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tIn this paper we show that it has 
onsiderable advantages to use polyno-mial approximations obtained with an interpolation formula for derivation ofstate estimators for nonlinear systems. The estimators be
ome more a

uratethan estimators based on Taylor approximations; yet the implementation issigni�
antly simpler as no derivatives are required. Thus, it is believed thatestimators derived in this way 
an repla
e well-known �lters, su
h as the ex-tended Kalman �lter (EKF) and its higher order relatives, in most pra
ti
alappli
ations. In addition to proposing a new set of state estimators, the paperalso uni�es re
ent developments in derivative-free state estimation.1 Introdu
tionWhen it 
omes to state estimation for nonlinear systems there is not a single solutionavailable that 
learly outperforms all other strategies. A series of estimators havebeen proposed over time, whi
h for the most part are nonlinear extensions of the
elebrated Kalman �lter. For ea
h appli
ation one therefore has to pi
k the estimator1
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2 1 Introdu
tionwhi
h is found to best trade o� various properties su
h as estimation a

ura
y, easeof implementation, numeri
al robustness, and 
omputational burden. Up to now theextended Kalman �lter (EKF) [GKN+74℄, [May82℄, [Lew86℄ has unquestionably beenthe dominating state estimation te
hnique. The EKF is based on �rst-order Taylorapproximations of state transition and observation equations about the estimatedstate traje
tory. Appli
ation of the �lter is therefore 
ontingent upon the assumptionthat the required derivatives exist and 
an be obtained with a reasonable e�ort.The Taylor linearization provides an insu�
iently a

urate representation in many
ases, and signi�
ant bias, or even 
onvergen
e problems, are 
ommonly en
ountereddue to the overly 
rude approximation. Several estimation te
hniques are availablethat are more sophisti
ated than the EKF, e.g., re-iteration, higher order �lters,and statisti
al linearization [GKN+74℄, [May82℄. The more advan
ed te
hniquesgenerally improve estimation a

ura
y, but it happens at the expense of a further
ompli
ation in implementation and an in
reased 
omputational burden.In this paper we propose a new set of estimators, whi
h are based on polynomialapproximations of the nonlinear transformations obtained with parti
ular multidi-mensional extension of Stirling's interpolation formula [Ste27℄, [Frö70℄. Con
ep-tually, the prin
iple underlying the new �lters resembles that of the EKF and itshigher order relatives. The implementation is, however, quite di�erent. In 
ontrastto the Taylor approximation no derivatives are needed in the interpolation formula;only fun
tion evaluations. This a

ommodates easy implementation of the �lters,and it enables state estimation even when there are singular points in whi
h thederivatives are unde�ned. Although the implementation is less 
ompli
ated thanfor �lters based on Taylor approximations, the 
omputational burden will often be
omparable in size or only slightly bigger. Additionally, under 
ertain assumptionson the distribution of the estimation errors, the new �lters provide a similar or evensuperior performan
e.Re
ently there has been interesting developments in derivative-free state estimationte
hniques [JU94℄, [JUDW95℄, [JU97℄, [S
h97℄. It is shown in the paper that these�lters o

ur as spe
ial 
ases of �lters based on the interpolation formula. The �lterdes
ribed in [S
h97℄ 
orresponds to a suboptimal implementation of the �lter derivedusing �rst-order approximations while the �lter proposed in [JU94℄, [JUDW95℄ hasthe same a priori state estimate and a related (but less a

urate) 
ovarian
e estimateas the �lter derived using se
ond-order approximations. Due to these relationshipswe have found it natural to adopt some of the ideas on pra
ti
al implementationsuggested in [S
h97℄ and to analyze the performan
e of the �lters by using the sameapproa
h as in [JU94℄.The paper is organized as follows. First we introdu
e Stirling's interpolation formulaand dis
uss under whi
h 
ir
umstan
es it 
an provide more a

urate approximationsthan Taylor's formula. A multidimensional extension of the interpolation formulais made, and it is dis
ussed how it 
an be used for approximation of mean and
ovarian
e of sto
hasti
 variables generated by nonlinear transformation of sto
hasti
variables with known mean and 
ovarian
e. Based on the obtained results, two new



3�lters are proposed. The DD1 �lter is based on �rst-order approximations and theDD2 �lter is based on se
ond-order approximations. The performan
e of the new�lters are demonstrated on a ben
hmark example. Readers only interested in thea
tual �lter implementation may 
hoose to skip Se
tion 2 and Se
tion 3.2 Power Series RevisitedThis se
tion deals with polynomial approximations of arbitrary fun
tions. In par-ti
ular we will 
ompare approximations obtained with Taylor's formula, whi
h 
om-monly underlies �lters for nonlinear systems, with approximations obtained with aninterpolation formula. Initially, fun
tions of only one variable will be 
onsidered.Later the treatment is extended to multiple dimensions.If the fun
tion f is analyti
 we 
an represent it by its Taylor series expanded aboutsome point, x = x̄

f(x) = f(x̄) + f ′(x̄)(x − x̄) +
f ′′(x̄)

2!
(x − x̄)2 +

f (3)(x̄)

3!
(x − x̄)3 + . . . (1)A 
ommonly used approximation is obtained by trun
ating the series after a �nitenumber of terms. As more terms are in
luded, a lo
ally better approximation isa
hieved sin
e the remainder (the sum of high-order terms) 
onverges as O(|x−x̄|n+1)(this holds even when f is not analyti
). The prin
iple of the Taylor series is thatthe approximation inherits still more 
hara
teristi
s of the true fun
tion in oneparti
ular point as the number of terms in
reases. Although the assumption that

f is analyti
 implies that any desired a

ura
y 
an be a
hieved provided that asu�
ient number of terms are retained, it is in general advi
ed to use a trun
atedseries only in the proximity of the expansion point unless the remainder term hasbeen properly analyzed.Several interpolation formulas are available for deriving polynomial approximationsthat are to be used over an interval. Most of these do not require derivatives but areinstead based on a �nite number of evaluations of the fun
tion. Usually it is thereforemu
h simpler to derive approximations with these formulas. Several textbooks areavailable that deal with interpolation, e.g., [DB74℄, [Ste27℄, [Frö70℄. In the followingwe will 
onsider one parti
ular formula, namely Stirling's interpolation formula. Letthe operators δ and µ perform the following operations (h denotes a sele
ted intervallength)
δf(x) = f(x +

h

2
) − f(x − h

2
) (2)

µf(x) =
1

2

(

f(x +
h

2
) + f(x − h

2
)

)

. (3)With these operators Stirling's interpolation formula used around the point x = x̄



4 2 Power Series Revisited
an be expressed as [Frö70℄
f(x) = f(x̄ + ph) = f(x̄) + pµδf(x̄) + p2

2!
δ2f(x̄) +

(

p + 1
3

)

µδ3f(x̄)

+p2(p2−1)
4!

δ4f(x̄) +

(

p + 2
5

)

µδ5f(x̄) + . . .
(4)Commonly, −1 < p < 1, but in our appli
ation we will allow o

asional use outsidethis interval as we shall see in later se
tions.In this paper the attention is restri
ted to �rst and se
ond-order polynomial approx-imations. The formula (4) is in this 
ase parti
ularly simple

f(x) ≈ f(x̄) + f ′
DD(x̄)(x − x̄) +

f ′′
DD(x̄)

2!
(x − x̄)2 , (5)where

f ′
DD(x̄) =

f(x̄ + h) − f(x̄ − h)

2h
f ′′

DD(x̄) =
f(x̄ + h) + f(x̄ − h) − 2f(x̄)

h2
. (6)One 
an be interpret (5) as a Taylor approximation with the derivatives repla
ed by
entral divided di�eren
es. To assess the a

ura
y of the approximation it is usefulto insert the full Taylor series (1) in pla
e of f(x̄+h) and f(x̄−h). We must assumethat f is analyti
 to 
arry out this analysis

f(x̄) + f ′
DD(x̄)(x − x̄) +

f ′′
DD(x̄)

2!
(x − x̄)2 =

f(x̄) + f ′(x̄)(x − x̄) + f ′′(x̄)
2!

(x − x̄)2

+
(

f(3)(x̄)
3!

h2 + f(5)(x̄)
5!

h4 + . . .
)

(x − x̄) +
(

f(4)(x̄)
4!

h2 + f(6)(x̄)
6!

h4 + . . .
)

(x − x̄)2 .(7)The �rst three terms on the right hand side of (7) are independent of the intervallength, h, and are re
ognized as the �rst three terms of the Taylor series expansionof f . The �remainder� term given by the di�eren
e between (7) and the se
ond-orderTaylor approximation is 
ontrolled by h and will in general deviate from the higherorder terms of the Taylor series expansion of f . As we shall see in the followingse
tion, the possibility of 
ontrolling the remainder term is what makes the inter-polation formula more attra
tive than Taylor approximation in some appli
ations.Certain interval lengths 
an ensure that the remainder term in some sense will be
lose to the higher order terms of the full Taylor series. Fig. 1 shows a typi
alexample on the di�eren
e between a Taylor approximation and an approximationobtained with the interpolation formula.We will now pro
eed with the multidimensional 
ase. Let x be a ve
tor, x ∈ Rn, andlet y = f(x) be a ve
tor fun
tion. There are di�erent ways in whi
h the interpolation
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Figure 1. Comparison of a se
ond-order polynomial approximation obtained withTaylor's formula and one obtained with the interpolation formula. The expansionpoint is x̄ = 2.5 and for the interpolation formula the interval length was sele
ted to
h = 3.5. The solid line shows the true fun
tion, the dot-dashed line is the se
ond-order Taylor approximation while the dashed line is the approximation obtained withthe interpolation formula. Obviously, the Taylor polynomial is a better approxima-tion near the expansion point while further away the error is mu
h higher than forthe approximation obtained with the interpolation formula.formula 
an be extended to multiple dimensions but before addressing this re
all �rstthat the multidimensional Taylor series expansion of f about x = x̄ is given by

y = f(x̄ + ∆x) =
∞
∑

i=0

1

i!
Di

∆xf

= f(x̄) + D∆xf + 1
2!
D2

∆xf + 1
3!
D3

∆xf + . . .

