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Abstract

In this paper we show that it has considerable advantages to use polyno-
mial approximations obtained with an interpolation formula for derivation of
state estimators for nonlinear systems. The estimators become more accurate
than estimators based on Taylor approximations; yet the implementation is
significantly simpler as no derivatives are required. Thus, it is believed that
estimators derived in this way can replace well-known filters, such as the ex-
tended Kalman filter (EKF) and its higher order relatives, in most practical
applications. In addition to proposing a new set of state estimators, the paper
also unifies recent developments in derivative-free state estimation.

1 Introduction

When it comes to state estimation for nonlinear systems there is not a single solution
available that clearly outperforms all other strategies. A series of estimators have
been proposed over time, which for the most part are nonlinear extensions of the
celebrated Kalman filter. For each application one therefore has to pick the estimator
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which is found to best trade off various properties such as estimation accuracy, ease
of implementation, numerical robustness, and computational burden. Up to now the
extended Kalman filter (EKF) [GKN*74], [May82], [Lew86] has unquestionably been
the dominating state estimation technique. The EKF is based on first-order Taylor
approximations of state transition and observation equations about the estimated
state trajectory. Application of the filter is therefore contingent upon the assumption
that the required derivatives exist and can be obtained with a reasonable effort.
The Taylor linearization provides an insufficiently accurate representation in many
cases, and significant bias, or even convergence problems, are commonly encountered
due to the overly crude approximation. Several estimation techniques are available
that are more sophisticated than the EKF, e.g., re-iteration, higher order filters,
and statistical linearization [GKN*74], [May82]. The more advanced techniques
generally improve estimation accuracy, but it happens at the expense of a further
complication in implementation and an increased computational burden.

In this paper we propose a new set of estimators, which are based on polynomial
approximations of the nonlinear transformations obtained with particular multidi-
mensional extension of Stirling’s interpolation formula [Ste27], [Fr670]. Concep-
tually, the principle underlying the new filters resembles that of the EKF and its
higher order relatives. The implementation is, however, quite different. In contrast
to the Taylor approximation no derivatives are needed in the interpolation formula;
only function evaluations. This accommodates easy implementation of the filters,
and it enables state estimation even when there are singular points in which the
derivatives are undefined. Although the implementation is less complicated than
for filters based on Taylor approximations, the computational burden will often be
comparable in size or only slightly bigger. Additionally, under certain assumptions
on the distribution of the estimation errors, the new filters provide a similar or even
superior performance.

Recently there has been interesting developments in derivative-free state estimation
techniques [JU94|, [JUDWO5], [JU97|, [Sch97|. It is shown in the paper that these
filters occur as special cases of filters based on the interpolation formula. The filter
described in [Sch97] corresponds to a suboptimal implementation of the filter derived
using first-order approximations while the filter proposed in [JU94|, [JUDW95| has
the same a priori state estimate and a related (but less accurate) covariance estimate
as the filter derived using second-order approximations. Due to these relationships
we have found it natural to adopt some of the ideas on practical implementation
suggested in [Sch97] and to analyze the performance of the filters by using the same
approach as in [JU94].

The paper is organized as follows. First we introduce Stirling’s interpolation formula
and discuss under which circumstances it can provide more accurate approximations
than Taylor’s formula. A multidimensional extension of the interpolation formula
is made, and it is discussed how it can be used for approximation of mean and
covariance of stochastic variables generated by nonlinear transformation of stochastic
variables with known mean and covariance. Based on the obtained results, two new



filters are proposed. The DD1 filter is based on first-order approximations and the
DD2 filter is based on second-order approximations. The performance of the new
filters are demonstrated on a benchmark example. Readers only interested in the
actual filter implementation may choose to skip Section 2 and Section 3.

2 Power Series Revisited

This section deals with polynomial approximations of arbitrary functions. In par-
ticular we will compare approximations obtained with Taylor’s formula, which com-
monly underlies filters for nonlinear systems, with approximations obtained with an
interpolation formula. Initially, functions of only one variable will be considered.
Later the treatment is extended to multiple dimensions.

If the function f is analytic we can represent it by its Taylor series expanded about
some point, r = &

19 (@)
3!

Fo) = 1@) + P —2) + LDz y

5 (z—2)°+... (1)

A commonly used approximation is obtained by truncating the series after a finite
number of terms. As more terms are included, a locally better approximation is
achieved since the remainder (the sum of high-order terms) converges as O(|z—z|" ")
(this holds even when f is not analytic). The principle of the Taylor series is that
the approximation inherits still more characteristics of the true function in one
particular point as the number of terms increases. Although the assumption that
f is analytic implies that any desired accuracy can be achieved provided that a
sufficient number of terms are retained, it is in general adviced to use a truncated
series only in the proximity of the expansion point unless the remainder term has
been properly analyzed.

Several interpolation formulas are available for deriving polynomial approximations
that are to be used over an interval. Most of these do not require derivatives but are
instead based on a finite number of evaluations of the function. Usually it is therefore
much simpler to derive approximations with these formulas. Several textbooks are
available that deal with interpolation, e.g., [DB74], [Ste27]|, [Fr670]. In the following
we will consider one particular formula, namely Stirling’s interpolation formula. Let
the operators § and u perform the following operations (h denotes a selected interval
length)

5f(@) = St~ o) )
uf) = 5 (1 +sa-5) . 3)

With these operators Stirling’s interpolation formula used around the point x = %
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can be expressed as [Fro70|

fo) = fason) = @)+ pif@ 4 5@ (P10 ) s

(4)
+ s (2) + ( e ) no>f (z) +

Commonly, —1 < p < 1, but in our application we will allow occasional use outside
this interval as we shall see in later sections.

In this paper the attention is restricted to first and second-order polynomial approx-
imations. The formula (4) is in this case particularly simple

fla) & F(@) + Fpp(@(e — ) + 1228 (0 gy, )
where
foole) < JEEN S0 ) G20

One can be interpret (5) as a Taylor approximation with the derivatives replaced by
central divided differences. To assess the accuracy of the approximation it is useful
to insert the full Taylor series (1) in place of f(Z+h) and f(z—h). We must assume
that f is analytic to carry out this analysis

e (@)
F(@) + Fop(@)( — ) + 122

f@) + f@) @ —7) + 5P - 2)?

(o~ )2 =

+ (520 + 50 1 Y@ —2)+ (L5202 1+ L5800+ ) @ —2)?.

