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Chapter 1

| ntroduction

Eutrophication is a result of nutrient enrichment of ecteys. For aquatic ecosys-
tems the link between algae blooms and eutrophication veagnized in the 1960s
(see _Schindler| (2006)). The main sources of eutrophicatiemitrogen (N) and

phosphorus (P), the human sources of these are industryoaséliolds (dominant
source of P), and agriculture (dominant source of N).

In more recent years the hypothesis of alternative stabteshave been pro-
posed (sek_Schindler (2006), for a historic presentatibhg presence of alterna-
tive stable states is potentially reflected in hysterediscef and even irreversible
changes of a system caused by excessive nutrient loadibg@gbication) on the
system. There is a bulk literature on this subject in theexrdf lakes, e.g9. Schef-
fer et al (2003)| Carpenter._(2005), and others. These kinshiffs where the
dynamics of the system change suddenly will be referred tegime shifts.

An example of a simple system with regime shifts is given inp@ater et
al (1999), here P in the water column is modeled as a functidheoloadings.
The dynamic equation include a non-linear recycling terims Tonstruction give
rise to alternative stable states and with the right chofggacameter values both
hysteresis effects and irreversible changes.

Others (e.g.._Scheffer et lal_(2003)) give examples of two dsimnal (e.qg.
floating and submerged plants) systems with bistable dycsam$Scheffer et &l
(2003) offer a conceptual empirical verification of the &ide hypothesis in con-
trolled experiments. Such verification are however diffignireal life systems.
The presence of different time constants in the system nsapdimted out by Car-
penter (2005)) appear to be hysteresis effect or even isible changes of the
system, simply because the system may use hundreds or exesattus of years
to recover after heavy loading coursing a break down of tiséesy in a matter of
years or decades. It could of course also be argued that $kensyrom a practical



point of view has experienced an irreversible change.

An important issue for systems with alternative stableestas the stability
of the states, such analysis can be addressed with bifoncatialysis (see e.g.
Scheffer et al 1(2003)), and this will show how far the systenfrom an abrupt
change. Since ecosystems are very complex systems thelbewnd to be noise
in the systems (“systems noise”). On top of this measuresneinthese systems
are bound to be uncertain. An adequate description of theserss is therefore a
stochastic one. The stochastic nature of the system meaina¢hcan only assign
a probability of a regime shift appearing in the next timeeiaal, and it might
therefore be the best strategy to use a precautionary policy

Ludwig et al (2003) and Carpenter et al (1999) advocate fsrgbint. These
papers explore management strategies for lakes, by usigpaomic utility model
on the top of the dynamical system description. Both papdscate for a precau-
tionary policy due to the uncertainty in the system. Ludwigle(2003) have built
a noise term into the model.

We will explore some models for the relation between thegieland benthic
vegetation in marine ecosystems. The models are derivedigteete time setting
and not, as is often the case, derived from differential gopna We will present
some characteristics of these system and emphasize wheris ceeeded in order
to ensure stability. The models are explored both in a détéstit setting and in a
stochastic setting.



Chapter 2

A Benthic/Pelagic I nteraction
M odel

2.1 The Concept

The conceptual setting is an ecosystem as sketch in HiglireThe model has
two states or regimes corresponding to high and low nutt@ading. In the first
regime the ecosystem is in a “healthy” condition. l.e. théewss relatively clear,
such that sun light is able to reach the benthic zone. In #gsmre there is a high
level of benthic biomass and the sediment is therefore damdipermanently re-
moving most of the nutrients in the particulate matter rgagthe bottom, through
denitrification.

The second regime is characterized by high level of pelagimass. This pre-
vents sunlight from reaching the benthic zone and bentlgetation will therefore
be reduced or completely disappear. One result thereofaisthie sediment be-
comes more susceptible to releasing nutrients back intavétter column causing
a further increase in phytoplankton biomass. The last eiffatustrated in Figure
23 with the double arrow.

Nutrient input is the driver of the system, but the benthigetation will govern
the regimes. The figure indicates that the interaction goesigh the sediment.
This is also true on the conceptual level, but the sedimeltbeiignored in the
first models. The ecosystem functioning will therefore bedaied directly as a
interaction between benthic and pelagic production.
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Sketch of a Marine Ecosystem

"Regime" | 1l

\U/Light

Nutrient input ] Nutrient input

low Phytoplankton high Phytoplankton
level X_p Low é level X_p High

Bottom vegetation | Sediment Bottom vegetatior| Sediment
level X_b high Stable level X_b low Unstable

Figure 2.1: Schematic picture of the model described’id) @t [Z.2). Regime
| is the healthy ecosystem where most of the nutrient fromptigoplankton is
processed by the sediment through uptake and permaneat. biifie sediment
becomes overloaded in regime Il causing faster cycling efrthitrients from the
sediment, this is an “unhealthy” situation where benthoemially may suffer
from oxygen depletion.