(8)where the operator des
ription employed by [JU94℄ has been adopted:
Di

∆xf =

(

∆x1
∂

∂x1

+ ∆x2
∂

∂x2

+ · · · + ∆xn

∂

∂xn

)i

f(x)

∣

∣

∣

∣

∣

x=x̄

. (9)The operators 
an also be written:
D∆xf =

(

n
∑

p=1

∆xp

∂

∂xp

)

f(x)

∣

∣

∣

∣

∣

x=x̄

D2
∆xf =

(

n
∑

p=1

n
∑

q=1

∆xp∆xq

∂2

∂xp∂xq

)

f(x)

∣

∣

∣

∣

∣

x=x̄

(10)...



6 3 Approximation of Mean and Covarian
eBy again restri
ting our attention to se
ond-order polynomials we will write themultidimensional interpolation formula as
y ≈ f(x̄) + D̃∆xf +

1

2!
D̃2

∆xf . (11)As the divided di�eren
e operators, D̃∆x, D̃
2
∆x, we will use

D̃∆xf =
1

h

(

n
∑

p=1

∆xpµpδp

)

f(x̄) (12)
D̃2

∆xf =
1

h2

(

n
∑

p=1

(∆xp)
2δ2

p +
n
∑

p=1

n
∑

q=1,q 6=p

∆xp∆xq(µpδp)(µqδq)

)

f(x̄) , (13)where δp has been introdu
ed as the �partial� di�eren
e operator
δpf(x̄) = f(x̄ +

h

2
ep) − f(x̄ − h

2
ep) , (14)and ep is the pth unit ve
tor. A similar extension was made of the average operator

µ.The formula (11) is just one example of a multidimensional extension of the in-terpolation formula. To illustrate how others 
an be derived, the following lineartransformation of x is introdu
ed:
z = S−1x , (15)and the fun
tion f̃ is de�ned bỹ

f(z) ≡ f(Sz) = f(x) . (16)While the Taylor approximation of f̃ is identi
al to that of f , it is obviously not the
ase that the multidimensional interpolation formula (11) yields the same results for
f and f̃ . Sin
e

2µpδpf̃(z̄) = f̃(z̄ + hep) − f̃(z̄ − hep) = f(x̄ + hsp) − f(x̄ − hsp) , (17)where sp denotes the pth 
olumn of S, D̃∆xf and D̃2
∆xf will 
learly deviate from

D̃∆zf̃ and D̃2
∆zf̃ .In the following se
tion we are going to use the interpolation formula in a sto
hasti
framework. In this 
ase a parti
ularly useful 
hoi
e of transformation matrix (S)and interval length (h) exists.3 Approximation of Mean and Covarian
eLet x be a ve
tor of sto
hasti
 variables for whi
h the expe
tation and 
ovarian
eare available

x̄ = E[x], Px = E
[

(x − x̄)(x − x̄)T
]

. (18)



3.1 A First-order Approximation 7We would now like to determine
ȳT = E[f(x)] (19)

(Py)T = E
[

(f(x) − ȳT )(f(x) − ȳT )T
] (20)

(Pxy)T = E
[

(x − x̄)(f(x) − ȳT )T
]

. (21)As f is nonlinear we 
annot rely on being able to 
al
ulate the exa
t expe
tations.Instead it is 
ustomary to insert a �rst or se
ond-order polynomial approximation inpla
e of f before taking the expe
tations. In this se
tion we will fo
us on estimatesof the expe
tations obtained using the interpolation formula in (11) for approxima-tion of f . Additionally, we shall �nd it parti
ularly useful to work with a lineartransformation of x as des
ribed above. The transformation matrix is sele
ted as asquare Cholesky fa
tor of the 
ovarian
e matrix [S
h97℄:
z = S−1

x x, Px = SxS
T
x . (22)This transformation is sometimes said to perform a sto
hasti
 de
oupling of thevariables in x as the elements of z be
ome mutually un
orrelated (and ea
h withunity varian
e):

E
[

(z − E[z])(z − E[z])T
]

= I . (23)We shall in the following use a rather wide interpretation of the so-
alled Choleskyfa
torization. For any symmetri
 matrix produ
t M = SST we will refer to S asa Cholesky fa
tor. Thus, the Cholesky fa
tor need not be square and triangular.However, most often a triangular Cholesky fa
tor is 
onsidered as 
omputationallye�
ient methods are available for performing su
h fa
torizations.In the following subse
tions we shall work with f̃(z) dire
tly as this is most 
onve-nient. A few assumptions on f̃ (f) and z will be invoked. f̃ must in prin
iple bede�ned for all z ∈ Rn and the elements of ∆z = z − E[∆z] are assumed to belongto the same (zero mean) distribution. In Se
tion 3.2 it is additionally assumed that
∆z is Gaussian. For analysis purposes it is in Se
tion 3.3 assumed that f̃ is analyti
and that ∆z is Gaussian. It should be stressed, however, that it is not ne
essary for
f̃ to be analyti
 to apply the estimators.3.1 A First-order ApproximationFirst estimates of mean and 
ovarian
e will be derived by repla
ing the fun
tion f̃by a �rst-order approximation

y = f̃(z̄ + ∆z) ≈ f̃(z̄) + D̃∆zf̃ . (24)As the expe
tation E[∆z] = 0 by de�nition, the expe
tation of (24) is
ȳ = E[f̃(z̄) + D̃∆zf̃ ] = f̃(z̄) = f(x̄) (25)



8 3 Approximation of Mean and Covarian
eAn estimate of the 
ovarian
e (20) is derived along the same lines. As before,the �rst-order moments 
an be negle
ted sin
e ∆z is zero mean. Moreover, the
ross-terms evaluate to zero as z has been generated so that the 
ross-
orrelations
E[∆zi∆zj ] = 0, i 6= j.

Py = E

[

(

f̃(z̄) + D̃∆zf̃ − f̃(z̄)
)(

f̃(z̄) + D̃∆zf̃ − f̃(z̄)
)T
]

= E

[

(

D̃∆zf̃(z)
)(

D̃∆zf̃(z)
)T
]

= E





(

n
∑

p=1

∆zpµpδpf̃(z̄)

)(

n
∑

p=1

∆zpµpδpf̃(z)

)T




= σ2

n
∑

p=1

(

µpδpf̃(z̄)
)(

µpδpf̃(z)
)T

=
1

4h2

n
∑

p=1

(

f̃(z̄ + hep) − f̃(z̄ − hep)
)(

f̃(z̄ + hep) − f̃(z̄ − hep)
)T

. (26)We shall denote the ith moment of an arbitrary element in ∆z by σi. As all elementsare assumed to be equally distributed their moments are obviously identi
al. Asdis
ussed above, σ2 = 1. Higher moments depend on the distribution of ∆z.Re
alling that f̃(z̄ ± hep) = f(x̄± hsx,p), where sx,p is the pth 
olumn of the squareCholesky fa
tor of the 
ovarian
e matrix Sx, (26) 
an also be written
Py =

1

4h2

n
∑

p=1

(f(x̄ + hsx,p) − f(x̄ − hsx,p)) (f(x̄ + hsx,p) − f(x̄ − hsx,p))
T (27)The estimate of the 
ross-
ovarian
e matrix 
an be derived a long the same lines

Pxy = E

[

(x − x̄)
(

f̃(z̄) + D̃∆zf̃ − f̃(z̄)
)T
]

= E

[

(Sx∆z)
(

D̃∆zf̃
)T
]

= E





n
∑

p=1

sx,p∆zp

(

n
∑

p=1

∆zpµpδpf̃(z)

)T




= σ2

[

n
∑

p=1

sx,p

(

µpδpf̃(z)
)T

]

=
1

2h

n
∑

p=1

sx,p

(

f̃(z̄ + hep) − f̃(z̄ − hep)
)T

, (28)



3.2 A Se
ond-order Approximation 9whi
h we 
an also write
Pxy = 1

2h

∑n
p=1 sx,p (f(x̄ + hsx,p) − f(x̄ − hsx,p))

T (29)It is not 
lear from the derivations how the interval length, h, should be sele
ted.The mean estimate is independent of the parameter while it has an obvious impa
ton the estimate of the 
ovarian
e matri
es. In Se
tion 3.3 
overing the analysis ofthe estimates it is shown that the optimal setting of h is di
tated by the distributionof ∆z. It turns out that h2 should equal the kurtosis of the distribution, h2 = σ4.3.2 A Se
ond-order ApproximationMore a

urate estimates of mean and 
ovarian
e of f̃ 
an be obtained with a limitedextra e�ort by approximating the fun
tion with a se
ond-order polynomial derivedwith the interpolation formula:
y ≈ f̃(z̄) + D̃∆zf̃ +

