f̃(z̄ + hep)f(z̄ + hep)
T + f(z̄ − hep)f(z̄ − hep)

T

− f(z̄ + hep)f(z̄ − hep)
T − f(z̄ − hep)f(z̄ + hep)

T
]

+
σ4

4h4

n
∑

p=1

[

f(z̄ + hep)f(z̄ + hep)
T + f(z̄ − hep)f(z̄ − hep)

T

+ f(z̄ + hep)f(z̄ − hep)
T + f(z̄ − hep)f(z̄ + hep)

T

− 2f(z̄ + hep)f(z̄)T − 2f(z̄ − hep)f(z̄)T

− 2f(z̄)f(z̄ + hep)
T − 2f(z̄)f(z̄ − hep)

T + 4f(z̄)f(z̄)T
]

−
(
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33Inserting that σ2 = 1 and h2 = σ4, (125) an be greatly redued.
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. (126)By straightforward vetor manipulations and by using (32) it is easily shown that(126) an be rewritten as
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[f̃(z̄) − ȳ][f̃(z̄) − ȳ]T . (127)If we use this result in a state estimation ontext, we arrive at the exat sameovariane estimate as the one proposed in [JU94℄, [JUDW95℄. The estimate hasthe drawbak that when h2 < n, the last term in (127) beomes negative semi-de�nite. A possible impliation of this ould be that the ovariane estimate beomesnon-positive de�nite. To remedy this, [JU94℄ reommends that the following, moreonservative, estimate is used
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(128)In our framework this expression is ahieved by deriving the ovariane estimate sothat a seond-order polynomial replaes y in the evaluation of E[yyT ] in

Py = E[yyT ] − ȳȳ (129)while only a �rst-order polynomial approximation is used for evaluating ȳ (orre-sponding to ȳ = f̃(z̄)).The interested reader is referred to [JU94℄ for a thorough analysis of the estimates.