2.2 A Hard Threshold Set Up

The conceptual setting described in Secfioh 2.1 is now latetsinto a mathemat-
ical model. In the formulation given here units are arbitrahe aim is here to
describe the functional relationship. The proposed madel i

Xpi = aif Neay + 09X 01 + ) 2.1)

Xpp = (k9D 409X, ) (Xpeon) + 00 Xpp1 +¢f)  (2.2)

where

- { 1 if Xb,tfl >Tp (23)

2 if Xy 1<y

The formulation above is a bivariate nonlinear thresholdleho The behavior of
this model will be explored with simulation studies, buttfieach of the parame-
ters/functions in the model will be presented with a phyifigalogical interpreta-

tion.

Xy and X4

The benthic biomassX(, ;) of the ecosystem at timeand the pelagic biomass
(X,,) attimet. These are the state variables of the system.

Ne:v,t:

The external nutrient loading on the system at time

o)

The effect of nutrient loading on the system. This is a linedationship (in each

regime). Further it is seen that nutrient loading affects phytoplankton level

directly while it only affects the benthic vegetation lewedlirectly, through the

effect of increased concentration of phytoplankton in tlaercolumn. If the state
variables are considered as content of nutrients in thgjo#tenthic biomass, then
aif) could be viewed as a proportion.

by and b

These parameters describe how much of the benthic and pdliagnass that sur-
vive from year to year. These number are fractions, i.e. gheuld be between 0
and 1.



f(j)(x);

fU)(z) describes the effect on the benthic zone from increasetidéplytoplank-
ton in the pelagic zone. Increased level of pelagic biomaseept sunlight from
reaching the benthic zone, and this should be reflectet{dn. f)(z) should
therefore be close to one for low level of phytoplankton alodes to zero for high
level of phytoplankton, i.e. a sigmoid function. Hefés chosen ag = 1 — ®(x)

where® is the distribution function for the normal distribution.h& behavior of
this function is controlled by the mean and the variance éntbrmal distribution.

The functionf should be written as

, R , N 2

FO(@) = fard), 7)) =1 = o), (7)) (2.4)

wherer, is a translation of the function such thétr,) = 3, andr, controls how
fast the changes ifi is introduces, e.gf (r, — 27,) = 0.95, f(r, + 27,) ~ 0.05.

().
byy:
A cross correlation term that describes the effect of natidarried from the pelagic
zone to the benthic zone. This is in it self a linear relatiau, it is damped by the
nonlinear functionf described above.

k describes a level of bottom vegetation, this is also dampebdononlinear func-
tion f.

Tp.

ry IS a threshold for the system, this construction allows dyina of the system to
change completely and instantaneously when the threshold$sed, i.e. when,
becomes less tham.

egjt) describes the errors at each time step; these should fothowe gprobability
distribution.



Remarks:

The model described by EJ_(R.1)-(2.3) is a nonlinear matiate model with an
input that drives the system. Univariate models with thos$iparameters like,
are called SETAR (Self Exiting Threshold Auto-Regressinedels, while uni-
variate models with a nonlinear dampening term ljkés called STAR (Smooth
Threshold Auto-Regressive) models. There are other regiodels that should be
thought of, an example is hidden Markov models with regimiching.

The only difference between the regimes in the followingdis will be in

by (bél) < b,(f)), this means thak, grows fast towards a new equilibrium when
the regime shift occur. This in turn will have a catastrophipact on the benthic
vegetation.

In regime “I” where the sediment is stabVé./) will be low since most of the
biomass will be absorbed by the sediment. In regime “lI” mafsthe nutrient
which reach the bottom will be cycled to the water column.
a;j)Nez
1-b%)
sumption that the system will settle in one state and thatadhding N remains
constant. This means thag will be zero if N, is zero or ifa, is zero.

The first term in Eq. [[Z]2) describes how the phytoplanktaellaffects the
benthic vegetation. For small values &f,; compared ta, (see Eq. [Z}4)) the
effect of a small change iX,, will be positive, i.e. the nutrient from the phyto-
plankton will be used by the benthic vegetation and incréas@amount of benthic
biomass. AsX,, ; becomes closer tg, the shadow effect will be dominant and the
first term in Eq. [ZR) will vanish, which results in a fast dgof X;,. WhenX,
crosses the thresholg a further rise in theX,, will cause the first term to decrease
faster andX; will approach zero.