1

2
D̃2

∆zf̃

= f̃(z̄) +
1

h

(

n
∑

p=1

∆zpµpδp

)

f̃(z̄)

+
1

2h2

(

n
∑

p=1

(∆zp)
2δ2

p +

n
∑

p=1

n
∑

q=1,q 6=p

∆zp∆zq(µpδp)(µqδq)

)

f̃(z̄) . (30)To obtain useful results the assumptions on ∆z will now be slightly more restri
tiveas we demand that it is Gaussian. Sin
e ∆z is zero mean and the elements areun
orrelated, this new assumption implies that the elements are independent andthe distribution is symmetri
. The assumption is not needed for derivation of themean estimate, but it is important when deriving the improved 
ovarian
e estimate.Utilizing that ∆z is zero mean and its elements are un
orrelated, the expe
tation of
f̃ 
an be estimated by

ȳ = E

[

f̃(z̄) +
1

2

(

n
∑

p=1

(∆zp)
2δ2

p

)

f̃(z̄)

]

= f̃(z̄) +
σ2

2

n
∑

p=1

δ2
p f̃(z̄)

= f̃(z̄) +
1

2h2

n
∑

p=1

(

f̃(z̄ + hep) + f̃(z̄ − hep)
)

− n

h2
f̃(z̄)

=
h2 − n

h2
f̃(z̄) +

1

2h2

n
∑

p=1

(

f̃(z̄ + hep) + f̃(z̄ − hep)
) (31)



10 3 Approximation of Mean and Covarian
e
m

ȳ =
h2 − n

h2
f(x̄) +

1

2h2

n
∑

p=1

f(x̄ + hsx,p) + f(x̄ − hsx,p) (32)We will now pro
eed with a derivation of a 
ovarian
e estimate. First we observethat
(Py)T = E[(y − ȳ)(y − ȳ)T ]

= E[(y − f̃(z̄))(y − f̃(z̄))T ] − E[y − f̃(z̄)]E[y − f̃(z̄)]T . (33)The estimate 
an therefore be written
Py = E

[

(

D̃∆zf̃ +
1

2
D̃2

∆zf̃

)(

D̃∆zf̃ +
1

2
D̃2

∆zf̃

)T
]

− E

[

D̃∆zf̃ +
1

2
D̃2

∆zf̃

]

E

[

D̃∆zf̃ +
1

2
D̃2

∆zf̃

]T

= E

[

D̃∆zf̃
(

D̃∆zf̃
)T
]

+
1

4
E

[

D̃2
∆zf̃

(

D̃2
∆zf̃
)T
]

− 1

4
E
[

D̃2
∆zf̃
]

E
[

D̃2
∆zf̃

]T

. (34)The se
ond step was taken by using the fa
t that all odd order moments 
an
el asthe elements of ∆z are independent and the distribution symmetri
. The �rst termin (34) is re
ognized as the 
ovarian
e based on a �rst-order approximation of f̃ andhas already been dealt with. Let us instead take a 
loser look at the two remainingterms:
E

[

D̃2
∆zf̃

(

D̃2
∆zf̃
)T
] is 
omposed of 3 kinds of terms

E

[

(

(∆zi)
2δ2

i f̃
)(

(∆zi)
2δ2

i f̃
)T
]

=
(

δ2
i f̃
)(

δ2
i f̃
)T

σ4 , (35)
E

[

(

(∆zi)
2δ2

i f̃
)(

(∆zj)
2δ2

j f̃
)T
]

=
(

δ2
i f̃
)(

δ2
j f̃
)T

σ2
2 , (36)

E

[

(

∆zi∆zjµiδiµjδj f̃
)(

∆zi∆zjµiδiµjδj f̃
)T
]

=
(

µiδiµjδj f̃
)(

µiδiµjδj f̃
)T

σ2
2 .(37)

E
[

D̃2
∆zf̃
]

E
[

D̃2
∆zf̃
]T is 
omposed of 2 kinds of terms

E
[

(∆zi)
2δif̃

]

E
[

(∆zi)
2δif̃

]T

=
(

δ2
i f̃
)(

δ2
i f̃
)T

σ2
2 , (38)

E
[

(∆zi)
2δif̃

]

E
[

(∆zj)
2δj f̃

]T

=
(

δ2
i f̃
)(

δ2
j f̃
)T

σ2
2 . (39)



3.2 A Se
ond-order Approximation 11All of the above terms appear for ∀i, ∀j, i 6= j.The terms in (36) and (39) are identi
al and 
an
el when subtra
ted. Additionally,we will dis
ard the terms 
ontaining 
ross-di�eren
es (37). This is done be
ause theirin
lusion would lead to an ex
essive in
rease in the amount of 
omputations as thenumber of su
h terms grows rapidly with the dimension of z. Moreover, the termsea
h require four additional evaluations of f for ea
h dimension. The reason for not
onsidering the extra e�ort worthwhile is that we are unable to 
apture all fourthmoments anyway. This would require that f was approximated by a third-orderpolynomial (more details on this are given in Se
tion 3.3).Thus, we arrive at the following 
ovarian
e estimate
Py = σ2

n
∑

p=1

(

µpδpf̃(z̄)
)(

µpδpf̃(z)
)T

+
σ4 − σ2

2

4

n
∑

p=1

(

δ2
p f̃(z̄)

)(

δ2
p f̃(z)

)T

=
σ2

4h2

n
∑

p=1

(

f̃(z̄ + hep) − f̃(z̄ − hep)
)(

f̃(z̄ + hep) − f̃(z̄ − hep)
)T

+
σ4 − σ2

2

4h4

n
∑

p=1

(

f̃(z̄ + hep) + f̃(z̄ − hep) − 2f̃(z̄)
)

×

(

f̃(z̄ + hep) + f̃(z̄ − hep) − 2f̃(z̄)
)T

. (40)Inserting that σ2 = 1 and setting h2 = σ4 (= 3 for a Gaussian distribution) give
Py = 1

4h2

∑n

p=1 [f(x̄ + hsx,p) − f(x̄ − hsx,p)] [f(x̄ + hsx,p) − f(x̄ − hsx,p)]
T

+ h2−1
4h4

∑n

p=1 [f(x̄ + hsx,p) + f(x̄ − hsx,p) − 2f(x̄)]×
[f(x̄ + hsx,p) + f(x̄ − hsx,p) − 2f(x̄)]T (41)As

σ4 − σ2
2 = E[(∆z)4] − E[(∆z)2]2 = V ar[(∆z)2] > 0 , (42)

σ4 ≥ σ2
2 for all probability distributions. Therefore, we should always sele
t h2 ≥ 1.Obviously, this implies that the 
ovarian
e estimate will always be positive semidef-inite.The 
ross-
ovarian
e estimate, Pxy, turns out to be the same as when the �rst-orderapproximation is employed (29):

Pxy = E

[

(Sx∆z)

(

D̃∆zf̃ +
1

2
D̃2

∆zf̃

)T
]

= E

[

(Sx∆z)
(

D̃∆zf̃
)T
]

=
1

2h

n
∑

p=1

sx,p (f(x̄ + hsx,p) − f(x̄ − hsx,p))
T . (43)



12 3 Approximation of Mean and Covarian
e3.3 Analysis of the ApproximationsIn this se
tion the performan
e of the proposed mean and 
ovarian
e estimators willbe evaluated. The analysis pro
eeds a

ording to the approa
h employed in [JU94℄.That is, under the assumption that z is Gaussian and the fun
tion f is analyti
,the Taylor series of the true mean and 
ovarian
e are 
ompared on a term-by-termbasis with the Taylor series expansion of the estimators.The derivative operator, Di
∆z, has already been introdu
ed in (9):

Di
∆zf̃ =

(

n
∑

p=1

∆zp

∂

∂zp

)i

f̃(z)

∣

∣

∣

∣

∣

∣

z=z̄

. (44)Additionally, the following partial derivative operator will be useful during the anal-ysis:
Di

hep
f̃ = hi∇i

pf̃ = hi ∂
if̃(z)

∂zi
p

∣

∣

∣

∣

∣

z=z̄

. (45)It is not di�
ult to see that
1

h2

n
∑

p=1

Di
hep

f̃ = hi−2
n
∑

p=1

∇i
pf̃ (46)

E
[

Di
∆zf̃
]

= σi

n
∑

p=1

∇i
pf̃ + [
ross-terms if i ≥ 4] . (47)It was mentioned previously that the Gaussian assumption implies that the elementsof ∆z are mutually independent and that the distribution of ∆z is symmetri
. Thus,all odd moments evaluate to zero in (47). The 
ross-terms are terms 
ontaining prod-u
ts of derivatives w.r.t. di�erent variables and terms 
ontaining 
ross-derivatives.In a similar fashion we 
an evaluate the produ
ts:

1

h2

n
∑

p=1

Di
hep

f̃
(

Dj
hep

f̃
)T

= hi+j−2
n
∑

p=1

(

∇i
pf̃
)(

∇j
pf̃
)T (48)

E

[

Di
∆zf̃

(

Dj
∆zf̃

)T
]