(7)
The first three terms on the right hand side of (7) are independent of the interval
length, h, and are recognized as the first three terms of the Taylor series expansion
of f. The “remainder” term given by the difference between (7) and the second-order
Taylor approximation is controlled by h and will in general deviate from the higher
order terms of the Taylor series expansion of f. As we shall see in the following
section, the possibility of controlling the remainder term is what makes the inter-
polation formula more attractive than Taylor approximation in some applications.
Certain interval lengths can ensure that the remainder term in some sense will be
close to the higher order terms of the full Taylor series. Fig. 1 shows a typical
example on the difference between a Taylor approximation and an approximation
obtained with the interpolation formula.

We will now proceed with the multidimensional case. Let x be a vector, x € R", and
let y = f(x) be a vector function. There are different ways in which the interpolation



Two polynomial approximations of the same function

f(x)

Figure 1. Comparison of a second-order polynomial approzimation obtained with
Taylor’s formula and one obtained with the interpolation formula. The expansion
point is T = 2.5 and for the interpolation formula the interval length was selected to
h = 3.5. The solid line shows the true function, the dot-dashed line is the second-
order Taylor approximation while the dashed line is the approximation obtained with
the interpolation formula. Obviously, the Taylor polynomial is a better approxima-
tion near the expansion point while further away the error is much higher than for
the approzimation obtained with the interpolation formula.

formula can be extended to multiple dimensions but before addressing this recall first
that the multidimensional Taylor series expansion of f about z = Z is given by

) =1 .
y=fl+An) = Y =Dy f
i=0

= f(&)+ Daof + DA, f + 5 D% f + - ..

where the operator description employed by [JU94| has been adopted:

_— 0 0 9\
Dy, f= (Axlaxl + Axy o, + + A:pnaxn) f(x) 7

=T

The operators can also be written:

- 0
Daf = Azy,— | f(z)

Di.f = (Z Z Aprxqﬁ) f(z)

p=1 ¢=1

(10)

=T
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By again restricting our attention to second-order polynomials we will write the
multidimensional interpolation formula as

y ~ f(Z) + Dacf + %Dimf : (11)

As the divided difference operators, Da,, DZM, we will use

Daof = % (Z Axpﬂp@?) f(z) (12)

5 1 n n n -
Di.f = 2 (Z(Axp)25;2> + Z Z Aprxq(Upépxﬂqéq)) f(@), (13)
p=1 p=1 g=1l,q7#p
where 9, has been introduced as the “partial” difference operator
_ _h _ h
8o (2) = f(z+ ge,) — [ = Fer) (14

and e, is the pth unit vector. A similar extension was made of the average operator
L.

The formula (11) is just one example of a multidimensional extension of the in-
terpolation formula. To illustrate how others can be derived, the following linear
transformation of x is introduced:

z=S8""x, (15)
and the function f is defined by
f(2) = 1(52) = f(a). (16)

While the Taylor approximation of f is identical to that of f, it is obviously not the
case that the multidimensional interpolation formula (11) yields the same results for
f and f. Since

21,0, (2) = [(Z + he,) — f(Z— hep) = f(Z+ hs,) — f(7 —hs,),  (17)
where s, denotes the pth column of S, Da.f and Dixf will clearly deviate from
Da.f and DA_f.

In the following section we are going to use the interpolation formula in a stochastic
framework. In this case a particularly useful choice of transformation matrix (.5)
and interval length (h) exists.

3 Approximation of Mean and Covariance

Let x be a vector of stochastic variables for which the expectation and covariance
are available
T=E[z], P,=FE[(z—z)(z—2)"] . (18)
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We would now like to determine

yr = Elf(z)] (19)
(P)r = E[(f(z) = gr)(f(z) —5r)"] (20)
(Pey)r = E[(@—1)(f(z) —r)"] . (21)

As f is nonlinear we cannot rely on being able to calculate the exact expectations.
Instead it is customary to insert a first or second-order polynomial approximation in
place of f before taking the expectations. In this section we will focus on estimates
of the expectations obtained using the interpolation formula in (11) for approxima-
tion of f. Additionally, we shall find it particularly useful to work with a linear
transformation of = as described above. The transformation matrix is selected as a
square Cholesky factor of the covariance matrix [Sch97]:

z=S"x, P, =S,S". (22)

This transformation is sometimes said to perform a stochastic decoupling of the
variables in x as the elements of z become mutually uncorrelated (and each with
unity variance):

El(z—E})(z—E[)"] =1. (23)

We shall in the following use a rather wide interpretation of the so-called Cholesky
factorization. For any symmetric matrix product M = SST we will refer to S as
a Cholesky factor. Thus, the Cholesky factor need not be square and triangular.
However, most often a triangular Cholesky factor is considered as computationally
efficient methods are available for performing such factorizations.

In the following subsections we shall work with f(z) directly as this is most conve-
nient. A few assumptions on f (f) and z will be invoked. f must in principle be
defined for all z € R™ and the elements of Az = z — E[Az] are assumed to belong
to the same (zero mean) distribution. In Section 3.2 it is additionally assumed that
Az is Gaussian. For analysis purposes it is in Section 3.3 assumed that f is analytic
and that Az is Gaussian. It should be stressed, however, that it is not necessary for
f to be analytic to apply the estimators.

3.1 A First-order Approximation

First estimates of mean and covariance will be derived by replacing the function f
by a first-order approximation

y=[f(z+Az) = f(2) + Da.f . (24)

As the expectation E[Az] = 0 by definition, the expectation of (24) is

y=E[f(2) + Da-f] = [(2) = f(2) (25)
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An estimate of the covariance (20) is derived along the same lines. As before,
the first-order moments can be neglected since Az is zero mean. Moreover, the

cross-terms evaluate to zero as z has been generated so that the cross-correlations

Py = E|(J()+Dacf - iz

(2)) (f() + Daf - f())T]
= 2| (DaF) (Daf2)"

= E <Z Azpppdy f (2 ) ZAzp”pépJF(z)>

p=1

= 03 i (Mp(spf:@)) (/ipépf(z)>T

p=1

— ﬁ;§:(ﬂ2+h%)—

p=1

)

@—h%0<ﬂz+mw—f@—h%0T.@®

We shall denote the ith moment of an arbitrary element in Az by o;. As all elements
are assumed to be equally distributed their moments are obviously identical. As
discussed above, o5 = 1. Higher moments depend on the distribution of Az.

Recalling that f(Z + he,) = f(Z % hs,,), where s, is the pth column of the square
Cholesky factor of the covariance matrix S,, (26) can also be written

n

Py = 15 D0 (@ + hsey) = F(2 = hsey) (F(2 4 hsey) = f(2 — hsep))T | (20)

p=1

The estimate of the cross-covariance matrix can be derived a long the same lines

Py = B|@-2) (7o) + i - )]

= B|(5.4 (DAJ)T]
= E i Sz,pA%p (i Azpﬂp%ﬂ@)
= 09 [i Sz,p (,Upépf:@))T]

- QhZS“}( (Z+ he,) — f(z—hep)>T, (28)
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which we can also write

Py = ﬁ ZZ:l Sup (f(T+ hszp) — f(T — hsx,p))T (29)

It is not clear from the derivations how the interval length, h, should be selected.
The mean estimate is independent of the parameter while it has an obvious impact
on the estimate of the covariance matrices. In Section 3.3 covering the analysis of
the estimates it is shown that the optimal setting of h is dictated by the distribution
of Az. Tt turns out that A2 should equal the kurtosis of the distribution, h? = o.

