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Chapter 1

Introduction

Eutrophication is a result of nutrient enrichment of ecosystems. For aquatic ecosys-
tems the link between algae blooms and eutrophication was recognized in the 1960s
(see Schindler (2006)). The main sources of eutrophicationare nitrogen (N) and
phosphorus (P), the human sources of these are industry and households (dominant
source of P), and agriculture (dominant source of N).

In more recent years the hypothesis of alternative stable states have been pro-
posed (see Schindler (2006), for a historic presentation).The presence of alterna-
tive stable states is potentially reflected in hysteresis effects and even irreversible
changes of a system caused by excessive nutrient loading (eutrophication) on the
system. There is a bulk literature on this subject in the context of lakes, e.g. Schef-
fer et al (2003), Carpenter (2005), and others. These kind ofshifts where the
dynamics of the system change suddenly will be referred to asregime shifts.

An example of a simple system with regime shifts is given in Carpenter et
al (1999), here P in the water column is modeled as a function of the loadings.
The dynamic equation include a non-linear recycling term. This construction give
rise to alternative stable states and with the right choice of parameter values both
hysteresis effects and irreversible changes.

Others (e.g. Scheffer et al (2003)) give examples of two dimensional (e.g.
floating and submerged plants) systems with bistable dynamics. Scheffer et al
(2003) offer a conceptual empirical verification of the bistable hypothesis in con-
trolled experiments. Such verification are however difficult in real life systems.
The presence of different time constants in the system may (as pointed out by Car-
penter (2005)) appear to be hysteresis effect or even irreversible changes of the
system, simply because the system may use hundreds or even thousands of years
to recover after heavy loading coursing a break down of the system in a matter of
years or decades. It could of course also be argued that the system from a practical
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point of view has experienced an irreversible change.
An important issue for systems with alternative stable states is the stability

of the states, such analysis can be addressed with bifurcation analysis (see e.g.
Scheffer et al (2003)), and this will show how far the system is from an abrupt
change. Since ecosystems are very complex systems there arebound to be noise
in the systems (“systems noise”). On top of this measurements of these systems
are bound to be uncertain. An adequate description of these systems is therefore a
stochastic one. The stochastic nature of the system means that we can only assign
a probability of a regime shift appearing in the next time interval, and it might
therefore be the best strategy to use a precautionary policy.

Ludwig et al (2003) and Carpenter et al (1999) advocate for this point. These
papers explore management strategies for lakes, by using aneconomic utility model
on the top of the dynamical system description. Both papers advocate for a precau-
tionary policy due to the uncertainty in the system. Ludwig et al (2003) have built
a noise term into the model.

We will explore some models for the relation between the pelagic and benthic
vegetation in marine ecosystems. The models are derived in adiscrete time setting
and not, as is often the case, derived from differential equation. We will present
some characteristics of these system and emphasize where care is needed in order
to ensure stability. The models are explored both in a deterministic setting and in a
stochastic setting.
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Chapter 2

A Benthic/Pelagic Interaction
Model

2.1 The Concept

The conceptual setting is an ecosystem as sketch in Figure 2.1. The model has
two states or regimes corresponding to high and low nutrientloading. In the first
regime the ecosystem is in a “healthy” condition. I.e. the water is relatively clear,
such that sun light is able to reach the benthic zone. In this regime there is a high
level of benthic biomass and the sediment is therefore capable of permanently re-
moving most of the nutrients in the particulate matter reaching the bottom, through
denitrification.

The second regime is characterized by high level of pelagic biomass. This pre-
vents sunlight from reaching the benthic zone and benthic vegetation will therefore
be reduced or completely disappear. One result thereof is that the sediment be-
comes more susceptible to releasing nutrients back into thewater column causing
a further increase in phytoplankton biomass. The last effect is illustrated in Figure
2.1 with the double arrow.