= σi+j

n
∑

p=1

(

∇i
pf̃
)(

∇j
pf̃
)T

+ [
ross-terms if i + j ≥ 4] . (49)For the reasons 
alled attention to above, (49) evaluate to zero for i + j odd.If, for a moment, we negle
t the 
ross-terms in (47) and (49), the di�eren
e betweenthe pair (46), (48) and the pair (47), (49) is for the even terms alone given bythe dis
repan
y between hi+j and σi+j+2. As ∆z is Gaussian we have that [Pap84℄
σ2i = 1×3×· · ·× (2i−1)σi

2. Thus, the moment grows fa
torially with i. As σ2 = 1



3.3 Analysis of the Approximations 13we have σ2i = {1, 3, 15, 105, ...}. In the se
ond-order 
ase (i.e., i = 2 or i = j = 1,respe
tively) the terms will agree regardless of the 
hoi
e of h. If we sele
t h2 asthe kurtosis, h2 = σ4 = 3, the terms will also agree in the fourth-order 
ase (ex
eptfor the 
ross-terms, whi
h remain unmat
hed). In the higher order 
ases, (46) and(48) will underestimate (47) and (49), respe
tively, as h2(i+j) grows geometri
allyand therefore will be ex
eeded by σ2i+2j+2 from the sixth order.Series expansion of the true quantitiesFirst the Taylor series expansion of the true expressions for mean and 
ovarian
es(19), (20), (21) are determined. As the Taylor series of f̃ expanded around z = z̄ isgiven by
y = f̃(z) +

∞
∑

i=1

D2i
∆zf̃

(2i)!
(50)we have for the true mean

ȳT = E[y] = f̃(z̄) + E

[

∞
∑

i=1

D2i
∆zf̃

(2i)!

]

= f̃(z̄) +

∞
∑

i=1

σ2i

(2i)!

n
∑

p=1

∇2i
p f̃ + [
ross-terms if i ≥ 4]. (51)For the true 
ovarian
e we get

(Py)T = E[(y − f̃(z̄))(y − f̃(z̄))T ] − E[y − f̃(z̄)]E[y − f̃(z̄)]T

= E

[

∞
∑

i=1

Di
∆zf̃

i!

∞
∑

j=1

(Dj
∆zf̃)T

j!

]

− E

[

∞
∑

i=1

D2i
∆zf̃

(2i)!

]

E

[

∞
∑

i=1

D2i
∆zf̃

(2i)!

]

= E

[

D∆zf̃
(

D∆zf̃
)T

+
D∆zf̃(D3

∆zf̃)T

3!
+

D2
∆zf̃(D2

∆zf̃)T

2 × 2!
+

D3
∆zf̃(D∆zf̃)T

3!

]

− E

[

D2
∆zf̃

2!

]

E

[

D2
∆zf̃

2!

]T

+ · · ·

=
∞
∑

i=0

∞
∑

j=0

σ2(i+j)+2

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃

)(

∇2j+1
p f̃

)T

+

∞
∑

i=1

∞
∑

j=1

σ2(i+j) − σ2iσ2j

(2i)!(2j)!

n
∑

p=1

(

∇2i
p f̃
)(

∇2j
p f̃
)T

+ [
ross-terms if i + j ≥ 4] (52)while for the 
ross-
ovarian
e we have
(Pxy)T = E

[

(x − x̄)(f̃(z) − ȳT )T
]
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e
= E

[

(x − x̄)(f̃(z) − f̃(z̄))T
]

= E

[

Sx∆z

(

∞
∑

i=0

(D2i+1
∆z f̃)T

(2i + 1)!

)]

= E

[

Sx∆z
(

D∆zf̃
)T
]

+ E

[

Sx∆z(D3
∆zf̃)T

(3)!

]

+ · · ·

=

n
∑

p=1

sx,p

(

∞
∑

i=0

σ2i+2

(2i + 1)!
∇2i+1

p f̃

)T

+ [
ross-terms if i ≥ 3] . (53)Series expansion of the mean estimatesThe mean estimate based on the �rst-order approximation of f̃ (25) is simply the�rst term of the Taylor series:
ȳ = f̃(z̄) (54)while the Taylor series expansion of the mean estimate based on the se
ond-orderapproximation in (31) is

ȳ =
h2 − n

h2
f̃(z̄) +

1

2h2

n
∑

p=1

f̃(z̄ + hep) + f̃(z̄ − hzp)

=
h2 − n

h2
f̃(z̄) +

1

2h2

n
∑

p=1

(

2f̃(z̄) +

∞
∑

i=0

Di
hep

f̃(z̄)

i!
+

(−Dhep
)if̃(z̄)

i!

)

= f̃(z̄) +
1

h2

∞
∑

i=1

n
∑

p=1

D2i
hep

f̃(z̄)

(2i)!

= f̃(z̄) +
∞
∑

i=1

h2i−2

(2i)!

n
∑

p=1

∇2i
p f̃ . (55)The estimate based on a �rst-order approximation (54) is the same as if we had usedan ordinary Taylor linearization of f . That is, the approximation error equals these
ond and higher order terms in the series expansion of the true mean (51).For the estimate based on the se
ond-order approximation we have the followingapproximation error for element k (obtained by subtra
ting (55) from (51)):

R̄2(k) =

∞
∑

i=3

σ2i − h2i−2

(2i)!

n
∑

p=1

∇2i
p f̃k + 
ross-terms. (56)Noti
e that the outer sum starts in i = 3 as h2 = σ4. Fourth-order derivatives are stillpresent in the 
ross-terms, however. It is interesting to 
ompare this approximation



3.3 Analysis of the Approximations 15error to the error of a mean estimate obtained by employing a se
ond-order Taylorapproximation of f̃ as this is the traditional approa
h:
R2(k) =

∞
∑

i=2

σ2i

(2i)!

n
∑

p=1

∇2i
p f̃k + 
ross-terms. (57)In the general 
ase it is not possible to 
on
lude that |R̄2(k)| always will be smallerthan |R2(k)| as the various derivatives 
an take any sign. However, one thing that
an be said is that the magnitude of R2(k) will be bounded from above by

|R2(k)| ≤ M2 =

∞
∑

i=2

σ2i

(2i)!

∣

∣

∣

∣

∣

n
∑

p=1

∇2i
p f̃k

∣

∣

∣

∣

∣

+ |
ross-terms| (58)while |R̄2(k)| will be bounded by
|R̄2(k)| ≤ M̄2 =

∞
∑

i=3

σ2i − h2i−2

(2i)!

∣

∣

∣

∣

∣

n
∑

p=1

∇2i
p f̃k

∣

∣

∣

∣

∣

+ |
ross-terms| . (59)As h2i−2 < σ2i, ∀i ≥ 3 we have that M̄2 ≤ M2. The equality sign holds only whenall the sums of derivatives in (58), (59) are 0. Thus, in general |R̄2(k)| has a lowerupper bound than |R2(k)|.To get an impression of the magnitude of the upper bound we observe that (re
allthat σ2 = 1, h2 = σ4 = 3, σ2i = 1 × 3 × · · · × (2i − 1)σ2i
2 ):

{

σ2i

(2i)!

}∞

1

=

{

1

2
× 1

4
× 1

6
× · · · × 1

2i

}∞

1

= {0.5, 0.125, 0.0208, 0.0026, . . .} (60)
{

h2i−2

(2i)!

}∞

1

=

{

1

2
,
1

8
,

1

48
,

1

384
, . . .

}

= {0.5, 0.125, 0.0125, 0.00067, . . .} . (61)Both fra
tions de
ay rapidly with i. Espe
ially the fra
tions in (61) as the numeratorin this 
ase does not grow fa
torially. It is therefore reasonable to assume that also
σ2i

(2i)!

∣

∣

∣

∣

∣

n
∑

p=1

∇2i
p f̃k

∣

∣

∣

∣

∣

(62)typi
ally will de
ay rapidly with i and that the �rst few terms of the sum in (58)will dominate. If the upper bounds, M̄2, M2, are not dominated by the 
ross-terms,
M̄2 ≪ M2 as σ2i−h2i−2

(2i)!

∣

∣

∣

∑n
p=1 ∇2i

p f̃k

∣

∣

∣
is 0 for i = 2 and less than half the size of (62)for i = 3. Re
all that in the one-dimensional 
ase there are no 
ross-terms. In this
ase errors are not introdu
ed until the terms of order 6; i.e., a sixth-order Taylorapproximation of f̃ would be ne
essary to a
hieve a better a

ura
y than what iso�ered by (55).



16 3 Approximation of Mean and Covarian
eSeries expansion of the 
ovarian
e estimatesThe same approa
h as above will now be used for assessing the a

ura
y of the
ovarian
e estimates. Note �rst that
1

2h

(

f̃(z̄ + hep) − f̃(z̄ − hep)
)

=
1

2h

∞
∑

i=0

Di
hep

f̃

i!
−
(

−Dhep

)i
f̃

i!

=
1

h

∞
∑

i=0

D
(2i+1)
hep

f̃

(2i + 1)!
(63)

1

2

(

f̃(z̄ + hep) + f̃(z̄ − hep) − 2f̃(z̄)
)

=
1

2h

∞
∑

i=0

Di
hep

f̃

i!
+

(

−Dhep

)i
f̃

i!

=
∞
∑

i=1

D2i
hep

f̃

(2i)!
. (64)Thus, when inserting the Taylor series in the estimate based on the �rst-order ap-proximation (26) the following is obtained

Py =
1

h2

∞
∑

i=0

∞
∑

j=0

n
∑

p=1

D
(2i+1)
hep

f̃

(2i + 1)!

(

D
(2j+1)
hep

f̃
)T

(2j + 1)!