3.2 A Second-order Approximation

More accurate estimates of mean and covariance of f can be obtained with a limited
extra effort by approximating the function with a second-order polynomial derived
with the interpolation formula:

v~ J(2)+ Dacf + 5 DA
= f(Z) + % <pz1 Azpﬂp5p> JE(Z>

+ # (Z(Azp)25§ + Z Z Aszzq(ﬂpap)(quq)> f(g) . (30)

p=1 p=1 gq=1,q#p

To obtain useful results the assumptions on Az will now be slightly more restrictive
as we demand that it is Gaussian. Since Az is zero mean and the elements are
uncorrelated, this new assumption implies that the elements are independent and
the distribution is symmetric. The assumption is not needed for derivation of the
mean estimate, but it is important when deriving the improved covariance estimate.

Utilizing that Az is zero mean and its elements are uncorrelated, the expectation of
f can be estimated by

fo)+ 5 (Z(Azp)25§> f(z)]
= JO+3 Y 8fe)

= )+ g O (Ft hey) + 2~ hey)) — 25 7(2)

p=1
n

= T @) + 55 2 (FE+ hey) + (2 = hey)) (31)

p=1
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h? —n ] —
=2 @) + g

h h2 f('f + hsll?,p) + f(j - hsm,p) (32)

<

p=1

We will now proceed with a derivation of a covariance estimate. First we observe
that

(P)r = Elly-9y—9)"] ) )
= Blly - f())y -~ F()] - Ely - f(2)Ely - f(2)]". (33)

The estimate can therefore be written

P = (i + 2047) (DAzf+%Dsz) ]

1 U . AT
- e[ e[ 1)
The second step was taken by using the fact that all odd order moments cancel as
the elements of Az are independent and the distribution symmetric. The first term
in (34) is recognized as the covariance based on a first-order approximation of f and
has already been dealt with. Let us instead take a closer look at the two remaining
terms:

/. AT
E {DQAzf (DQAzf) } is composed of 3 kinds of terms
(

B|(@ared) (wapsd)'| = (27)(@0) o o)

E {((Azi)zéf f) ((Azj)%f. f)T_ - (55 f) (53 f)Tag , (36)

E |:<AZiAZj,ui5i,uj5j];) <AZiAZjNi5iﬂj5jf>T: = <Mi5i,uj5jf> <Ni5iﬂj5jf>TU§ :
(37)

L T
E [Dizf} E [Dizf} is composed of 2 kinds of terms

E [(Azi)%si ﬂ E [(Azi)%si f]T — (53 f) (53 f)T o2 (38)

@z Bl@azya] = (2F) (2F) o2 (39)
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All of the above terms appear for Vi,Vj, 7 # j.

The terms in (36) and (39) are identical and cancel when subtracted. Additionally,
we will discard the terms containing cross-differences (37). This is done because their
inclusion would lead to an excessive increase in the amount of computations as the
number of such terms grows rapidly with the dimension of z. Moreover, the terms
each require four additional evaluations of f for each dimension. The reason for not
considering the extra effort worthwhile is that we are unable to capture all fourth
moments anyway. This would require that f was approximated by a third-order
polynomial (more details on this are given in Section 3.3).

Thus, we arrive at the following covariance estimate

P, = o zi: (Npépf(2)> (:upapf(z)>T + & ; Ug zi: (512>f(2)) (5127f(2))T
_ % pz: (f(z + he,) — f(z — hep)) (f(z + he,) — f(Z— hep))T
+ 044;403 zi: (f(Z + he,) + f(z — he,) — Qf(i)) X

(7 +hep) + 7z —hey) —2(2) . (0)

Inserting that o, = 1 and setting h* = o, (= 3 for a Gaussian distribution) give

Py = gz Yoy [f(T+ hspy) = F(T = hsep)| [f(Z + hsayp) = F(2 = hsay)]"

+ BELS [f(T + hsap) + (T — hsp) — 2f(T)] X
[F(T + hspp) + f(7 — hs,yp) — 2f(@)]"

(A1)
As

oy — 03 = E[(A2)*] — E[(A2)?)? = Var[(A2)?] > 0, (42)
o4 > o3 for all probability distributions. Therefore, we should always select h? > 1.
Obviously, this implies that the covariance estimate will always be positive semidef-
inite.

The cross-covariance estimate, P,,, turns out to be the same as when the first-order
approximation is employed (29):

P, = E

09 (a7 + 301 |
— 5 [(&Az) (Da-F) T]

- % Z Sap (F(B+ hsp) = [(T—hsay))" . (43)
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3.3 Analysis of the Approximations

In this section the performance of the proposed mean and covariance estimators will
be evaluated. The analysis proceeds according to the approach employed in [JU94].
That is, under the assumption that z is Gaussian and the function f is analytic,
the Taylor series of the true mean and covariance are compared on a term-by-term
basis with the Taylor series expansion of the estimators.

The derivative operator, DY, has already been introduced in (9):

D f = (Z A§> i) (4

Z=Z

Additionally, the following partial derivative operator will be useful during the anal-
ysis:

o 0 f(2)
D’L — hZ i — hZ i 45
hepf vpf 82’; B ( )
It is not difficult to see that
IR o
32 Dief = WYV (46)
p=1 p=1
E [DZAZJF} = 0 ZV;f + [cross-terms if i > 4] . (47)
p=1

It was mentioned previously that the Gaussian assumption implies that the elements
of Az are mutually independent and that the distribution of Az is symmetric. Thus,
all odd moments evaluate to zero in (47). The cross-terms are terms containing prod-
ucts of derivatives w.r.t. different variables and terms containing cross-derivatives.
In a similar fashion we can evaluate the products:

n

S0 (0l,0) = ey (i) (9i) )

p=1 p=1
plosf(oad)| = 93 (vid) (vif)
p=1
+ [cross-terms if i 4+ j > 4] . (49)

For the reasons called attention to above, (49) evaluate to zero for ¢ + j odd.

