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Abstract

The registration of images is an often encountered problem in e.g. medical imaging, satelite imaging, or
stereo vision. In most applications a rigid deformation model does not su�ce and complex deformations must
be estimated. In medical registration Bajcsy et al. [1] have proposed the use of elastic models to describe the
registration. Christensen et al. [3, 4, 5, 6, 8] proposed the use of uid models that lack some of the constraints
of the elastic model. They solve the viscous partial di�erential equation (PDE), which is the core problem of
the uid model, using the computationally expensive Succesive Over-Relaxation (SOR) algorithm. Thirion [9]
calculated a ow velocity by regularizing the derived driving forces by a gaussian convolution �lter. In this paper
we propose an elastic �lter to be used in convolution to approximate the solution of Navier-Stokes equation,
and we compare the performance of the derived �lter with two other �lters, a separable approximation to the
elastic �lter and the well-known gaussian proposed by Thirion. The convolution approach is several times faster
than the SOR algorithm.
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1 Introduction

To relate information in two images, aquired from di�erent modalities and in di�erent reference frames, requires
a mathematical mapping between the two images coordinate systems. The estimation of such a map is called a
registration of the images. The registration of images is an often encountered problem in e.g. medical imaging,
satelite imaging, or stereo vision. In the medical �eld the objective could be to relate information in di�erent
images, to observe changes over periods of time, or statistically to describe anatomical di�erences [8]. These tasks
require that the involved images are registered with each other. The registration can be modelled as a deformation
or warping of one image into a best �t with the other image. Due to the anatomical variability in inter-patient
studies a non-linear deformation model must be employed. In recent years Bajcsy and Kova�ci�c [1] and Christensen

et al. [3, 4, 5, 6, 8] have proposed the use of elastic and uid deformationmodels, i.e. the mathematicalmap between
the images is constrained by the laws of elastic or uid materials. The latter has the advantage that it allows for
large curved deformations, which do not appear in elastic models. Unfortunately, the uid model requires the
repeated solution of Navier-Stokes equation, which governs the instantaneous velocity of the deformation ow and
the applied force. In Christensen [3] this equation is solved using the Succesive Over-Relaxation (SOR) algorithm,
which is an iterative scheme where checker-board updates are performed. This algorithm is computationally
expensive.
Bro-Nielsen and Gramkow [2, 7] proposed the use of convolution to approximate the solution of Navier-Stokes

equation, and presented Christensen's uid registration algorithm in a multi-resolution framework. Thirion [9]
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presents an iterative algorithmwhere the derived image forces are regularized by gaussian smoothing. The smoothed
forces are then used directly as the instantaneous ow estimate in an Euler integration. Thus, the latter approach by
Thirion uses a gaussian regularizer whereas the method developed by Christensen uses an elastic model regularizer.
In this paper we compare the performance of our derived elastic convolution �lter with two other �lters. The �rst

is a separable approximation to the derived �lter and the other is the well-known gaussian proposed by Thirion [9].
The paper will show that the choice of regularization method has a large inuence on the registration result. This
should not be underestimated when choosing a regularizer.
In this paper the registration quality is validated as the ability of the method to estimate a smooth regular

homeomorphic map between two synthetic images. No quantitative results are given. The reader is referred to
Christensen [3], Thirion [9], and Gramkow and Bro-Nielsen [7, 2] for anatomical examples of the performance of
the methods.

2 The Fluid Model

The complete uid model is out of the scope of this paper, but can be found in Christensen [3]. In Bro-Nielsen

and Gramkow [2, 7] the model is described in a multi-resolution framework. The registration is obtained in an
iterative scheme, where the deforming image locally deforms in the direction that gives the best �t with the other
image. Thus, the force driving the deformation is derived from local image characteristics. The relation between
the driving force b(x;u(x; t)) and the instantaneous velocity v(x; t) of the deformation �eld u(x; t) at time t is
governed by Navier-Stokes equation

�r2v(x; t) + (�+ �)r(rT � v(x; t)) + b(x;u(x; t)) = 0; (1)

where x = (x1; x2) is the image coordinate. The laplace operator in the �rst term causes the velocity �eld to be
smooth, and the second term limits the gradient of the divergence of the �eld. Thus, the viscosity coe�cients �
and � represent the smoothness and the mass injection or compressibility of the material, respectively. Note, that
the two �rst terms represent the internal forces which are in equilibrium with the external image forces in the last
term. Basicly, the equation favors velocity �elds with small second order variations. The deformation increment
�u(x; t) is determined through simple Euler integration of the velocity

v(x; t) =
@u(x; t)

@t
+ru(x; t)v(x; t) (2)

The chain rule of di�erentiation must be applied, when the deformation is de�ned in the Eulerian reference
frame. The driving force is derived from a cost measure, based on a Gaussian sensor model, and is calculated as

b(x;u(x; t)) = (T (x � u(x))� S(x)rT jx�u(x); (3)

where T (x � u(x)) denotes the pixel-value of the deforming (template) image and S(x) denotes the value of the
study image. The above equations are applied iteratively until a stop criterion is satis�ed. This may either be
de�ned through the cost function or by a limit on the extent of deformation.