Nutrient input is the driver of the system, but the benthic vegetation will govern
the regimes. The figure indicates that the interaction goes through the sediment.
This is also true on the conceptual level, but the sediment will be ignored in the
first models. The ecosystem functioning will therefore be modeled directly as a
interaction between benthic and pelagic production.
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Sketch of a Marine Ecosystem

"Regime" I II

Light

Bottom vegetation

level X_b high
Stable
Sediment

Nutrient input
low

Bottom vegetation
level X_b low Unstable

Sediment

Nutrient input
highPhytoplankton

level X_p Low
Phytoplankton
level X_p High

Figure 2.1: Schematic picture of the model described in (2.1) and (2.2). Regime
I is the healthy ecosystem where most of the nutrient from thephytoplankton is
processed by the sediment through uptake and permanent burial. The sediment
becomes overloaded in regime II causing faster cycling of the nutrients from the
sediment, this is an “unhealthy” situation where benthos potentially may suffer
from oxygen depletion.
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2.2 A Hard Threshold Set Up

The conceptual setting described in Section 2.1 is now translated into a mathemat-
ical model. In the formulation given here units are arbitrary; the aim is here to
describe the functional relationship. The proposed model is

Xp,t = a(j)
p Nex,t + b

(j)
f Xp,t−1 + ǫ

(j)
p,t (2.1)

Xb,t = (k(j) + b
(j)
p,bXp,t−1)f

(j)(Xp,t−1) + b
(j)
b Xb,t−1 + ǫ

(j)
b,t (2.2)

where

j =

{
1 if Xb,t−1 > rb

2 if Xb,t−1 ≤ rb
(2.3)

The formulation above is a bivariate nonlinear threshold model. The behavior of
this model will be explored with simulation studies, but first each of the parame-
ters/functions in the model will be presented with a physical/biological interpreta-
tion.

Xp,t and Xb,t:

The benthic biomass (Xb,t) of the ecosystem at timet and the pelagic biomass
(Xp,t) at timet. These are the state variables of the system.

Nex,t:

The external nutrient loading on the system at timet.

a
(j)
p :

The effect of nutrient loading on the system. This is a linearrelationship (in each
regime). Further it is seen that nutrient loading affects the phytoplankton level
directly while it only affects the benthic vegetation levelindirectly, through the
effect of increased concentration of phytoplankton in the water column. If the state
variables are considered as content of nutrients in the pelagic/benthic biomass, then
a

(j)
f could be viewed as a proportion.

b
(j)
p and b

(j)
b :

These parameters describe how much of the benthic and pelagic biomass that sur-
vive from year to year. These number are fractions, i.e. theyshould be between 0
and 1.

5



f (j)(x):

f (j)(x) describes the effect on the benthic zone from increased level of phytoplank-
ton in the pelagic zone. Increased level of pelagic biomass prevent sunlight from
reaching the benthic zone, and this should be reflected inf(x). f (j)(x) should
therefore be close to one for low level of phytoplankton and close to zero for high
level of phytoplankton, i.e. a sigmoid function. Heref is chosen asf = 1 − Φ(x)
whereΦ is the distribution function for the normal distribution. The behavior of
this function is controlled by the mean and the variance in the normal distribution.

The functionf should be written as

f (j)(x) = f(x; r(j)
p , τ (j)

p ) = 1 − Φ(x; r(j)
p ,

(

τ (j)
p

)2
) (2.4)

whererp is a translation of the function such thatf(rp) = 1
2 , andτp controls how

fast the changes inf is introduces, e.g.f(rp − 2τp) ≈ 0.95, f(rp + 2τp) ≈ 0.05.

b
(j)
p,b:

A cross correlation term that describes the effect of nutrient carried from the pelagic
zone to the benthic zone. This is in it self a linear relation,but it is damped by the
nonlinear functionf described above.

k(j):

k describes a level of bottom vegetation, this is also damped by the nonlinear func-
tion f .

rb:

rb is a threshold for the system, this construction allows dynamics of the system to
change completely and instantaneously when the threshold is crossed, i.e. whenxb

becomes less thanrb.

ǫ
(j)
i,t :

ǫ
(j)
i,t describes the errors at each time step; these should follow some probability

distribution.
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Remarks:

The model described by Eq. (2.1)-(2.3) is a nonlinear multivariate model with an
input that drives the system. Univariate models with threshold parameters likerb

are called SETAR (Self Exiting Threshold Auto-Regressive)models, while uni-
variate models with a nonlinear dampening term likef is called STAR (Smooth
Threshold Auto-Regressive) models. There are other regimemodels that should be
thought of, an example is hidden Markov models with regime switching.

The only difference between the regimes in the following studies will be in
bp (b(1)

p < b
(2)
p ), this means thatXp grows fast towards a new equilibrium when

the regime shift occur. This in turn will have a catastrophicimpact on the benthic
vegetation.

In regime “I” where the sediment is stable,b
(j)
p will be low since most of the

biomass will be absorbed by the sediment. In regime “II” mostof the nutrient
which reach the bottom will be cycled to the water column.