If, for a moment, we neglect the cross-terms in (47) and (49), the difference between
the pair (46), (48) and the pair (47), (49) is for the even terms alone given by
the discrepancy between h'*J and 0,1 ;42. As Az is Gaussian we have that [Pap84|
02i = 1 x3x-+-x(2i—1)o%. Thus, the moment grows factorially with i. As oy =1
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we have o9; = {1,3,15,105,...}. In the second-order case (i.e., i =2ori=j =1,
respectively) the terms will agree regardless of the choice of h. If we select h? as
the kurtosis, h?> = o4 = 3, the terms will also agree in the fourth-order case (except
for the cross-terms, which remain unmatched). In the higher order cases, (46) and
(48) will underestimate (47) and (49), respectively, as h2(*7) grows geometrically
and therefore will be exceeded by 09,2542 from the sixth order.

Series expansion of the true quantities

First the Taylor series expansion of the true expressions for mean and covariances
(19), (20), (21) are determined. As the Taylor series of f expanded around z = Z is
given by

— () + f; l() 2%){ (50)
we have for the true mean
i =Bl = JG)+E fj A ]
= f(2)+ i (;j)' pzn;vfjf + [cross-terms if i > 4]. (51)
For the true covariance we get
<anv=4mg—f@my—ﬂafw—[-—1w w;ﬂwT ~

3! 2 x 2! 3!

— E|Da.f (DAZf)T | Dasf (D, >T . DizﬂDAzf)T . DzszAzf)T]

9 7 T
DAzf
2!

- ii T 2+12;r2+ ‘ pnl <V21+1 ) (V;j-Flf)T
LSS o) ()
L j=1 p=

1
+ [cross—terms ifi+j >4 (52)

+

while for the cross-covariance we have

(Po)r = E|@=2)(f(z) —50)"]
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SJBAZ(DgAZf)T
(3)!

n o T
= Z Sep <; %fo“f) + [cross-terms if ¢ > 3] . (53)

_|_

Series expansion of the mean estimates

The mean estimate based on the first-order approximation of f (25) is simply the
first term of the Taylor series:

y=f(2) (54)
while the Taylor series expansion of the mean estimate based on the second-order
approximation in (31) is

h2—n~

g o= —5 1 2h22f2+h6p+f( = h2)

The estimate based on a first-order approximation (54) is the same as if we had used
an ordinary Taylor linearization of f. That is, the approximation error equals the
second and higher order terms in the series expansion of the true mean (51).

For the estimate based on the second-order approximation we have the following
approximation error for element k (obtained by subtracting (55) from (51)):

o0 2 n
Ry(k) = Z % Z \% i + cross-terms. (56)
i=3

Notice that the outer sum starts in i = 3 as h?> = 4. Fourth-order derivatives are still
present in the cross-terms, however. It is interesting to compare this approximation
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error to the error of a mean estimate obtained by employing a second-order Taylor
approximation of f as this is the traditional approach:

Z T2 Al Z V2ka + cross-terms. (57)
=2 p=1

In the general case it is not possible to conclude that |Ry(k)| always will be smaller
than |Ry(k)| as the various derivatives can take any sign. However, one thing that
can be said is that the magnitude of Ry(k) will be bounded from above by

Z Vo fi
p=1

[e.9]

|Ry(K)| < M. Z

while |Ry(k)| will be bounded by

|R 2021_}122

1=3

+ |cross-terms| (58)

8

n

> VI

p=1

+ |cross-terms| . (59)

As h*72 < 04;,Vi > 3 we have that M, < M,. The equality sign holds only when
all the sums of derivatives in (58), (59) are 0. Thus, in general |Ry(k)| has a lower
upper bound than |Ry(k)|.

To get an impression of the magnitude of the upper bound we observe that (recall
that oy =1, h2 =04 =3, 09 = 1 X 3 X --- x (2i — 1)o?):

09; o 1 1 1 1 }OO
: =J{x-x=x-x—rp =1{0501250.0208,0.0026,..} (60)
{(21)!}1 {2 176 2% f |

el G S S e = {0.5,0.125,0.0125,0.00067, . . .} (61)
(2i) [, 287487384’ T U A AR

Both fractions decay rapidly with i. Especially the fractions in (61) as the numerator
in this case does not grow factorially. It is therefore reasonable to assume that also

Z v22fk

p=1

09;

(24)!

(62)

typically will decay rapidly with 7 and that the first few terms of the sum in (58)
will dominate. If the upper bounds, My, M5, are not dominated by the cross-terms,

My < My as UQiéﬁ)ji_Q ’ZZZI Vf,ifk’ is 0 for 7 = 2 and less than half the size of (62)

for i = 3. Recall that in the one-dimensional case there are no cross-terms. In this
case errors are not introduced until the terms of order 6; i.e., a sixth-order Taylor

approximation of f would be necessary to achieve a better accuracy than what is
offered by (55).
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Series expansion of the covariance estimates

The same approach as above will now be used for assessing the accuracy of the
covariance estimates. Note first that

1 ~ =, - D;Lep~ Dhep)if
%<f(z+hep)—f(z—hep)) = QhZ

- D,Si’“ f
B hz (2i + 1)! (63)

(2 + hey) + f(Z = he,) — 2f(2)) = o Z D;Le”f foe”) /

7!

DO | —
/N
kﬁl

7l

= ’“”P . (64)

Thus, when inserting the Taylor series in the estimate based on the first-order ap-
proximation (26) the following is obtained

o oo n 2i+1) 7 (2j+1) 7
D/(ze )f ( hep f

1 P
b= EZZ;(%H)! (2j +1)!

=0 j=0 1
= %ZDhepf (Dhepf>T
p=
1 . Dhepf(D?Lepf)T Dl?;epf<Dhepf~)T
+ .
co 00 h2 i+j) . A T
= 2.2 CESNICIES Z (VZ +1 ) (V;]-Hf) . (65)

Similarly, we get for the estimate based on the second-order approximation (41):

Ln (o DR (o oY
By = ﬁZ(Z (2¢+1)!> (; (2i+1)!

p=1

A, AW A
* ﬁ; (Z (2i)! ) (Z (2¢)!)
>
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+ i i <Dhepf<D/?7’,epf~)T Dlzzepf<D/27,epf~)T D/?;epf(Dhepf>T>

h? £ 3! (2h)(2") 3!
1 D/27,e f(Dhepf>T
o ; < (2D)(2!) )
. Rt 2i+1 2j+1 F T
- ;;(22+1 )(2j + 1) ,Z(v : )(Vp+f>

00 h2(+5)—2 _h22—2h2j—2

* ;; 20)1(2))! ;V?NV?JF) - (66)

As before we will compare the new estimates with estimates obtained using Taylor
approximations in place of f For convenience we shall first look at the second-
order approximation. The approximation error for element (k,[) in the covariance
estimate obtained by employing a second-order Taylor approximation in place of f

is
- S e S () ()

=0 j=

Jj#0 1#0
Oy H—] — 0'220'2] - % 7 9i & T
35%> > (i) (v37)
=1 j=1 p:1
J#1 i#l
+ [cross-terms] . (67)

The subscripts on the first double sum mean that the case ¢ = j = 0 is not included.
Likewise, for the second double sum the case ¢ = j = 1 is not included. To allow
a comparison, the terms containing products of second-order cross-derivatives have
been discarded as (37) was discarded for computational convenience (i.e., the terms
are included in the “cross-terms”). It should be noticed that in the covariance es-
timate employed by the conventional second-order Gaussian filter these terms are
usually calculated.