3 The Convolution Filter Solution

In this section we explain how a solution to equation 1 can be obtained be linear convolution. We design a linear
�lter that is used to solve the viscous PDE (1) by taking advantage of the linearity of the operator L, that is
imposed on the velocity �eld in equation 1

Lv = �r2v + (�+ �)r(rT � v) (4)

Using this operator equation 1 takes the form

Lv(x; t) + b(x;u(x; t)) = 0 (5)

This operator is of the same form as the linear operator of elasticity in Hooke's law.
We derive a linear �lter as an approximation to the impulse response of an applied force, and use this �lter to

determine the instantaneous velocity �eld around each image force. Due to the linearity of the operator the total



velocity �eld is determined, through convolution, as the superposition of the responses for all forces. In fact, the
�lter is a discrete approximation to the Green's function for the operator L.
We base the �lter derivation on eigenfunction analysis. Christensen [3] has derived the eigenfunctions of (4) in

his work on elastic registration. The eigenfunctions �ijr(x) satisfy the equations

L�ijr = ��ijr; r = 1; 2 i; j � 0 (6)

Under the Dirichlet boundary conditions

�1(0; x2) = �1(1; x2) = 0 (7)

�2(x1; 0) = �2(x1; 1) = 0 (8)

and the Neumann boundary conditions

@�1
@x2

����
(x1;0)

=
@�1
@x2

����
(x1;1)

=
@�2
@x1

����
(0;x2)

=
@�2
@x1

����
(1;x2)

= 0 (9)

on the domain 
 = [0; 1]� [0; 1], Christensen found the eigenfunctions to be

�ij1 = �1

�
i sin i�x1 cos j�x2
j cos i�x1 sin j�x2

�
(10)

�ij2 = �2

�
�j sin i�x1 cos j�x2
j cos i�x1 sin j�x2

�
(11)

where the �'s are determined so as to give the eigenfunctions unit energy. The corresponding eigenvalues are

�ij1 = ��2 (2�+ �) (i2 + j2) (12)

�ij2 = ��2 � (i2 + j2) (13)

If we locally describe the velocity by the eigenbasis v =
P

ijr aijr�ijr and impose the viscous PDE (1) we obtain

L
X
ijr

aijr�ijr + b = 0 (14)

X
ijr

aijr�ijr�ijr + b = 0 (15)

<
X
ijr

aijr�ijr�ijr + b ; �kls > = < 0 ; �kls > (16)

akls�kls < �kls ; �kls > + < b ; �kls > = 0 (17)

akls = ��kls < b ; �kls >; (18)

where we have projected the force onto the eigenfunction �kls and employed the normalization of the eigenfunctions
to isolate the coe�cient akls directly. To approximate the linear �lter we position a unit force in the middle of the
domain 
 and discretize to obtain the desired size of the �lter. The sum of eigenfunctions is truncated appropriately
in terms of the discretization, see Gramkow [7]. A N �N �lter, low-pass �ltered at the Nyquist frequency, is then
calculated as

v(x) =
4

�(2�+ �)�2(N � 1)2
�

N�1X
i;j=0

sin i�2 cos j
�
2

(i2 + j2)2�(i; j)

�
(�i2 + (2�+ �)j2) sin i�x1 cos j�x2

�(�+ �) ij cos i�x1 sin j�x2

�
(19)

where



x =
1

N � 1
X +

�
1=2
1=2

�
; (20)

�(i; j) =

�
1 if i 6= 0 and j 6= 0
2 if i = 0 or j = 0

; (21)

and X is the integer �lter index. It is obvious that our approximation limits the scope of the forces to the size of
the �lters, but in turn we have a high order approximation of the deformation around the attacking point of the
force. The limited scope of the forces is overcome by use of multi-resolution, i.e. image pyramids. In this survey
we will compare the performance of the above �lter and two other �lters. The �rst �lter is an optimal separation
in the least-squares sense of (19) and the other �lter is the well known gaussian, that has been used in a similar
framework by Thirion [9]. Below we show the three �lters.

