Informatics and Mathematical Modelling / Intelligent Signal Processing

Audio Mining with emphasis on Music Genre Classification

By Anders Meng, IMM www.imm.dtu.dk/~am

- ■Introduction
- **■**Feature Extraction
- **■**Classification
- ■Feature integration project[Meng04]
- **■**Summary

Example of Audio Hierarchy

What's the idea?

- ■Music is everywhere and often described by genre
- ■Want to be able to automatically annotate music with genre, see e.g. [tzanetakis02]
- ■Sound features which are interesting in genre classification, may also be interesting in related fields of research like music search and retrieval, segmentation, playlist generation.

Applications

- Large on-line music stores
 - -like Apple's iTunes (1,000,000+ songs), Sony, Amazon, etc.
- Next generations of media management products
 - -query-by-humming, search and retrieval, MPEG-7Format
- Some existing products
 - -MuscleFish (now soundfisher at http://www.soundfisher.com/)
 - -SpeechBot
 - (http://speechbot.research.compag.com/)
 - -Findsounds (http://www.findsounds.com/).

Informatics and Mathematical Modelling / Intelligent Signal Processing

FindSounds

Search the Web for Sounds

		Need Examples?		
File Formats AIFF AU WAVE	Number of Channels ☑ mono ☑ stereo	Minimum Resolution 8-bit	Minimum Sample Rate 8000 Hz	Maximun File Size 2 MB

Sounds 1-10 of 200 labelled "train"

toy train horn

Sound Designers, click here

http://www.srim.org/IMAGES/Trainhorn.wav

http://sep800.mine.nu/files/sounds/toytrainhom.wav

5k, mono, 8-bit, 11025 Hz, 1.6 seconds (show page | e-mail this sound)

3k, mono, 8-bit, 8000 Hz, 0.4 seconds (show page | e-mail this sound)

http://newton.umsl.edu/exhibit/doppler-aux.au

7k, mono, 8-bit, 8000 Hz, 0.8 seconds (show page | e-mail this sound)

If you like FindSounds.com, you will love FindSounds Palette!

Mttp://www.tux.org/pub/X-Windows/games/freeciv/incoming/sounds/TRAINW.WAV

train whistle

7k, mono, 8-bit, 11025 Hz, 2.9 seconds (show page | e-mail this sound)

If you like FindSounds.com, you will love FindSounds Palette!

| http://ftp.megamirror.com/pub/games/freeciw/contrib/sounds/dubious/sounds/TRAINW.WAV train whistle

Problems with Music Genre

- Genres are subjectively defined not an intrinsic property [Aucouturier02]
 - Different labelling schemes from e.g. Amazon, iTunes, Gracenote,
 Freedb
 - Cultural background
- Decision-time horizon problems [Ahrendt04, Meng04]

Typical Audio Classification System

- Introduction
- **■**Feature Extraction
- **■**Classification
- ■Feature integration project[Meng04]
- **■**Summary

Feature Extraction

$$\mathbf{x}_n = \left[egin{array}{c} x_n^1 \ x_n^2 \ dots \ x_n^D \end{array}
ight]$$

- ■Typical frames is 10-30ms long, and normally overlap.
- ■Time or/and frequency features are extracted. Features at similar time levels are stacked.
- \blacksquare A piece of audio (say p) can be expressed as a D x N_p matrix.

Some features

■Short Time Features (10-30 ms)

- -Mel Frequency Cepstral Coefficients (MFCC, orig. for automatic speech recognition(ASR), see e.g. [Davis80]),
- -Linear Predictive Coefficients (LPC, orig. for ASR). See e.g. [Makhoul75]
- -Time Zero Crossing Rate (segmentation). See e.g. [Tzanetakis02]
- -Short Time Energy (silence detection).
- -MPEG-7 features (Audio Spectrum Centroid, Audio Spectrum Spread, Spectral
- -Flatness), see e.g. [Ahrendt04]
- -Pitch estimators (Speaker recognition / gender recognition)

■Sound Texture Windows (400msec. – 1 second)

-Mean/variance (or some other model) of short time features (feature integration), see e.g. [Tzanetakis02]

- **■Long time features** (several seconds)
 - -Beat estimators (Music analysis, transcription) [Tzanetakis02]
 - -Feature integration from short time features, [Tzanetakis02,Ahrendt04,meng04]

So why does time matter?