In a similar fashion as above, by subtracting (52) and (66), it is possible to write up
the approximation error for the covariance estimate based on the new second-order
approximation of f:

© X — h20+7) T
= O2(i+j)+2 h 2i4+1 2j+1
Qalhl) = (V2 A) (Vi)
22 1) 2
oo 00 . _ B2(i+4)— 2 n T
Oa(itj) — 02025 — h Y(h? —1) ( 2 ~> ( 2j ~>
> 2012 2 (Vi) (Vi
1= = p:l
i#1 i
+ [cross-terms] . (68)
As .
Oa(ijyrz > Oa(irty2 — P

O2(i+5) — 02025 >  O02(i+j) — 02025 — h2(i+j)74(h2 - 1)



18 4 State Estimation for Nonlinear Systems

we can use the same argumentation as was applied to evaluate the mean estimates
and conclude that |Qo(k,l)| has a lower upper bound than |Qs(k,)]. The new
covariance estimate is therefore better than if we had inserted a second-order Taylor-
approximation (without the cross-derivatives) of f. The missing fourth-order terms

. . 7 37 \ T 2 7 27 \T
in (66) are the terms taking the form (%) (aiafzg) o3 and (a%aig) (a%aég) 3.
The last mentioned terms could have been present in the estimate had the cross-

differences (37) not been discarded from the approximation of f.

Notice that for the one-dimensional case there are no cross-terms and all the sums
are made over positive numbers. Thus, one can in this case skip the |-|. Additionally,
errors will obviously not appear until in the sixth-order terms for the estimate (66).

The approximation error for the covariance estimate based on the divided difference
linearization of f is

i h2(i+7)

> G X (V57 ()’

i=1 j=1

s LY BRI S (V) (VP)
=1 j5=1 p=1
+ [cross—terms] (70)

The approximation error for the covariance estimate based on a Taylor lineariza-
tion of f, Qi(k,1), is identical except that the quantity h20+7) is not subtracted.
Obviously, |Q,(k,1)| will therefore have a lower upper bound than |Q;(k,[)|. The
estimate will also have a lower upper bound than the estimate suggested in [Sch97]
as in this paper h = 1.

For the estimate of the cross-covariance matrix, P,,, given by (28) we have

h2i+1

00 D2z+1 o'} ' ~ T
Py = n Z Szp (Z m) 7 Z Sz.p <Z mv;“_lf) . (1)

The conclusions above are valid for this estimate as well. The errors are again
introduced on fourth-order terms in the series as the cross-derivative terms,

- \T

Sz.p (%) 03, p # ¢, do not appear in the series expansion of the estimate.
pP~*=q

However, unlike for the estimate based on a Taylor approximation, some of the

fourth-order terms are matched with the new estimate.

4 State Estimation for Nonlinear Systems

We have now arrived at the central issue of this note, namely state estimation for
nonlinear systems. Two new filters will be suggested that are based on the previ-
ously derived polynomial approximations. The filters are fundamentally different
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from filters based on Taylor approximations in that the polynomial approximations
underlying the new filters take into account the uncertainty on the state estimate.
The Taylor approximation underlying conventional filter designs for nonlinear sys-
tems, such as the EKF, depends only on the current state estimate and not on its
variance. Nevertheless, the new filters can generally be implemented more easily as
no derivatives are required.

The first filter we shall derive is based on a first-order polynomial approximation.
This estimator is a generalized version of the filter presented in [Sch97]. Subse-
quently, a more accurate filter will be derived that also includes second-order terms.
It turns out that this filter has certain similarities with the unscented filter described
in [JU94|, [JUDW95].

4.1 Review of State Estimation for Nonlinear Systems

Consider the following general nonlinear model of a dynamic system whose states
are to be estimated

Tpy1 = [Tk, U, vp) (72)
Yo = 9@k, wk) . (73)
v, and wy are assumed i.i.d. and independent of current and past states, v, ~

(0, Q(k)), wy ~ (wy, R(K)).

The commonly used state estimation principle for nonlinear systems is briefly out-
lined in the following. In-depth treatments of the topic can be found in [LewS86|,
[GKN*74], [May82|. Ideally, we would like to determine the a priori state and co-
variance estimates like in the Kalman filter. That is, as the conditional expectations

T = Bz Y™ (74)
P(k) = F [(l’k — i’k)<l’k — i’k)T|Yk71] s (75)

where Y*~1 is a matrix containing the past measurements
Y =Ty 1 e }T- (76)

For convenience, the measurement (a posteriori) update of the state estimate is
usually restricted to be linear in the measurements. Selecting the update so that
the (conditional) covariance of the estimation error is minimized, we obtain the
following [Lew86]:

Ky = Pyy(k)P (k) (77)
Ty = T+ Kilye — Ukl (78)
where
Uk = BElyv* (79)
Poy(k) = E[(zr—zx)(ys — 0) [V (80)

Pyk) = E[(yr—ux)ye —7x)" Y] . (81)
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The corresponding update of the covariance matrix is
P(k) = E [(z), — @) (xx — 31)7|Y*] = P(k) — Ky P, ()K] . (82)

As the various expectations generally are intractable, some kind of approximation
is commonly used; e.g., it is well-known that the extended Kalman filter is based on
Taylor linearization of state transition and output equations (72), (73). The EKF
equations are listed below to allow the reader to compare its complexity with that
of the filters derived in the following. A treatment of the second-order filters may
be found in [May82].

The state transition and observation equations are approximated by first-order poly-
nomials

T = f(Tr uk, Ok) + Fo(k)(vp — 2x) + Fo (k) (vr — ) (83)
Yo =~ g(Tk, k) + Go(k) (2 — Tp) + Gu(k)(wp — wg) (84)
where
Fi(k) — 8f(:cg;k,1‘)k) B Fy (k) = 6f(;f:;gvuk,v) 7
Gy = W g gy = YW 8

When these approximations are inserted we arrive at [Lew86]:

A priori update:

Teor = f( Tk, up, vr) (86)
U = 9(Tr, wi) (87)
Pk+1) = F(k)P(k)F,(k)" + F,(k)Q(k)F,(k)" (88)

A posteriori updates:

-1

Kp = P(k)Go(k)" [Go(k)P(k)Go(k)" + Gu(k)R(k)Gy(k)"] (89)
Ty = Tp+ Kilyr — Uil (90)
P(k) = [I - KGy(k)] P(k) (91)

In the following subsections we will pursue the use of approximations obtained with
the interpolation formula for derivation of state estimators for nonlinear systems.