Figure 1: The �gure shows the three compared �lters. Left is the elastic �lter (19), middle is the separated elastic
�lter, and right is the gaussian �lter.

4 Results

The performance of three �lters has been compared by registering two sets of images. Both registration problems
are taken from Christensen [3]. All images are binary and of size 128 � 128. To avoid boundary problems the
convolutions are performed on 256� 256 padded images. The �rst problem is to register a Square to a Rectangle,
and following we attempt to register a Circle to a C. The images are displayed below. The Square is 32� 32 and
the Rectangle is 32� 64. The Circle has a radius of 31, and the C has an inner radius of 21, an outer radius of 41,
and a gap that is 20 pixels wide.

Figure 2: From left to right the images are: Square, Rectangle, Circle, and C.

The �rst registration problem is characterized by a large mass dilation and a large-distance parallel ow, whereas
the Circle-to-C experiment serves to show the ability of the model to perform large-distance curved deformations.
The results of the registration using the three di�erent images are shown below. In order to track the individual



particles the obtained deformation �eld has been imposed on a regular grid as well as on a textured version of the
deforming image. The scope of the forces has been increased by performing the registration in multi-resolution.

Figure 3: Square-to-Rectangle. The top to bottom rows show uid registration using the elastic �lter, the separated
elastic �lter, and the separated gaussian �lter, respectively. The left column shows the deformed square, the middle
column shows the deformation of a set of equally wide strips, and to the left the registration is displayed as applied
to a grid.

It is obvious that the �lter (19) yields the smoothest results. Note, how the resulting deformation inuence a
greater area in the upper images. As can be seen in the deformed grids this implies that the images, locally, are
stretched less.
Note, in the Circle-to-C experiment, the well-mannered deformations of the concentric circles. The top row

reveals that using the �lter derived above these circles are deformed evenly, whereas the separated �lter and the
gaussian �lter cause a decreased quality of the registration. The same tendency is seen on the deformed grids,
which show that using the gaussian �lter causes an excessive local dilation of the images.
In terms of a smooth ow there is no doubt that the derived �lter is superior to the gaussian approximation.

One might be surprised that the di�erence between the unseparated and the separated �lter is so pronounced,
considering the limited visual di�erence in �gure 1. However, the explanation lies in the low signal-to-noise ratio
of about 6 in the separation.
Both registration examples show that a complete registration can be obtained regardless of the used �lter. This is

perhaps a trivial observation, but it is important in the sense that the similarity between the deformed template and
the study image does not ensure a reliable registration. This point justi�es the use of Navier-Stokes equation (1),
which favours deformations that are smooth and have a low change-rate of the divergence. These properties are
relaxed in the separated �lter, explaining the resulting lower quality of the registration when using this �lter. The
gaussian approximation is in many respects an unfortunate choice. Firstly, it has a at tangent in origo, such that
the point where the force is applied is shifted, with no contraction or dilation near the force. Instead, the maximal



Figure 4: Circle-to-C. The top to bottom rows show uid registration using the elastic �lter, the separated elastic
�lter, and the separated gaussian �lter, respectively. The left column shows the deformed circle, the middle column
shows the deformation of a set of concentric circles, and to the left the registration is displayed as applied to a grid.

mass change occurs on the sides of the gaussian, where the derivatives have their maximum. Secondly, the gaussian
yields no deformations orthogonal to the force. This cause a severe compression or expansion around the force,
with limited propagation to the surrounding matter.
The Circle-to-C registration was performed in 180 secs. with our own �lter (19) and 60 secs with the separated

�lters on a MIPS R5000 150MHz Silicon Graphics Indy. The Square-to-Rectangle registration runs slightly faster.

5 Conclusion

We have described a convolution solution to the Navier-Stokes equation, which is an important part of the uid
registration algorithm developed by Christensen [3]. Three di�erent �lters have been compared in terms of the
smoothness of the deformation, that registers two images. It was shown that our �lter performs satisfactorily,
whereas a separated approximation and a simple gaussian �lter, yield increasingly degenerated deformation �elds.
The main result in this paper is that the sensitivity in the registration to di�erent regularization methods should
not be underestimated. This is in particular seen between the registrations obtained by using the elastic �lter
and the gaussian �lter, but the e�ect of separating the elastic �lter is also visible. We note that the convolution
approach is several times faster than the SOR algorithm in solving the viscous PDE and yields similar results on
test images.
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