The asymptotic mean valuexp = limt→∞ E(Xp,t) is a
(j)
p Nex

1−b
(j)
p

under the as-

sumption that the system will settle in one state and that theloadingN remains
constant. This means thatxp will be zero ifNex is zero or ifap is zero.

The first term in Eq. (2.2) describes how the phytoplankton level affects the
benthic vegetation. For small values ofXp,t compared torp (see Eq. (2.4)) the
effect of a small change inXp will be positive, i.e. the nutrient from the phyto-
plankton will be used by the benthic vegetation and increasethe amount of benthic
biomass. AsXp,t becomes closer torp the shadow effect will be dominant and the
first term in Eq. (2.2) will vanish, which results in a fast decay of Xb. WhenXb

crosses the thresholdrb a further rise in theXp will cause the first term to decrease
faster andXb will approach zero.

The situation above should reflect the situation in a marine ecosystem as a rise
in the level of phytoplankton cause the benthic vegetation to shaded out. Increased
nutrient loading may also lead to oxygen depletion when the water column is strat-
ified. This gives a positive feed back to the phytoplankton inthe water column with
a complete break down of the system as a consequence.

2.2.1 Some Realizations of The Model

Figure 2.2 and 2.3 show realizations of the models describedabove with a specific
set of parameter values. Figure 2.2 is deterministic, i.e. the noise term is set to
zero; this is also called (see Tong (1990)) the skeleton of the stochastic model in
Figure 2.3. Such plots allow us to examine the deterministicpart of the model.

Figure 2.2 show the biomass level in the pelagic and the benthic zone as time

7



series. The same figure gives the time series of the nutrient level. From the figure
we see that the system is stable in regime I with the nutrient input equal to 3. At
t = 10 the input is increased to 6. The result is an increase in the phytoplankton
biomass and a decrease in the benthic biomass. When this reaches the threshold
value a dramatic increase in the phytoplankton level is seenand the benthic biomass
disappear completely. Decreasing the nutrient load to 2 does not affect the benthic
biomass level, while a further decrease to 1 results in an increase in the benthic
biomass level and eventually a regime shift. With a further increase of loading
to 3 the system return to the starting position. This kind of hysteresis, where we
need to do more than returning to the original loading is expected in these kinds of
ecosystems.

Figure 2.3 show a realization of a process like in Figure 2.2,but with noise
added. This plot is included to give an example of how this would look with noise.
It is seen that there are some unphysical inputs/outputs, with negative biomass and
negative nutrient loading. This is due to the way the noise terms are included, but
this problem could be fixed by transformation of data, e.g. bylog-transforming the
data. It is further noticed that the system end up in a “unhealthy” regime due to the
stochastic input.
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A Deterministic Model
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Figure 2.2: The model in Eq. (2.1) - (2.3) witha(j)
p = b

(j)
p,b = k(j) = τ

(j)
p = 1,

b
(j)
b = 0.7, ǫ

(j)
p,t = ǫ

(j)
b,t = 0, r

(j)
p = 5, rb = 5 for j ∈ {1, 2}, b

(1)
p = 0.1, and

b
(2)
p = 0.8. The plots show the regime which the model is in, the red line in the

second row indicate the threshold, the bottom row show the load on the system.
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A Stochastic Model
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Figure 2.3: Realization of the same model as in Figure 2.2, but with ǫ
(j)
p,t andǫ

(j)
b,t

iid. N(0, 1) distributed random variables andNex,t = ut + ǫN,t whereǫN,t is
N(0, 1) distributed random variables andut is deterministic.ut is indicated with
the red line in the bottom row.

10



2.3 A Smooth Threshold Set Up

A more general class of models than the SETAR-class is the class of Smooth
Threshold “AR” (STAR) models. Replacing the hard threshold/“SETAR” term
in (2.1) with a smooth threshold/“STAR” term give the model (in matrix notation)

[
Xp,t

Xb,t

]

= Nex,t

[
ap

0

]

+

[
bp,t−1 0

bp,bft−1 bb

] [
Xp,t−1

Xb,t−1

]

+

[
0

Kft−1

]

+

[
σ1,1 σ1,2

σ2,1 σ2,2

] [
ǫp,t

ǫb,t

]

(2.5)

or in a more compact notation

Xt = Nex,ta + BtXt−1 + kt + Σǫt (2.6)

The functionft = f(Xp,t) is defined in the same way as in the previous sections,
while the hard threshold from the SETAR-like model is replaced with the function

bp,t = (1 − Φ(xb,t, rb, τ
2
b ))d + tp (2.7)

This formulation means thatbp,t changes fromtp to tp + d asXb goes from−∞ to
∞. In the limitσb → 0, Φ(xb,t, rb, τ

2
b ) becomes the indicator functionI(xb,t > rb)

and this model is the SETAR model presented in Section 2.2. This also means that
rb in (2.7) play the same role as the threshold parameterrb for the SETAR model
discussed above.