The situation above should reflect the situation in a maraosygstem as a rise
in the level of phytoplankton cause the benthic vegetatishtided out. Increased
nutrient loading may also lead to oxygen depletion when themncolumn is strat-
ified. This gives a positive feed back to the phytoplanktothewater column with
a complete break down of the system as a consequence.

The asymptotic mean value, = lim; ., E(X,;) is under the as-

2.2.1 Some Realizations of The Moddl

Figure[Z2 an@ 213 show realizations of the models descabesde with a specific
set of parameter values. Figurel2.2 is deterministic, he. noise term is set to
zero; this is also called (see Tong (1990)) the skeletonekthchastic model in
Figure[Z.B. Such plots allow us to examine the determingsit of the model.
Figure[Z2 show the biomass level in the pelagic and the entime as time
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series. The same figure gives the time series of the nutegat. |IFrom the figure
we see that the system is stable in regime | with the nutrigmitiequal to 3. At
t = 10 the input is increased to 6. The result is an increase in tplankton
biomass and a decrease in the benthic biomass. When thisesete threshold
value a dramatic increase in the phytoplankton level is aedrhe benthic biomass
disappear completely. Decreasing the nutrient load to 2 dotaffect the benthic
biomass level, while a further decrease to 1 results in arease in the benthic
biomass level and eventually a regime shift. With a furteréase of loading
to 3 the system return to the starting position. This kind ystaresis, where we
need to do more than returning to the original loading is etgukin these kinds of
ecosystems.

Figure[ZB show a realization of a process like in Fiduré B, with noise
added. This plot is included to give an example of how thisldidank with noise.
It is seen that there are some unphysical inputs/outputh,negative biomass and
negative nutrient loading. This is due to the way the noismseare included, but
this problem could be fixed by transformation of data, e.glolgytransforming the
data. It is further noticed that the system end up in a “urthgaregime due to the
stochastic input.



A Deterministic Model

Regime

X_p
10

Figure 2.2: The model in Eqm.l)E(]Z.B) Wiﬂf) = b;(){g = k0 = T;” =1,
o) =07, &) = ¢f) = 0,1 =51, =5forj e {1,2}, b = 0.1, and

bf) = 0.8. The plots show the regime which the model is in, the red linthe
second row indicate the threshold, the bottom row show the ém the system.



A Stochastic Model
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Figure 2.3: Realization of the same model as in Figure 2.ewith e;fz ande

iid. N(0,1) distributed random variables and., ;
N(0,1) distributed random variables angl is deterministic.u; is indicated w

the red line in the bottom row.
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2.3 A Smooth Threshold Set Up

A more general class of models than the SETAR-class is thes @& Smooth
Threshold “AR” (STAR) models. Replacing the hard thresH&g&ETAR” term
in (ZJ) with a smooth threshold/“STAR” term give the modalratrix notation)

Xpt a. b t—1 0 :| |: X, t—1 :| 0
) — Nem P + D, D, +
[ Xt } . [ 0 } [ bppfi-1 by Xpi-1 K fi
+ |: 01,1 01,2 :| |: ep,t :| (25)
02,1 0272 €b,t

or in a more compact notation
X = Negra+ By Xy 1+ ki + X (2.6)

The functionf; = f(X,.) is defined in the same way as in the previous sections,
while the hard threshold from the SETAR-like model is replhavith the function

bpt = (1 — ®(zps, 1, 72))d + 1 (2.7)

This formulation means tha}, ; changes front, tot,, + d as X} goes from—oo to
oo. Inthe limitoy, — 0, ®(xp ¢, 1p, sz) becomes the indicator functidiiz, ; > ry)
and this model is the SETAR model presented in Se€fidn 2.2. dlko means that
ry in Z4) play the same role as the threshold parametéor the SETAR model
discussed above.

Figure[Z% gives the time series plot for a STAR model withghme param-
eters as the SETAR model presented in Figure 2.2cang 1. It is seen that the
models behave similarly when the same pressure is impogermbst significant
difference between the two models is the shoulder;inthis is however not an
asymptotic behavior.