=
1

h2

n
∑

p=1

Dhep
f̃
(

Dhep
f̃
)T

+
1

h2

n
∑

p=1

(

Dhep
f̃(D3

hep
f̃)T

3!
+

D3
hep

f̃(Dhep
f̃)T

3!

)

+ · · ·

=
∞
∑

i=0

∞
∑

j=0

h2(i+j)

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃

)(

∇2j+1
p f̃

)T

. (65)Similarly, we get for the estimate based on the se
ond-order approximation (41):
Py =

1

h2

n
∑

p=1

(

∞
∑

i=0

D2i+1
hep

f̃

(2i + 1)!

)(

∞
∑

i=0

D2i+1
hep

f̃

(2i + 1)!

)T

+
1

h2

n
∑

p=1

(

∞
∑

i=1

D2i
hep

f̃

(2i)!

)(

∞
∑

i=1

D2i
hep

f̃

(2i)!

)T

− 1

h4

n
∑

p=1

(

∞
∑

i=1

D2i
hep

f̃

(2i)!

)(

∞
∑

i=1

D2i
hep

f̃

(2i)!

)T

=
1

h2

n
∑

p=1

Dhep
f̃
(

Dhep
f̃
)T
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+

1

h2

n
∑

p=1

(

Dhep
f̃(D3

hep
f̃)T

3!
+

D2
hep

f̃(D2
hep

f̃)T

(2!)(2!)
+

D3
hep

f̃(Dhep
f̃)T

3!

)

− 1

h4

n
∑

p=1

(

D2
hep

f̃(D2
hep

f̃)T

(2!)(2!)

)

+ · · ·

=

∞
∑

i=0

∞
∑

j=0

h2(i+j)

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃

)(

∇2j+1
p f̃

)T

+
∞
∑

i=1

∞
∑

j=1

h2(i+j)−2 − h2i−2h2j−2

(2i)!(2j)!

n
∑

p=1

∇2i
p f̃
(

∇2j
p f̃
)T

. (66)As before we will 
ompare the new estimates with estimates obtained using Taylorapproximations in pla
e of f̃ . For 
onvenien
e we shall �rst look at the se
ond-order approximation. The approximation error for element (k, l) in the 
ovarian
eestimate obtained by employing a se
ond-order Taylor approximation in pla
e of f̃is
Q2(k, l) =

∞
∑

i=0
j 6=0

∞
∑

j=0
i6=0

σ2(i+j)+2

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃k

)(

∇2j+1
p f̃l

)T

+

∞
∑

i=1
j 6=1

∞
∑

j=1
i6=1

σ2(i+j) − σ2iσ2j

(2i)!(2j)!

n
∑

p=1

(

∇2i
p f̃k

)(

∇2j
p f̃l

)T

+ [
ross-terms] . (67)The subs
ripts on the �rst double sum mean that the 
ase i = j = 0 is not in
luded.Likewise, for the se
ond double sum the 
ase i = j = 1 is not in
luded. To allowa 
omparison, the terms 
ontaining produ
ts of se
ond-order 
ross-derivatives havebeen dis
arded as (37) was dis
arded for 
omputational 
onvenien
e (i.e., the termsare in
luded in the �
ross-terms�). It should be noti
ed that in the 
ovarian
e es-timate employed by the 
onventional se
ond-order Gaussian �lter these terms areusually 
al
ulated.In a similar fashion as above, by subtra
ting (52) and (66), it is possible to write upthe approximation error for the 
ovarian
e estimate based on the new se
ond-orderapproximation of f̃ :
Q̄2(k, l) =

∞
∑

i=1

∞
∑

j=1

σ2(i+j)+2 − h2(i+j)

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃k

)(

∇2j+1
p f̃l

)T

+

∞
∑

i=1
j 6=1

∞
∑

j=1
i6=1

σ2(i+j) − σ2iσ2j − h2(i+j)−4(h2 − 1)

(2i)!(2j)!

n
∑

p=1

(

∇2i
p f̃k

)(

∇2j
p f̃l

)T

+ [
ross-terms] . (68)As
σ2(i+j)+2 > σ2(i+j)+2 − h2(i+j) > 0

σ2(i+j) − σ2iσ2j > σ2(i+j) − σ2iσ2j − h2(i+j)−4(h2 − 1) > 0 ,
(69)
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an use the same argumentation as was applied to evaluate the mean estimatesand 
on
lude that |Q̄2(k, l)| has a lower upper bound than |Q2(k, l)|. The new
ovarian
e estimate is therefore better than if we had inserted a se
ond-order Taylor-approximation (without the 
ross-derivatives) of f̃ . The missing fourth-order termsin (66) are the terms taking the form ( ∂f̃

∂zp

)(

∂3f̃

∂zp∂z2
q

)T

σ2
2 and ( ∂2f̃

∂z2
p∂z2

q

)(

∂2f̃

∂z2
p∂z2

q

)T

σ2
2 .The last mentioned terms 
ould have been present in the estimate had the 
ross-di�eren
es (37) not been dis
arded from the approximation of f̃ .Noti
e that for the one-dimensional 
ase there are no 
ross-terms and all the sumsare made over positive numbers. Thus, one 
an in this 
ase skip the |·|. Additionally,errors will obviously not appear until in the sixth-order terms for the estimate (66).The approximation error for the 
ovarian
e estimate based on the divided di�eren
elinearization of f̃ is

Q̄1(k, l) =

∞
∑

i=1

∞
∑

j=1

σ2(i+j)+2 − h2(i+j)

(2i + 1)!(2j + 1)!

n
∑

p=1

(

∇2i+1
p f̃k

)(

∇2j+1
p f̃l

)T

+

∞
∑

i=1

∞
∑

j=1

σ2(i+j) − σ2iσ2j

(2i)!(2j)!

n
∑

p=1

(

∇2i
p f̃k

)(

∇2j
p f̃l

)T

+ [
ross-terms] (70)The approximation error for the 
ovarian
e estimate based on a Taylor lineariza-tion of f̃ , Q1(k, l), is identi
al ex
ept that the quantity h2(i+j) is not subtra
ted.Obviously, |Q̄1(k, l)| will therefore have a lower upper bound than |Q1(k, l)|. Theestimate will also have a lower upper bound than the estimate suggested in [S
h97℄as in this paper h = 1.For the estimate of the 
ross-
ovarian
e matrix, Pxy, given by (28) we have
Pxy =

1

h

n
∑

p=1

sx,p

(

∞
∑

i=0

D2i+1
hep

f̃

(2i + 1)!

)T

=
1

h

n
∑

p=1

sx,p

(

∞
∑

i=0

h2i+1

(2i + 1)!
∇2i+1

p f̃

)T

. (71)The 
on
lusions above are valid for this estimate as well. The errors are againintrodu
ed on fourth-order terms in the series as the 
ross-derivative terms,
sx,p

(

∂3f̃

∂zp∂z2
q

)T

σ2
2, p 6= q, do not appear in the series expansion of the estimate.However, unlike for the estimate based on a Taylor approximation, some of thefourth-order terms are mat
hed with the new estimate.4 State Estimation for Nonlinear SystemsWe have now arrived at the 
entral issue of this note, namely state estimation fornonlinear systems. Two new �lters will be suggested that are based on the previ-ously derived polynomial approximations. The �lters are fundamentally di�erent



4.1 Review of State Estimation for Nonlinear Systems 19from �lters based on Taylor approximations in that the polynomial approximationsunderlying the new �lters take into a

ount the un
ertainty on the state estimate.The Taylor approximation underlying 
onventional �lter designs for nonlinear sys-tems, su
h as the EKF, depends only on the 
urrent state estimate and not on itsvarian
e. Nevertheless, the new �lters 
an generally be implemented more easily asno derivatives are required.The �rst �lter we shall derive is based on a �rst-order polynomial approximation.This estimator is a generalized version of the �lter presented in [S
h97℄. Subse-quently, a more a

urate �lter will be derived that also in
ludes se
ond-order terms.It turns out that this �lter has 
ertain similarities with the uns
ented �lter des
ribedin [JU94℄, [JUDW95℄.4.1 Review of State Estimation for Nonlinear SystemsConsider the following general nonlinear model of a dynami
 system whose statesare to be estimated
xk+1 = f(xk, uk, vk) (72)

yk = g(xk, wk) . (73)
vk and wk are assumed i.i.d. and independent of 
urrent and past states, vk ∼
(v̄k, Q(k)), wk ∼ (w̄k, R(k)).The 
ommonly used state estimation prin
iple for nonlinear systems is brie�y out-lined in the following. In-depth treatments of the topi
 
an be found in [Lew86℄,[GKN+74℄, [May82℄. Ideally, we would like to determine the a priori state and 
o-varian
e estimates like in the Kalman �lter. That is, as the 
onditional expe
tations

x̄k = E[xk|Y k−1] (74)
P̄ (k) = E

[

(xk − x̄k)(xk − x̄k)
T |Y k−1

]

, (75)where Y k−1 is a matrix 
ontaining the past measurements
Y k−1 =

[

y0 y1 ... yk−1

]T
. (76)For 
onvenien
e, the measurement (a posteriori) update of the state estimate isusually restri
ted to be linear in the measurements. Sele
ting the update so thatthe (
onditional) 
ovarian
e of the estimation error is minimized, we obtain thefollowing [Lew86℄:

Kk = Pxy(k)P−1
y (k) (77)

x̂k = x̄k + Kk[yk − ȳk] , (78)where
ȳk = E[yk|Y k−1] (79)

Pxy(k) = E
[

(xk − x̄k)(yk − ȳk)
T |Y k−1

] (80)
Py(k) = E

[

(yk − ȳk)(yk − ȳk)
T |Y k−1

]

. (81)



20 4 State Estimation for Nonlinear SystemsThe 
orresponding update of the 
ovarian
e matrix is
P̂ (k) = E

[

(xk − x̂k)(xk − x̂k)
T |Y k

]

= P̄ (k) − KkPyy(k)KT
k . (82)As the various expe
tations generally are intra
table, some kind of approximationis 
ommonly used; e.g., it is well-known that the extended Kalman �lter is based onTaylor linearization of state transition and output equations (72), (73). The EKFequations are listed below to allow the reader to 
ompare its 
omplexity with thatof the �lters derived in the following. A treatment of the se
ond-order �lters maybe found in [May82℄.The state transition and observation equations are approximated by �rst-order poly-nomials

xk+1 ≈ f(x̂k, uk, v̄k) + Fx(k)(xk − x̂k) + Fv(k)(vk − v̄k) (83)
yk ≈ g(x̄k, w̄k) + Gx(k)(xk − x̄k) + Gw(k)(wk − w̄k) , (84)where

Fx(k) =
∂f(x, uk, v̄k)

∂x

∣

∣

∣

∣

x=x̂k

Fv(k) =
∂f(x̂k, uk, v)

∂v

∣

∣

∣

∣

v=v̄k

Gx(k) =
∂g(x, w̄k)

∂x

∣

∣

∣

∣

x=x̄k

Gw(k) =
∂f(x̄k, w)

∂w

∣

∣

∣

∣

w=w̄k

. (85)When these approximations are inserted we arrive at [Lew86℄:A priori update:
x̄k+1 = f(x̂k, uk, vk) (86)

ȳk = g(x̄k, wk) (87)
P̄ (k + 1) = Fx(k)P̂ (k)Fx(k)T + Fv(k)Q(k)Fv(k)T (88)A posteriori updates:

Kk = P̄ (k)Gx(k)T
[

Gx(k)P̄ (k)Gx(k)T + Gw(k)R(k)Gw(k)T
]−1 (89)

x̂k = x̄k + Kk[yk − ȳk] (90)
P̂ (k) = [I − KkGw(k)] P̄ (k) (91)In the following subse
tions we will pursue the use of approximations obtained withthe interpolation formula for derivation of state estimators for nonlinear systems.4.2 The DD1 FilterIn this se
tion a generalized version of the nonlinear state estimation s
heme sug-gested in [S
h97℄ will be des
ribed. The �lter is derived by employing the �rst-order



4.2 The DD1 Filter 21approximation presented in Se
tion 3.1. In prin
iple this 
orresponds to the EKFex
ept that the Ja
obians (85) are repla
ed by divided di�eren
es. The state up-date is therefore the same as in the extended Kalman �lter. The di�eren
e is alonefound in the update of the various 
ovarian
e matri
es. Generally, they 
an be im-plemented more easily. We will use an approa
h mu
h like the one suggested in[S
h97℄. One of the parti
ularly useful ideas provided in this paper is to update theCholesky fa
tors of the 
ovarian
e matri
es dire
tly.First we will introdu
e the following four square Cholesky fa
torizations
Q = SvS

T
v R = SwST

w

P̄ = S̄xS̄
T
x P̂ = ŜxŜ

T
x .

(92)Let the jth 
olumn of S̄x be denoted s̄x,j and vi
e versa for the other fa
tors. Fourmatri
es 
ontaining divided di�eren
es are now de�ned by
S

(1)
xx̂ (k) =

{

S
(1)
xx̂ (i, j)

}

= {(fi(x̂k + hŝx,j, uk, v̄k) − fi(x̂k − hŝx,j, uk, v̄k))/2h}
S(1)

xv (k) =
{

S(1)
xv (i, j)

}

= {(fi(x̂k, uk, v̄k + hsv,j) − fi(x̂k, uk, v̄k − hsv,j))/2h}
S

(1)
yx̄ (k) =

{

S
(1)
yx̄ (i, j)

}

= {(gi(x̄k + hs̄x,j, w̄k) − gi(x̄k − hs̄x,j, w̄k))/2h}
S(1)

yw (k) =
{

S(1)
yw (i, j)

}

= {(gi(x̄k, w̄k + hsw,j) − gi(x̄k, w̄k − hsw,j))/2h} . (93)The a priori updateTo understand how the results from Se
tion 3.1 
an be applied in a state estimation
ontext it is useful to think o� an augmented state ve
tor 
onsisting of state ve
torand pro
ess (or measurement) noise:
x̆ =

[

˘̄x + ∆x̆
]

=

[

x̂ + ∆x
v̄ + ∆v

]

. (94)As the pro
ess noise is assumed to be independent of the state, the (
onditional)
ovarian
e of ∆x̆ is
P̂x̆ =

[

P̂ 0
0 Q

]

=

[

Ŝx 0
0 Sv

] [

Ŝx 0
0 Sv

]T

= Ŝx̆Ŝ
T
x̆ . (95)Introdu
ing the ve
tor z by sto
hasti
al de
oupling of x̆, x̆ = Sx̆z, it is not di�
ultto see how the state estimation problem 
an be mapped into the treatment of thegeneral ve
tor fun
tion f̃(z), whi
h was presented in Se
tion 3.1.For the a priori update of the state estimate we will use (25):

x̄k+1 ≈ f̃(z̄k) = f(x̂k, uk, v̄k) (96)whi
h is the same as for the EKF.



22 4 State Estimation for Nonlinear SystemsAs the basis of the 
ovarian
e update we shall use (27). By appli
ation of thematri
es de�ned in (93) the update 
an obviously be expressed in the followingmatrix notation̄
P (k + 1) =

[

S
(1)
xx̂ (k) S

(1)
xv (k)

] [

S
(1)
xx̂ (k) S

(1)
xv (k)

]T

= S
(1)
xx̂ (k)

(

S
(1)
xx̂ (k)

)T

+ S(1)
xv (k)

(

S(1)
xv (k)

)T
. (97)Due to the assumed independen
e between vk and xk, the update 
an be written asa sum of two matrix produ
ts.It is well-known that a straightforward �text-book� implementation of the (extended)Kalman �lter results in numeri
al problems after a number of iterations as the e�e
tof round-o� errors a

umulates, thus making the 
ovarian
e matrix asymmetri
 andnon-positive de�nite. The usual remedy for this is to use a fa
tored update. Asthe 
ovarian
e update (97) is a sum of two quadrati
 terms, numeri
al problems ofthis kind should not o

ur with this update. Nevertheless, it is tempting to use afa
tored update anyway sin
e the fa
tor will be needed for the a posteriori update.Moreover, the (re
tangular, nontriangular) Cholesky fa
tor is immediately availableas the following 
ompound matrix:

S̄x(k + 1) =
[

S
(1)
xx̂ (k) S

(1)
xv (k)

] (98)This is a re
tangular matrix and for later use it must be transformed to a squareCholesky fa
tor. This 
an be a
hieved through Householder triangularization [GA93℄,[GL89℄.The a posteriori updateThe a priori estimate of output and 
ovarian
e matrix for the output estimationerror is derived in a similar fashion. The output estimate is given by
ȳk = g(x̄k, w̄k) , (99)and the 
ompound matrix

Sy(k) =
[

S
(1)
yx̄ (k) S

(1)
yw (k)

] (100)is a Cholesky fa
tor of the 
ovarian
e of the output estimation error,
Py(k) = Sy(k)Sy(k)T . (101)As for S̄x, Sy(k) should be transformed to a quadrati
 matrix by Householder tri-angularization.



4.3 The DD2 Filter 23For approximation of the 
ross-
ovarian
e between state and output estimation errorwe will use the result in (29)
Pxy(k) = S̄x(k)

(

S
(1)
yx̄ (k)

)T

. (102)The Kalman gain 
an now be 
al
ulated a

ording to (77)
Kk = Pxy(k)

[

Sy(k)Sy(k)T
]−1 (103)and the state ve
tor is updated a

ording to to (78)

x̂k = x̄k + Kk (yk − ȳk) (104)The fa
torization of Py has deliberately been maintained in (103) be
ause it is use-ful in the pra
ti
al 
omputation of the gain. Sin
e Sy is triangular the equation
[

Sy(k)Sy(k)T
]

Kk = Pxy(k) is easily solved using only forward and ba
k substitu-tions.The a posteriori 
ovarian
e 
an be updated a

ording to (82). However, as suggestedin [S
h97℄ one 
an also in this 
ase update its Cholesky fa
tor dire
tly. As thefollowing expressions are identi
al
KPyK

T = S̄x

(

S(1)
yx

)T
KT

= KS(1)
yx ST

x

= KS(1)
yx

(

S(1)
yx

)T
KT + KS(1)

yw

(

S(1)
yw

)T
KT ,the a posteriori update 
an 
learly be rewritten as

P̂ = P̄ − KPyK
T

= P̄ − KPyK
T − KPyK

T + KPyK
T

= S̄xS̄
T
x − S̄x

(

S
(1)
yx

)T

KT − KS
(1)
yx ST

x + KS
(1)
yx

(

S
(1)
yx

)T

KT + KS
(1)
yw

(

S
(1)
yw

)T

KT

=
(

S̄x − KS
(1)
yx

)(

S̄x − KS
(1)
yx

)T

+ KS
(1)
yw

(

KS
(1)
yw

)T

,(105)implying that a square Cholesky fa
tor of the 
ovarian
e matrix 
an be obtained bytriangularization of the 
ompound matrix
Ŝ(k) =