Figure 2.4 gives the time series plot for a STAR model with thesame param-
eters as the SETAR model presented in Figure 2.2 andσp = 1. It is seen that the
models behave similarly when the same pressure is imposed. The most significant
difference between the two models is the shoulder inxb; this is however not an
asymptotic behavior.

Figure 2.5 shows the stationary points for the SETAR and the STAR models
presented in Figure 2.2 and 2.4 as a function of the nutrient loading. The plots are
constructed by finding the solution to the problem atNex = 0, then increasing the
loading a little finding the solution here with the solution at Nex = 0 as a starting
guess and so on and so fourth untilNex = 6. Then decreasing loading in the same
way. Each stationary point is found by iteration until the number‖xt − xt−1‖ is
small (< 10−5) or the number of iterations reach a maximum number (50). A first
observation from the two plots is that the models also in thiscase are quite similar.
However one difference is that the SETAR process does not seem to converge for
a range of small loadings.
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Figure 2.4:The model in Eq. (2.5) withap = bp,b = K = τp = τb = 1, b(j)
b = 0.7,

ǫ
(j)
p,t = ǫ
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This behavior might seem strange since we would expect systems to converge.
Fortunately it is possible to analyze this behavior with standard analysis and alge-
bra. To this end note that

ft = f(xp; rp, rp) = 1 − Φ(xp,t; 5, 1) (2.8)

For the realization in Figure 2.5 it is seen thatxp is quite far (more 3rp) from rp. It
is therefore safe to setft = 1 in our analysis.

This gives a model that is linear in each of the two regimes defined by the
threshold parameterrb. The model in each of the regimes is therefore (with con-
stant loadingNex)

[
xp,t

xb,t

]

=

[
Nexap

K

]

+

[

b
(j)
p 0

bp,b bb

][
xp,t−1

xb,t−1

]

At the stationary points we must havext = xt−1. Therefore we solve for stationary
points, in each of the regimes and get the stationary points

[
xp

xb

]

=

[

1 − b
(j)
p 0

bp,b 1 − bb

]
−1 [

Nexap

K

]

=





1

1−b
(j)
p

0

bp,b

(1−b
(j)
p )(1−bb)

1
1−bb





[
Nexap

K

]

A necessary condition for this actually being a stationary point is that it is in the
same regime as the model. Ifx

(j)
b denotes the stationary point in regimej then a

stationary point must satisfy

x
(1)
b > rb ∨ x

(2)
b < rb (2.9)

Now this conditions can be formulated in terms of conditionson the loading

Nex >

(

rb −
K

1 − bb

)
(1 − b

(1)
p )(1 − bb)

apbpb

(2.10)

or

Nex <

(

rb −
K

1 − bb

)
(1 − b

(2)
p )(1 − bb)

apbpb

(2.11)

plugging in the parameter values used for the simulation in Figure 2.5 we get

Nex >

(

5 −
1

1 − 0.7

)
(1 − 0.1)(1 − 0.7)

1
= 0.45 (2.12)
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or

Nex <

(

5 −
1

1 − 0.7

)
(1 − 0.8)(1 − 0.7)

1
= 0.1 (2.13)

These numbers are confirmed in Figure 2.6 where a zoom on the noconverging
region of the data is given. In summary; Figure 2.5 and 2.6 show that the process
converge to a point in the other regimes. As the process approach this point the
process change and converge to a point in the first regime and so on. Figure 2.6 and
2.7 show that these processes are not chaotic but that they form periodic signals.
Note that for the analysis applied here it is important thatxp is far away fromrp.
The non-stationary points are actually limit cycles as exemplified in Figure 2.7.

2.4 More Simulation Studies

Figure 2.8 shows empirical quantiles based on a simulation study with the model
given in Figure 2.4, but with a noise term, i.e.Σ = I andǫj,t ∼ N(0, 1). Further
the input series have also been added noise. The figure shows how the uncertainty
grow with time.