4.2 The DD1 Filter

In this section a generalized version of the nonlinear state estimation scheme sug-
gested in [Sch97] will be described. The filter is derived by employing the first-order
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approximation presented in Section 3.1. In principle this corresponds to the EKF
except that the Jacobians (85) are replaced by divided differences. The state up-
date is therefore the same as in the extended Kalman filter. The difference is alone
found in the update of the various covariance matrices. Generally, they can be im-
plemented more easily. We will use an approach much like the one suggested in
[Sch97]. One of the particularly useful ideas provided in this paper is to update the
Cholesky factors of the covariance matrices directly.

First we will introduce the following four square Cholesky factorizations

Q =S, R=8,St (92)
P—3,57 P=38,57 .

Let the jth column of S, be denoted 5,7 and vice versa for the other factors. Four
matrices containing divided differences are now defined by

SR = {8860} = LU+ hses,wn,0) = filin = hég s, 00)) /20
SOk = {S&)(i, )} {(fi(@r, ug, Uy + hsuj) — fi( @k, ug, O — hsyj))/ 2R}
s = {60} = 0@+ b5y, @) — 0@ — b @) 20}
SOk) = {SW(, i)} = {(g:(Th, Wy + hsu) — g:(@h, 0 — hsy ) /20 . (93)

The a priori update

To understand how the results from Section 3.1 can be applied in a state estimation
context it is useful to think off an augmented state vector consisting of state vector
and process (or measurement) noise:

(94)

f:[%+Af}:[i+Ax].

v+ Av

As the process noise is assumed to be independent of the state, the (conditional)
covariance of Az is

. . T
A P 0 Sy 0 Sy 0 & AT
P. = T T - §.8T
ool v sl[v s s @
Introducing the vector z by stochastical decoupling of &, T = S;z, it is not difficult

to see how the state estimation problem can be mapped into the treatment of the
general vector function f(z), which was presented in Section 3.1.

For the a priori update of the state estimate we will use (25):

Tr1 ~ f(2) = f(T, uk, Ok) (96)

which is the same as for the EKF.
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As the basis of the covariance update we shall use (27). By application of the
matrices defined in (93) the update can obviously be expressed in the following
matrix notation

T

Plh+1) = | 5Dk sW() || sWk) sWk) |

Tz

T
SR k) (SE) +SWk) (V)" (97)
Due to the assumed independence between v, and zy, the update can be written as
a sum of two matrix products.

It is well-known that a straightforward “text-book” implementation of the (extended)
Kalman filter results in numerical problems after a number of iterations as the effect
of round-off errors accumulates, thus making the covariance matrix asymmetric and
non-positive definite. The usual remedy for this is to use a factored update. As
the covariance update (97) is a sum of two quadratic terms, numerical problems of
this kind should not occur with this update. Nevertheless, it is tempting to use a
factored update anyway since the factor will be needed for the a posteriori update.
Moreover, the (rectangular, nontriangular) Cholesky factor is immediately available
as the following compound matrix:

S.(k+1) =] SWk) s& k) (98)

This is a rectangular matrix and for later use it must be transformed to a square
Cholesky factor. This can be achieved through Householder triangularization [GA93],
[GL89|.

The a posteriori update

The a priori estimate of output and covariance matrix for the output estimation
error is derived in a similar fashion. The output estimate is given by

Ur = 9(Zp, i) (99)
and the compound matrix
Sy(k) =1 SV(k) SG (k) ] (100)
is a Cholesky factor of the covariance of the output estimation error,
P, (k) = S, (k)S, (k)" . (101)

As for S,, S,(k) should be transformed to a quadratic matrix by Householder tri-
angularization.
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For approximation of the cross-covariance between state and output estimation error
we will use the result in (29)

P(k) = 8.(0) (52 (k) (102

The Kalman gain can now be calculated according to (77)

K = Puy(k) [S,(k)S, (k)] (103)

and the state vector is updated according to to (78)

T = Ty + Ky (ye — Uk) (104)

The factorization of P, has deliberately been maintained in (103) because it is use-

ful in the practical computation of the gain. Since S, is triangular the equation
[Sy(k)S,(k)T] Ky = Pyy(k) is easily solved using only forward and back substitu-
tions.

The a posteriori covariance can be updated according to (82). However, as suggested
in [Sch97| one can also in this case update its Cholesky factor directly. As the
following expressions are identical

T G T T
KP,K" = S, (S%)) K
= KS§)sT
— KSO (SW)" KT+ KSW (SO KT,
the a posteriori update can clearly be rewritten as
P = P—-KPKT
= P-KPK" - KP,K"+ KP,K"
_ _ T T T
— 5,573, (Sé?) KT — KSWST 4 ks (S@S? KT + KSY (5513) KT
_ . T
- (SI - KSZS?) (Sx . KS@?) + KSY (KS&J)
(105)

implying that a square Cholesky factor of the covariance matrix can be obtained by
triangularization of the compound matrix

S(k) = [ Sp(k) — KpSSy (k) KpSh (k) } (106)

4.3 The DD2 Filter

The DD2 filter is obtained by using the estimates of mean and covariance derived
in Section 3.2. First we shall define four additional matrices containing divided
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differences
vVh? -1 ) B . B
S (k) = {Tmm o W, O) + filEr — D e, D) = 2fi(Ek, s, T)
VvVh? =1 ) B . B . B
SO(k) = {W(fi(%, Uk, U + hsyj) + filBr, Uk, Up — Do) — 2fi( Tk, Uk, Ux))
2) h? —1 B B o
Sy:i (k) T(gz(l’k + hs, j, Wy,) + gi (T — hsg, W) — 29;(T, Wy))
(2) h2 - 1 _ _ _ _ _ _
Syw (k) = W(gi(xka Wy, + "y j) + Gi( Tk, Wy — hSw ;) — 20:( T, Wi)) ¢ -

The a priori update

Proceeding as for the DD1 filter, we can obtain an improved state estimate by using
(32):

_ 2_ g A~ _
xk+1 - %f(xk7uk7vk>

+ # ZZil f(jk + hél‘,pa U, Ek) + f("i‘k - hé%l’? Uk @k?) (107)

+ # Z;;L;l f('%ku U, ,l_}k + hsv,p) + f('%k7 Uk, Il_]k - hsv,p)

n, denotes the dimension of the state vector and n, denotes the dimension of process
noise vector. It turns out that this estimate of the mean is identical to the one
proposed in [JU94|, [JUDWO95]. This is interesting as the approach used in these
papers is quite different from the one used here.