[

S̄x(k) − KkS
(1)
yx (k) KkS

(1)
yw (k)

] (106)4.3 The DD2 FilterThe DD2 �lter is obtained by using the estimates of mean and 
ovarian
e derivedin Se
tion 3.2. First we shall de�ne four additional matri
es 
ontaining divided



24 4 State Estimation for Nonlinear Systemsdi�eren
es
S

(2)
xx̂ (k) =

{
√

h2 − 1

2h2
(fi(x̂k + hŝx,j, uk, v̄k) + fi(x̂k − hŝx,j, uk, v̄k) − 2fi(x̂k, uk, v̄k))

}

S(2)
xv (k) =

{
√

h2 − 1

2h2
(fi(x̂k, uk, v̄k + hsv,j) + fi(x̂k, uk, v̄k − hsv,j) − 2fi(x̂k, uk, v̄k))

}

S
(2)
yx̄ (k) =

{
√

h2 − 1

2h2
(gi(x̄k + hs̄x,j, w̄k) + gi(x̄k − hs̄x,j, w̄k) − 2gi(x̄k, w̄k))

}

S(2)
yw (k) =

{
√

h2 − 1

2h2
(gi(x̄k, w̄k + hsw,j) + gi(x̄k, w̄k − hsw,j) − 2gi(x̄k, w̄k))

}

.

The a priori updatePro
eeding as for the DD1 �lter, we 
an obtain an improved state estimate by using(32):
x̄k+1 = h2−nx−nv

h2 f(x̂k, uk, v̄k)

+ 1
2h2

∑nx

p=1 f(x̂k + hŝx,p, uk, v̄k) + f(x̂k − hŝx,p, uk, v̄k)

+ 1
2h2

∑nv

p=1 f(x̂k, uk, v̄k + hsv,p) + f(x̂k, uk, v̄k − hsv,p)

(107)
nx denotes the dimension of the state ve
tor and nv denotes the dimension of pro
essnoise ve
tor. It turns out that this estimate of the mean is identi
al to the oneproposed in [JU94℄, [JUDW95℄. This is interesting as the approa
h used in thesepapers is quite di�erent from the one used here.In agreement with the 
ovarian
e estimate in (27), a triangular Cholesky fa
tor ofthe a priori 
ovarian
e is obtained by Householder transformation of the following
ompound matrix̄

Sx(k + 1) =
[

S
(1)
xx̂ (k) S

(1)
xv (k) S

(2)
xx̂ (k) S

(2)
xv (k)

] (108)The 
ovarian
e estimate S̄xS̄
T
x is not the same as the one derived in [JU94℄, [JUDW95℄,whi
h was the 
ase for the mean estimate. In Appendix A it is shown how the 
o-varian
e estimate of [JU94℄ (whi
h is less a

urate than the one presented here) 
anbe derived along the same lines as above.



4.4 The Complete Filter Algorithm 25The a posteriori updateThe a priori estimate of the output and its 
ovarian
e is 
al
ulated in a similarfashion as for the states
ȳk = h2−nx−nw

h2 g(x̄k, w̄k)

+ 1
2h2

∑nx

p=1 g(x̄k + hs̄x,p, w̄k) + g(x̄k − hs̄x,p, w̄k)

+ 1
2h2

∑nw

p=1 g(x̄k, w̄k + hsw,p) + g(x̄k, w̄k − hsw,p)

(109)and
Sy(k) =

[

S
(1)
yx̄ (k) S

(1)
yw (k) S

(2)
yx̄ (k) S

(2)
yw (k)

]

. (110)
nw denotes the dimension of the measurement noise ve
tor.It follows from the dis
ussion in Se
tion 3.2 and (43) that the a priori 
ross-
ovarian
e matrix is the same as for the DD1 �lter (102):

Pxy(k) = S̄x(k)Syx̄(k)T . (111)Kalman gain and a posteriori update of the state is 
arried out exa
tly as for theDD1 �lter:Kalman gain:
Kk = Pxy(k)

[

Sy(k)Sy(k)T
]−1 (112)A posteriori update of state ve
tor

x̂k = x̄k + Kk (yk − ȳk) (113)The a posteriori update of the estimation error 
ovarian
e has a few additionalterms. Following the derivations in (105) we 
an write the 
ovarian
e matrix
P̂ =

(

S̄x − KS
(1)
yx

)(

S̄x − KS
(1)
yx

)T

+ KS
(1)
yw

(

KS
(1)
yw

)T

+ KS
(2)
yx

(

KS
(2)
yx

)T

+ KS
(2)
yw

(

KS
(2)
yw

)T , (114)whi
h obviously has the Cholesky fa
tor
Ŝx(k) =

[

S̄x(k) − KkS
(1)
yx (k) KkS

(1)
yw (k) KkS

(2)
yx (k) KkS

(2)
yw (k)

] (115)4.4 The Complete Filter AlgorithmThe following pro
edure outlines the implementation of the new �lters. Re
all that
h2 = 3 sin
e σ4 = 3σ2 for a Gaussian distributed variable.1. Initialize x̄0, P̄ (0), k = 0. a posteriori update



26 5 Example2. Compute ȳk, S
(1)
yx̄ (k), S

(1)
yw (k), S

(2)
yx̄ (k), S

(2)
yw (k)3. Compute Pxy a

ording to (102) and determine Sy(k) using Householder tri-angularization on (100) or (110).4. Solve Kk

[

S̄y(k)Sy(k)T
]

= Pxy for the Kalman gain. Sin
e Sy is square andtriangular only forward and ba
k-substitutions are needed: First solve for k′:
k′ST

y = Pxy and then solve for Kk: KkSy = k′.5. A posteriori update of the state estimate x̂k = x̄k + Kk (yk − ȳk)6. A posteriori update of 
ovarian
e matrix fa
tor, Ŝx(k), is performed usingHouseholder triangularization on (106) or (115).a priori update7. Determine x̄k+1, S
(1)
xx̂ (k + 1), S

(1)
xw(k + 1), S

(2)
xx̂ (k + 1), S

(2)
xw(k + 1).8. Use Householder triangularization on (98) or (108) to 
ompute S̄x(k)9. k = k + 1, go to step 2Several textbooks provide details on how to perform the Householder triangulariza-tion, e.g., [PFTV88℄, [GL89℄, [GA93℄.5 ExampleTo demonstrate the performan
e of the new �lters they will in this se
tion be eval-uated on the often used verti
ally falling body example originating from [AWB68℄.Several �lter designs have been evaluated on this example [AWB68℄, [May82℄, [JU94℄.The setup is brie�y outlined below. The reader is referred to [AWB68℄ for a moredetailed introdu
tion to the problem.We wish to estimate altitude (x1), downward velo
ity (x2), and a (
onstant) ballisti
parameter (x3) of a verti
ally falling body. The setup is depi
ted in Fig. 2.The radar measures the range (r). The measurements, whi
h appear with intervalsof 1 se
ond, are a�e
ted by additive, white Gaussian noise.The model has the following form:

ẋ1(t) = −x2(t) (116)
ẋ2(t) = −e−γx1(t)x2(t)

2x3(t) (117)
ẋ3(t) = 0 (118)

yk = rk + wk =
√

M2 + (x1,k − H)2 + wk . (119)



27RANGE, r ALTITUDE, x1

x2

H M
Figure 2. Geometry of the verti
ally falling body problem.The model parameters are given by:

M = 100, 000 ft
H = 100, 000 ft
γ = 5 × 10−5

E[w2
k] = 104 ft2 (120)and the initial state of the system is







x1,0 = 300, 000 ft
x2,0 = 20, 000 ft/s
x3,0 = 10−3

(121)We will 
ompare the performan
es of the DD1 and DD2 �lters with those of theEKF and the modi�ed Gaussian se
ond-order �lter [AWB68℄. The reader is referredto [JU94℄ for an evaluation of the uns
ented �lter. Due to the nature of the problemit is 
ommon pra
ti
e to employ a 
ontinuous-dis
rete �lter implementation. Thestate equations (116)-(118) are integrated using a fourth-order Runge-Kutta methodwith 64 steps taken between ea
h observation. It is straightforward to implement
ontinuous-dis
rete versions of the DD1 and DD2 �lters as there is no pro
ess noise.In [AWB68℄ it is des
ribed how to implement the EKF and the modi�ed Gaussianse
ond-order �lter for the 
onsidered appli
ation.In a

ordan
e with [AWB68℄ and [JU94℄ the following initialization of the stateestimates is used






x̂1,0 = 300, 000 ft
x̂2,0 = 20, 000 ft/s
x̂3,0 = 3 × 10−5

(122)and the 
ovarian
e matrix is initialized to
P̂ (0) =





106 0 0
0 4 × 106 0
0 0 10−4



 . (123)



28 5 ExampleTo enable a fair 
omparison of the estimates produ
ed by ea
h of the four �lters,the estimates are averaged a
ross a Monte Carlo simulation 
onsisting of 50 runs.Ea
h run is 
arried out with a di�erent noise sample.The results of the Monte Carlo simulation are shown in Figure 3�Figure 5.
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Figure 4. Absolute error in velo
ity esti-mate (50 run average).
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Figure 5. Absolute error in estimate ofballisti
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Figure 6. �A
tual� (50 run average) RMSaltitude errors 
ompared with the estimatedRMS error, √P̂11(k) for the DD2 �lter.Not surprisingly, Figure 3�Figure 5 show that the DD2 �lter exhibits a performan
ewhi
h is 
ompletely superior to the EKF and the DD1 �lter. It is even betterthan the performan
e of the se
ond-order �lter. However, in 
ontrast to what wewould expe
t, the performan
e of the DD1 �lter is slightly worse than that of theEKF. The di�eren
e is, however, marginal and must be 
ontributed to the fa
t thatthe assumptions on whi
h the a

ura
y of the DD1 �lter was analyzed are partlyviolated. In parti
ular, the assumption that the state estimate is unbiased is farfrom being satis�ed here.