Figure 2.9 shows histogram for the parameters at time 70. These figures show
that there is a splitting of the density function. I.e. thereis a probability of being
in “regime I” and a probability of being in “regime II”, but the probability of being
“between” these regimes is close to zero. E.g. the number of observedbf in the
interval(0.2, 0.7) is 26 (giving a frequency of about 1%).
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Chapter 3

Including the Sediment

A more advanced model is now implemented. The idea is to capture the interac-
tions in a more realistic way. This model contains a variabledescribing the nutrient
content in the active part of the sediment and this is modeledas a state variable.
The model is

Xp,t = aexNex,t
︸ ︷︷ ︸

Term1

+ bp,tNsed,t
︸ ︷︷ ︸

Term2a

(3.1)

Xb,t = fsed,tflight,tbsl(Xb,t−1 + k)
︸ ︷︷ ︸

Term3

+ bbXb,t−1
︸ ︷︷ ︸

Term4

(3.2)

= (fsl,t + bb)Xb,t−1 + kfsl,t (3.3)

Nsed,t = aNSNsed,t−1
︸ ︷︷ ︸

Term5

+ bp,sedXp,t−1
︸ ︷︷ ︸

Term6

+ (1 − bb − fsl,t)Xb,t−1
︸ ︷︷ ︸

Term7

− bp,tNsed,t
︸ ︷︷ ︸

Term2b

⇓

Nsed,t =
1

1 + bp,t

(aNSNsed,t−1 + bp,sedXp,t−1 + (1 − bb − fsl,t)Xb,t−1)

(3.4)

The idea of this model is that the sediment works as a nutrientpool where nutrient
from dead phytoplankton is stored until it returns to the water column or is per-
mantly removed. The benthic vegetation uses the nutrient pool in the sediment to
expand and dead vegetation will contribute to this nutrientpool. Note thatNsed,t

is not observable.

Each of the terms will be presented in the following.
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Term 1:

This is a loading term, which determine what part of the nutrient loadingNex,t

that is used locally. This fraction isaex. Note here that external loading of the
system only enters the nutrient cycle of the system through the pelagic vegetation
(phytoplankton).

Term 2 (a and b):

The terms describe how nutrients from the sediment pool are released to pelagic
production. This process depends on the “regime” that the system is in. In the
“healthy” regimebp,t should be small and in the “unhealthy” regime it should be
large. This correspond to the situation described in earlier sections.bp,t is given by

bp,t = (1 − Φ(Xb,t−1, rp, τ
2
p ))d + tp (3.5)

whereΦ is the normal distribution function.d andtp determine the intercept and
range ofbp,t. bp,t gives the part of the nutrients from the sediment that goes into
the pelagic vegetation. It is noticed that the nutrient in the sediment at timet is
used rather than the nutrients at timet − 1. This is because the phytoplankton is
assumed to die every winter and go into the sediment and then rise every year by
use of the available nutrient. The term is subtracted in the expression for nutrient
in the sediment.

Term 3:

The term describes how the benthic vegetation is influenced by the limiting factors,
namely nutrients in the sediment and the light that is able toreach the benthic zone.
These two limiting terms are given by

fsed,t = Φ(Nsed,t−1, rsed, τ
2
sed) (3.6)

flight,t = 1 − Φ(Xp,t−1, rlight, τ
2
light) (3.7)

The product of these describes the growth potential under given conditions. This
is multiplied by the level of benthic vegetation plus a constant termk. k can be
conceived as the potential of new vegetation to be transported into the area from
other locations. Mathematicallyk ensure that the steady state solution is different
from zero.bsl is a constant term and this should be chosen in such a way that the
solution is stable.bb + bsl < 1 will ensure this, but due to the non-linearity of the
expression it possible that this can be partly relaxed. Thisanalysis is, however, not
trivial.
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Term 4:

The term describes how much of the benthic vegetation, whichis carried over from
one year to the next.

Term 5:

This is the fraction of avaliable nutrients in the sediment carried over from one year
to the next. The fraction of nutrients not carried over will be permanently buried.

Term 6:

The term describes the part of the dead phytoplankton which stays in the system.

Term 7:

The term is the part ofXb,t not carried over from one year to the next.

The equations given above is given without noise and this is also the way these
will be analyzed in the next section.

3.1 Realizations

A realization of this model is given i Figure 3.1. The loadings in this figure is a
series of estimated loading of the Danish waters, from Conley et al (in press).