- ■Introduction
- ■Feature Extraction
- **■**Classification
- ■Feature integration project[Meng04]
- **■**Summary

Projection of songs

• Each song is 30 sec.

Statistical Model

Desired (posterior probability) : $P(C \mid \mathbf{x})$ (class C and features \mathbf{x})

Investigated models:

Linear and non-linear neural networks

Gaussian distribution

Gaussian Mixture Model

Hidden Markov Model

Decision time horizon

- What is early and late information fusion [Ahrendt04]
 - Early information fusion: operation on short time features before classification (and decision making).
 - Late information fusion: assembles information on the basis of the outputs from classifier.
- Early information fusion (Feature integration):
 - Dynamic PCA. [Wu95]
 - Time stacking of features and perform a PCA as to decorrelate features in both time and between the features.
 - Texture windows
 - Mean / Variance of features
 - Model temporal characteristics using e.g. an Autoregressive Model [Meng04]
- Late information fusion [Kittler98]:
 - Sum Rule , Median Rule or Majority voting.

- ■Introduction
- ■Feature Extraction
- ■Classification
- ■Feature integration project[Meng04]
- **■**Summary

Feature Integration project [Meng04], setup

- Goal
 - Music Genre Classification
 - 5 Genres (Rock, Classical, Jazz, Pop, New-Age)
 - Find best features at timescales from 30ms to 5 seconds and compare with human performance
- Features
 - Short time, Mel Frequency Cepstral Coefficients (MFCC)
- Method
 - Combining early and late information fusion. Compare with human performance.
- Classifiers
 - Linear Neural Network (Trained Discriminately)
 - No. Parameters : ~ 5D
 - Gaussian Classifier (GC)
 - No. Parameters : $\sim 5D(D/2+2)$

Feature integration project – early fusion

- 1. ~ 30 ms
- $2. \sim 1 \text{ second}$
- $3. \sim 5$ seconds

Feature Integration Project, outcome

Feature Integration Project, outcome

- Combination of feature integration and late information fusion improves performance.
- Temporal information in short time features are important in Music Genre Classification.
- Generalizes to other areas such as playlistgeneration, retrieval.

- ■Introduction
- ■Feature Extraction
- ■Classification
- Feature integration project
- **■**Summary

Summary

- The area of audio mining is expanding.
- Music Genre Classification can to some extend be used as a test-bench for new music features.
- A more natural approach to music genre is the use of multi-labels.
- Music genre is a first step to music navigation.

References

- Tzanetakis, G. and Cook, P.: "Musical Genre Classification of Audio Signals", IEEE Transactions on speech and audio processing, 2002, 10, 293-302
- Ahrendt, P. and Meng, A. and Larsen, J.: "Decision Time Horizon for Music Genre Classification using Short-Time Features", *EUSIPCO*, *Vienna*, *Austria*, **2004**, 1293-1296
- Davis, S. B. and Mermelstein, P.: "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences", *IEEE Transactions on Acoustics, Speech and Signal Processing*, **1980**, *ASSP*, 357-366
- Kittler, J. and Hatef, M. and Duin, Robert P.W. and Matas, J.: "On Combining Classifiers", IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20, 226-239
- Aucouturier, J-J. and Pachet, F.: "Representing Musical Genre: A State of the Art", Journal of New Music Research, 2003, 32, 83-93
- W. Ku and R. H. Storer and Georgakis, C.: "Disturbance detection and isolation by dynamic principal component analysis", *Chemometrics and Intelligent Laboratory Systems*, **1995**, 30, 179-196
- Meng, A and Ahrendt, P. and Larsen, J.: "Improving Music Genre Classification by Short-Time Feature Integration", Submitted to ICASSP 2005, Philadelphia, USA.