In agreement with the covariance estimate in (27), a triangular Cholesky factor of
the a priori covariance is obtained by Householder transformation of the following
compound matrix

Sok+1) = [ SDk) sWk) S2k) Sk | (108)

Trr

|
|

The covariance estimate S,ST is not the same as the one derived in [JU94|, [JUDW95],

which was the case for the mean estimate. In Appendix A it is shown how the co-
variance estimate of [JU94| (which is less accurate than the one presented here) can
be derived along the same lines as above.
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The a posteriori update

The a priori estimate of the output and its covariance is calculated in a similar
fashion as for the states

U = hk’}liz{"“’g(fk, W)

+ gz Doy 9(Tk A+ DSpp, Wk) + (T — DS p, W) (109)

+ # EZZl g(jka Wi + hsw,p) + g(fk, Wg — hsw,p)
and
Sy(k) = | SY(k) SHKk) S (k) SAE) | - (110)

N, denotes the dimension of the measurement noise vector.

It follows from the discussion in Section 3.2 and (43) that the a priori cross-
covariance matrix is the same as for the DD1 filter (102):

Py (k) = Su(k)S,z(k)T . (111)

Kalman gain and a posteriori update of the state is carried out exactly as for the
DD1 filter:

Kalman gain:

K = Pay(k) [S, (k) S, (k)] (112)

A posteriori update of state vector

T = T + Ky (ye — Ur) (113)

The a posteriori update of the estimation error covariance has a few additional
terms. Following the derivations in (105) we can write the covariance matrix

P o= (8- kS®) (5 - kSW) +xSW (rsh)
E KS y(begSi))T + ;s;)a (KS%?) T< ) o 1)

which obviously has the Cholesky factor

Sm(k):[gm(k)—f(k&(,?(k) KuSS(k)  KiSP (k) Kksgfg(k)] (115)

4.4 The Complete Filter Algorithm

The following procedure outlines the implementation of the new filters. Recall that
h? = 3 since 04 = 305 for a Gaussian distributed variable.

1. Initialize 7y, P(0), k = 0.

a posteriori update
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2. Compute Gi, St (), Sl (k), Si2 (k). Sgu (k)

yxr

3. Compute P, according to (102) and determine S,(k) using Householder tri-
angularization on (100) or (110).

4. Solve Ky, [S,(k)S,(k)T] = P,, for the Kalman gain. Since S, is square and
triangular only forward and back-substitutions are needed: First solve for &'
k'Sy = P, and then solve for Kj: K;S, = k'.

5. A posteriori update of the state estimate Iy = Ty + Ky, (yx — Ur)

6. A posteriori update of covariance matrix factor, Sx(k), is performed using
Householder triangularization on (106) or (115).

a priori update

7. Determine Zy, 1, S%)(k: + 1), Sg(gg(k: +1), Sg(c?(k +1), Sﬁg(k; +1).
8. Use Householder triangularization on (98) or (108) to compute S, (k)

9. k=k+1, go to step 2

Several textbooks provide details on how to perform the Householder triangulariza-
tion, e.g., [PFTVS8S|, [GL89|, [GA93].

5 Example

To demonstrate the performance of the new filters they will in this section be eval-
uated on the often used vertically falling body example originating from [AWB6S].
Several filter designs have been evaluated on this example [AWBG68], [May82|, [JU94].
The setup is briefly outlined below. The reader is referred to [AWBG68| for a more
detailed introduction to the problem.

We wish to estimate altitude (x;), downward velocity (z2), and a (constant) ballistic
parameter (x3) of a vertically falling body. The setup is depicted in Fig. 2.

The radar measures the range (r). The measurements, which appear with intervals
of 1 second, are affected by additive, white Gaussian noise.

The model has the following form:

116
117
118

119

l"l t) = —XT9 (t)
N (AN

~
~—
|

(116)
(117)
(118)
(119)

Y = Tk+wk:\/M2+<x1,k_H>2+wk-
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RANGE, r

ALTITUDE, z;

Figure 2. Geometry of the vertically falling body problem.

The model parameters are given by:

M = 100,000 ft
H = 100,000 ft

v = 5x107° (120)
Ew} = 10 ft?
and the initial state of the system is
10 = 300,000 ft
Ta2o — 20,000 ft/S (].2].)

xr3o = 1073

We will compare the performances of the DD1 and DD2 filters with those of the
EKF and the modified Gaussian second-order filter [AWBG68|. The reader is referred
to [JU94] for an evaluation of the unscented filter. Due to the nature of the problem
it is common practice to employ a continuous-discrete filter implementation. The
state equations (116)-(118) are integrated using a fourth-order Runge-Kutta method
with 64 steps taken between each observation. It is straightforward to implement
continuous-discrete versions of the DD1 and DD2 filters as there is no process noise.
In [AWBG68] it is described how to implement the EKF and the modified Gaussian
second-order filter for the considered application.

In accordance with [AWBG68] and [JU94| the following initialization of the state

estimates is used
210 = 300,000 ft

.’i‘270 = 20,000 ft/S (122)
IA‘370 = 33X ]_0_5

and the covariance matrix is initialized to
106 0 0

PO)=| 0 4x10° 0 |. (123)
0 0 1074
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To enable a fair comparison of the estimates produced by each of the four filters,
the estimates are averaged across a Monte Carlo simulation consisting of 50 runs.
Each run is carried out with a different noise sample.

The results of the Monte Carlo simulation are shown in Figure 3-Figure 5.

Comparison of DD1-filter, DD2-filter, EKF, and second-order filter Comparison of DD1-filter, DD2-filter, EKF, and second-order filter
300 ! ! ! ! ! 350 i : : ; :

- g
= | . 2 300
= 250" A | £300
; AN
3 - 1 ! Y 9 250
= = 1 S~ £
£ 0 / ... oo 3
Py - AN €200
Il 1 ! S~ g
3 150 [ -~ -
> [, o
5 . N EKF $ 150}

] u—
> I 100
2 \v 2
3 50r | 3 i
Qo y Sec S 50
< N / %} [/

NP - DD2 _ 2 J
,”L/ R semm <
ol : ! ol=
0 10 20 30 40 50 60 0 30
Time (sec) Time (sec)

Figure 3. Absolute error in position esti- Figure 4. Absolute error in velocity esti-
mate (50 run average). mate (50 run average).