The figure shows a break down of the system around 1960. The benthic veg-
etation disappears completely and the pelagic vegetation experiences a dramatic
growth. This regime shift is also seen in the parameters in the right column of the
figure. It is also worth to note thatfsed is not really active (with values between
0.94 and 1).

Figure 3.2 shows stationary points for the model in figure 3.1. The figure shows
a hysteresis effect when nutrient loading is increased above approximately 4.5,
when the system breaks down. A good indicator for the system seems to bebp,
since the shift in this parameter is very clear.

Figure 3.3 shows the same plot as Figure 3.2, but with a different set of param-
eter values. It is seen that there is also a hysteresis like transition as the loading
is decreased from 6 to 0. It is quite clear that the model can display some very
complicated behavior.
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Figure 3.2:Stationary points of the model given in Eq. (3.1) - (3.4), forthe param-
eter values in Table 3.1
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Parameter Fig 3.1 and 3.2 Fig 3.3
µp 4 4
µlight 10 10
µsed 15 15
σp 1 1
σlight 2 2
σsed 5 2
d 0.1 0.2
tp 0.1 0.1
bb 0.5 0.5
bsl 0.48 0.48
bp,sed 0.9 0.9
aNS 0.9 0.9
aex 0.9 0.9
k 1 1.5

Table 3.1: Parameters for the mdels presented in Figure 3.1-3.3

3.2 Some Analytic Results

The model given above is very nonlinear and a complete analytical analysis is not
possible. It is, however, possible to say something on the stability of the model or
rather the requirements that have to be imposed on the parameters to ensure that
the model is stationary. Such conclusions will only apply insome part of the space,
or rather for some specific loadings.

To do this analysis the nonlinear functions are simply assumed to be constant
and the steady state solution under this assumption is calculated. The system equa-
tion is now written as a multivariate time series model, i.e.we get




1 0 −bp

0 1 − (bb + fsl)B 0
−bp,sed (bb + fsl − 1)B 1 + bp − aNSB









Xp,t

Xb,t

Nsed,t



 =





aexNex

fslk

0



(3.8)

whereB is the back shift operator (Bxt = xt−1). Following Jenkins and Alavi
(1981) this system could be written in a compact form as

Φ(B)Xt = at (3.9)
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Figure 3.3:Stationary points of the model in Eq. (3.1) - (3.4) for the parameter
values in Table 3.1
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Such a system will be stable if the roots ofdet(Φ(z−1)) lie inside the unit circle.
The determinant ofΦ(z−1) is

det(Φ(z−1)) =
(z − fsl − bb)(z(1 + bp) − aNS − bp,sedbp)

z2
(3.10)

The roots of this equation is given directly as

z =

{

fsl + bb
bp,sedbp+aNS

1+bp

(3.11)

If this had been a linear system, then the requirements wouldbe

fsl + bb < 1 and
bp,sedbp + aNS

1 + bp

< 1 (3.12)

The parameters in the model are to be thought of as fractions of the components.
E.g. bp describes the part of the nutrient in the sediment that move to the watercol-
umn.
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Chapter 4

Discussions and Conclusions

We have presented two different models for the interaction between benthic and
pelagic production. These have been analyzed in a frameworkof multivariate time
series analysis. The models are nonlinear, the nonlinearities are imposed in such a
way that we can simulate regime shift imposed by increased nutrient loadings. The
models are quite simple in the sense that the models only contain two or three state
variables. The models are, however, able to display very complicated behavior
like thresholds, hysteresis and multiple hysteresis effect. Such behavior are impor-
tant, because it is the hypothesis that biological system can contain hysteresis and
threshold effect.

For the two-state model we presented a hard threshold model and a smooth
threshold model. We consider the smooth threshold approachadvantageous to the
hard threshold approach since this is more general in the sense that it contains the
hard threshold model as a special example. In addition the smooth threshold model,
have smooth transitions (even if these can be very fast) as would be expected in
nature.

In the presented models, there is one parameter that can control the hysteresis
span. It is therefore straight forward to control this span.

The presented models have not been quantitatively comparedto data. It is of
course an important issue to go from the parameter calibration presented here to
parameter estimation. The ability to do this is of course limited by the data series
available.

Even though the models presented here are quite simple, there is still large de-
gree of freedom within the model structure and the non-linearity of the models can
lead to very different behavior of models that are seeminglyclose. It is therefore
important to have tools that in a simple way can distinguish between models. This
could e.g. be the stability or sensitivity of a model. These features of the mod-
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els should preferably be described in one single number in such a way that it is
possible to compare models in a quantitatively way.
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