29Comparison with the study of the uns
ented �lter 
arried out in [JU94℄ shows thatthe performan
es of the uns
ented �lter and the DD2 �lter are similar. This agreeswell with our expe
tations as the a priori state estimate is the same and the di�eren
ebetween the 
ovarian
e updates are limited to fourth and higher order terms in theirrespe
tive series expansions.The RMS value of the altitude error is shown in Figure 6 for ea
h of the four �lters.For 
omparison, the estimated values √P̂11 have also been plotted for the DD2 �l-ter. Note that the variations in the performan
e of the DD2 �lter are seeminglysmaller than for the EKF and DD1 �lters. For all four �lters, the a
tual estimationerror varian
es ex
eed the varian
e estimates produ
ed by the �lters. However, theestimated varian
e is 
loser to the a
tual varian
e of the DD2 estimates than for theother three �lters.It should be noted that the simulation study also showed that there is little di�eren
ebetween the estimates of √P̂11 produ
ed by the four �lters. This is why only theestimates produ
ed by the DD2 �lter have been plotted in Figure 6. The marginaldi�eren
e might lead to the suggestion that the (a priori) state estimate of theDD2 �lter is used in 
onjun
tion with the 
ovarian
e estimate of the DD1 �lter inorder to save 
omputations.6 Con
lusionsIn this paper we have proposed two new �lters for nonlinear state estimation.Whereas �lters for nonlinear systems 
ommonly are based on polynomial approx-imations obtained with Taylor's formula, the approximations underlying the new�lters are obtained with a multivariable extension of Stirling's interpolation for-mula. The �lters are extremely simple to implement as no derivatives are needed,yet they provide an ex
ellent a

ura
y. The DD1 �lter is the simplest of the two�lters. Essentially, it is similar to the �lter proposed in [S
h97℄. However, as itappears from Se
tion 3.3, the (a priori) estimate of the 
ovarian
e represents a more�faithful� approximation of the true 
ovarian
e. The most important 
ontribution ofthis note is the superior DD2 �lter. This �lter has the same a priori estimate as the�uns
ented� �lter des
ribed in [JU94℄, [JUDW95℄, but a better 
ovarian
e estimate.The 
hara
teristi
s of the �lters are brie�y summarized below:
• Based on Gaussian assumptions, the a

ura
y of the DD1 �lter will be 
om-parable to the EKF in terms of expe
ted error. The a

ura
y of the DD2 �lteris 
omparable to the modi�ed Gaussian se
ond-order �lter. As the employedpolynomial approximations utilize knowledge about the 
ovarian
e of the stateestimates, we expe
t that the new �lters will be superior to 
onventional (Tay-lor approximation based) �lters for highly nonlinear systems, and systems withhigh noise levels.
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• For �one-dimensional� systems (referring to the dimension of z) the a

ura
yof the DD2 �lter is 
omparable to a fourth-order �lter.
• The implementation is very simple as the �lters do not require derivativeinformation. Yet, the 
omputational burden is relatively limited and will oftenbe 
omparable to that of the EKF. As the user needs only provide models ofdynami
s and observation pro
ess, the �lters are attra
tive for implementationof �generi
� 
omputer programs for nonlinear �ltering.
• The �lters are very useful for model 
alibration. It is straightforward to in-
lude a varying number of parameters in the state ve
tor for joint state andparameter estimation. The user needs only initialize the parameter estimatesand their varian
es and then run the �lter again.
• The �lters were derived based on 
onsiderations on how to estimate meanand 
ovarian
e of arbitrary nonlinear transformations of variables with knownmean and 
ovarian
e. These results are not limited to state estimation; theapproximations 
an easily be adopted by several other areas of statisti
s.
• Although the performan
e of the new �lters was demonstrated based on theassumption that the nonlinear transformations are analyti
, this is not a re-quirement for appli
ation of the �lters. In fa
t, it is not even ne
essary toassume di�erentiability. The range of appli
ations is therefore wider than forthe EKF, whi
h requires that the Ja
obians exist.7 A
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32 A An Alternative Approximation of the Covarian
eA An Alternative Approximation of the Covarian
eIt was mentioned in Se
tion 4.3 that the a priori state estimate of the DD2 �lter isthe one used in the uns
ented �lter des
ribed in [JU94℄, [JUDW95℄. In this appendixit is shown that also the 
ovarian
e estimate of the uns
ented �lter 
an be derivedby following an approa
h similar to ours. This estimate is less a

urate than theone presented previously in this paper. Moreover, it might o

ationally lead to anestimate whi
h is non-positive semide�nite.Re
all from (34) that
Py = E

[

D̃∆zf̃
(

D̃∆zf̃
)T
]

+
1

4
E

[

D̃2
∆zf̃

(

D̃2
∆zf̃
)T
]

−
(

ȳ − f̃(z̄)
)(

ȳ − f̃(z̄)
)T

. (124)Maintaining from this expression the terms (35), (38), (39) we obtain (in (40) wedid not in
lude (39) as it 
an
els with (36))
Py = σ2

n
∑

p=1

(

µpδpf̃(z̄)
)(

µpδpf̃(z)
)T

+
σ4

4

n
∑
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(

δ2
p f̃(z̄)

)(

δ2
p f̃(z)
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(

ȳ − f̃(z̄)
)(
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σ2

4h2
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4h2

n
∑
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f̃(z̄ + hep)f(z̄ + hep)
T + f(z̄ − hep)f(z̄ − hep)

T

− f(z̄ + hep)f(z̄ − hep)
T − f(z̄ − hep)f(z̄ + hep)

T
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+
σ4

4h4

n
∑

p=1

[

f(z̄ + hep)f(z̄ + hep)
T + f(z̄ − hep)f(z̄ − hep)

T

+ f(z̄ + hep)f(z̄ − hep)
T + f(z̄ − hep)f(z̄ + hep)

T

− 2f(z̄ + hep)f(z̄)T − 2f(z̄ − hep)f(z̄)T

− 2f(z̄)f(z̄ + hep)
T − 2f(z̄)f(z̄ − hep)

T + 4f(z̄)f(z̄)T
]

−
(

ȳ − f̃(z̄)
)(
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33Inserting that σ2 = 1 and h2 = σ4, (125) 
an be greatly redu
ed.
Py =

1

2h2

n
∑

p=1

[

f̃(z̄ + hep)f(z̄ + hep)
T + f(z̄ − hep)f(z̄ − hep)

T
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)(

ȳ − f̃(z̄)
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1

2h2

n
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[f̃(z̄ + hep) − f̃(z̄)][f̃(z̄ + hep) − f̃(z̄)]T

+
1

2h2

n
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p=1

[f̃(z̄ − hep) − f̃(z̄)][f̃(z̄ − hep) − f̃(z̄)]T

−
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ȳ − f̃(z̄)
)(

ȳ − f̃(z̄)
)T

. (126)By straightforward ve
tor manipulations and by using (32) it is easily shown that(126) 
an be rewritten as
Py =

1

2h2

n
∑

p=1

[f̃(z̄ + hep) − ȳ][f̃(z̄ + hep) − ȳ]T

+
1

2h2

n
∑

p=1

[f̃(z̄ − hep) − ȳ][f̃(z̄ − hep) − ȳ]T

+
h2 − n

h2
[f̃(z̄) − ȳ][f̃(z̄) − ȳ]T . (127)If we use this result in a state estimation 
ontext, we arrive at the exa
t same
ovarian
e estimate as the one proposed in [JU94℄, [JUDW95℄. The estimate hasthe drawba
k that when h2 < n, the last term in (127) be
omes negative semi-de�nite. A possible impli
ation of this 
ould be that the 
ovarian
e estimate be
omesnon-positive de�nite. To remedy this, [JU94℄ re
ommends that the following, more
onservative, estimate is used

Py = 1
2h2

∑n
p=1

[

[f̃(z̄ + hep) − f̃(z̄)][f̃(z̄ + hep) − f̃(z̄)]T

+ [f̃(z̄ − hep) − f̃(z̄)][f̃(z̄ − hep) − f̃(z̄)]T
]

.
(128)In our framework this expression is a
hieved by deriving the 
ovarian
e estimate sothat a se
ond-order polynomial repla
es y in the evaluation of E[yyT ] in

Py = E[yyT ] − ȳȳ (129)while only a �rst-order polynomial approximation is used for evaluating ȳ (
orre-sponding to ȳ = f̃(z̄)).The interested reader is referred to [JU94℄ for a thorough analysis of the estimates.