Actual and estimated RMS errors

_, Comparison of DD1-filter, DD2-filter, EKF, and second-order filter . ; : ; .
<10 T T T T T
2
o L 4
£ 1000
[
o
o
L 1
2 2 800F ,
< g i
o S "
c = |
= o |
g o 600H g
5 2 !
[} = ! DD1 (actual)
(=} © I
< » ' EKF (actual)
[ S 400 Sec (actual) 1
& o | DD2 (actual)
3 l DD2 (estimated)
3 200! X
s ! p
Q - ~
= -l
S R
32 [—
2 ) . . . . :
<0 A ‘ ‘ ‘ ‘ 0 10 20 30 40 50 60
0 10 20 30 40 50 60 Time (sec)

Time (sec)

Figure 6. “Actual” (50 run average) RMS
altitude errors compared with the estimated

RMS error, \/ P11 (k) for the DD2 filter.

Figure 5. Absolute error in estimate of
ballistic coefficient (50 run average).

Not surprisingly, Figure 3-Figure 5 show that the DD2 filter exhibits a performance
which is completely superior to the EKF and the DD1 filter. It is even better
than the performance of the second-order filter. However, in contrast to what we
would expect, the performance of the DD1 filter is slightly worse than that of the
EKF. The difference is, however, marginal and must be contributed to the fact that
the assumptions on which the accuracy of the DD1 filter was analyzed are partly
violated. In particular, the assumption that the state estimate is unbiased is far
from being satisfied here.
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Comparison with the study of the unscented filter carried out in [JU94| shows that
the performances of the unscented filter and the DD2 filter are similar. This agrees
well with our expectations as the a prioristate estimate is the same and the difference
between the covariance updates are limited to fourth and higher order terms in their
respective series expansions.

The RMS value of the altitude error is shown in Figure 6 for each of the four filters.

For comparison, the estimated values \/15711 have also been plotted for the DD2 fil-
ter. Note that the variations in the performance of the DD2 filter are seemingly
smaller than for the EKF and DDI1 filters. For all four filters, the actual estimation
error variances exceed the variance estimates produced by the filters. However, the
estimated variance is closer to the actual variance of the DD2 estimates than for the
other three filters.

It should be noted that the simulation study also showed that there is little difference

between the estimates of \/15711 produced by the four filters. This is why only the
estimates produced by the DD2 filter have been plotted in Figure 6. The marginal
difference might lead to the suggestion that the (a priori) state estimate of the
DD2 filter is used in conjunction with the covariance estimate of the DD1 filter in
order to save computations.

6 Conclusions

In this paper we have proposed two new filters for nonlinear state estimation.
Whereas filters for nonlinear systems commonly are based on polynomial approx-
imations obtained with Taylor’s formula, the approximations underlying the new
filters are obtained with a multivariable extension of Stirling’s interpolation for-
mula. The filters are extremely simple to implement as no derivatives are needed,
yet they provide an excellent accuracy. The DD1 filter is the simplest of the two
filters. Essentially, it is similar to the filter proposed in [Sch97|. However, as it
appears from Section 3.3, the (a priori) estimate of the covariance represents a more
“faithful” approximation of the true covariance. The most important contribution of
this note is the superior DD2 filter. This filter has the same a priori estimate as the
“unscented” filter described in [JU94|, [JUDW95|, but a better covariance estimate.

The characteristics of the filters are briefly summarized below:

e Based on Gaussian assumptions, the accuracy of the DD1 filter will be com-
parable to the EKF in terms of expected error. The accuracy of the DD2 filter
is comparable to the modified Gaussian second-order filter. As the employed
polynomial approximations utilize knowledge about the covariance of the state
estimates, we expect that the new filters will be superior to conventional (Tay-
lor approximation based) filters for highly nonlinear systems, and systems with
high noise levels.



30

REFERENCES

7

For “one-dimensional” systems (referring to the dimension of z) the accuracy
of the DD2 filter is comparable to a fourth-order filter.

The implementation is very simple as the filters do not require derivative
information. Yet, the computational burden is relatively limited and will often
be comparable to that of the EKF. As the user needs only provide models of
dynamics and observation process, the filters are attractive for implementation
of “generic” computer programs for nonlinear filtering.

The filters are very useful for model calibration. It is straightforward to in-
clude a varying number of parameters in the state vector for joint state and
parameter estimation. The user needs only initialize the parameter estimates
and their variances and then run the filter again.

The filters were derived based on considerations on how to estimate mean
and covariance of arbitrary nonlinear transformations of variables with known
mean and covariance. These results are not limited to state estimation; the
approximations can easily be adopted by several other areas of statistics.

Although the performance of the new filters was demonstrated based on the
assumption that the nonlinear transformations are analytic, this is not a re-
quirement for application of the filters. In fact, it is not even necessary to
assume differentiability. The range of applications is therefore wider than for
the EKF, which requires that the Jacobians exist.
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A An Alternative Approximation of the Covariance

It was mentioned in Section 4.3 that the a priori state estimate of the DD?2 filter is
the one used in the unscented filter described in [JU94|, [JUDW95|. In this appendix
it is shown that also the covariance estimate of the unscented filter can be derived
by following an approach similar to ours. This estimate is less accurate than the
one presented previously in this paper. Moreover, it might occationally lead to an
estimate which is non-positive semidefinite.

Recall from (34) that
P, = B|Dad (Do) | + 48 |31 (53.5)]
- (1-F@) (1-F=) (124)

Maintaining from this expression the terms (35), (38), (39) we obtain (in (40) we
did not include (39) as it cancels with (36))

n
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Inserting that o, = 1 and h? = g4, (125) can be greatly reduced.

n

- (r-7@) (r-i@) (126)

By straightforward vector manipulations and by using (32) it is easily shown that
(126) can be rewritten as

1

Po= o Zmz +hey) — ALF(= + hey) — g1
+ % D17z = hep) ~ LG ~ hep) — "
R*—mn . =
v 2 - alfe) -l (127)

If we use this result in a state estimation context, we arrive at the exact same
covariance estimate as the one proposed in [JU94|, [JUDW95|. The estimate has
the drawback that when h? < n, the last term in (127) becomes negative semi-
definite. A possible implication of this could be that the covariance estimate becomes
non-positive definite. To remedy this, [JU94] recommends that the following, more
conservative, estimate is used

Py = gz 2y |[f(2+hey) = FNF(z + hey) = f(2)]"
i f f(2)]"

+ [f(2 = hep) = FF (2~ hey) —

In our framework this expression is achieved by deriving the covariance estimate so
that a second-order polynomial replaces y in the evaluation of E[yy’] in

P, = Elyy"] - yy (129)
while only a first-order polynomial approximation is used for evaluating ¢ (corre-
sponding to y = f(Z2)).

(128)

The interested reader is referred to [JU94| for a thorough analysis of the estimates.