Figure[Z® shows the stationary points for the SETAR and fh&RSmodels
presented in Figurled.2 ahdR.4 as a function of the nutreattihg. The plots are
constructed by finding the solution to the probleniNat = 0, then increasing the
loading a little finding the solution here with the solutiang., = 0 as a starting
guess and so on and so fourth u¥il, = 6. Then decreasing loading in the same
way. Each stationary point is found by iteration until thenber||x; — x;—1|| is
small (< 10~°) or the number of iterations reach a maximum number (50). s fir
observation from the two plots is that the models also in¢hi&e are quite similar.
However one difference is that the SETAR process does nai seeonverge for
a range of small loadings.
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STAR - time series

]|

b
01 02 03 04 05 06 07 08

8 10 12 14

Xbyt

20
1

15
1

Nin,t

Time

Figure 2.4:The model in Eq.[(ZI5) withy, = b,, = K =7, =7, = 1, bgj) =0.7,
el(j} = egft) =0,r, =1, = 5,d = 0.7, andt, = 0.1. The plots show the regime
which the model is in, the red line in the second row indichte threshold, the

bottom row show the load on the system.
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This behavior might seem strange since we would expectragstie converge.
Fortunately it is possible to analyze this behavior witmdtrd analysis and alge-
bra. To this end note that

fi = flxpyrp,rp) =1 —@(zp455,1) (2.8)

For the realization in FiguleZ.5 it is seen thgtis quite far (more 8,) fromr,,. It
is therefore safe to s¢t = 1 in our analysis.

This gives a model that is linear in each of the two regimesnddfiby the
threshold parametet,. The model in each of the regimes is therefore (with con-

stant loadingV,,)
|: Tpt :| _ |: Nezay :| + b;]) 0 |: Tpt—1 :|
Tpt K bp7b by Tpt—1

At the stationary points we must hawge = x;_,. Therefore we solve for stationary
points, in each of the regimes and get the stationary points

r . -1
Ty _ 1-— bé]) 0 Nexap
Tp bp,b 1-— bb K
B 1
I L
B bps 1 K
L a-of)-b) 10

A necessary condition for this actually being a stationasinpis that it is in the

same regime as the model.ﬂf) denotes the stationary point in regimé¢hen a
stationary point must satisfy

xl()l) >r, V xl()2) <7y (2.9)

Now this conditions can be formulated in terms of conditionghe loading

1-— bb apbpb '

New > (Tb

or

K >u—¢%u—m> 2.11)

N —
ew < (Tb 1-— bb apbpb

plugging in the parameter values used for the simulatiorignie[Z% we get

1 1-01)(1-07)
Ny > (5 - 0.7> : = 0.45 (2.12)
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or

1 (1-08)(1-07)
N, < (5 — 0.7> ; =0.1 (2.13)

These numbers are confirmed in Figlirel 2.6 where a zoom on tlcemwerging
region of the data is given. In summary; Figlre 2.5 2.6vdhat the process
converge to a point in the other regimes. As the process apprthis point the
process change and converge to a point in the first regimecaml $=iguré216 and
21 show that these processes are not chaotic but that theypferiodic signals.
Note that for the analysis applied here it is important thats far away fromr,,.
The non-stationary points are actually limit cycles as epldiad in Figure 2V .

2.4 More Simulation Studies

Figure[Z8 shows empirical quantiles based on a simulatisyswith the model
given in FigurdZZJ4, but with a noise term, iE.= I ande;; ~ N(0,1). Further
the input series have also been added noise. The figure stoowthé uncertainty
grow with time.

Figure[Z® shows histogram for the parameters at time 70sélfigures show
that there is a splitting of the density function. l.e. thira probability of being
in “regime I” and a probability of being in “regime II”, but éhprobability of being
“between” these regimes is close to zero. E.g. the numbebséwedy, in the
interval (0.2,0.7) is 26 (giving a frequency of about 1%).
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SETAR - stationary points
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Figure 2.5: Stationary points for the process in Fiduré ®p)(and’Z} (bottom)
as a function of loading.
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Zoom on non-stationary SETAR-points

0.1 0.2 0.3 0.4 0.5

Figure 2.6: Zoom on the non-stationary points of Fiduré 2.5.
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Limit cycles for SETAR process
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Figure 2.7: Limit cycles for some of the non-stationary peigiven Figuré2l6.
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Quantiles in a STAR-model
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Figure 2.8: Empirical quantiles in a stochastic STAR modghw, = b,, =
K=rp=n=1b0 =07¢) =l ~ N0,1), 1, =r, = 5d = 0.7, and

t, = 0.1. The nutrient input is given by, ; = N;+u; whereN is a deterministic
process given in Figuie2.4 and ~ N(0,1). The quantiles are based on 2000
time series.
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Figure 2.9: The figure show histograms of the data at time- 70 used for the
guantile plot in Figur&Z218.
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Chapter 3

| ncluding the Sediment

A more advanced model is now implemented. The idea is to caypte interac-
tions in a more realistic way. This model contains a variaelscribing the nutrient
content in the active part of the sediment and this is modated state variable.
The model is

Xp,t = aemNea},t + bp,thed,t (31)
—_——  ———
Terml Term?2a
Xpt = fsedtSright,ibst(Xpi—1 + k) +0pXp 1 (3.2)
———
Term3 Term4d
= (for,e +bu)Xp -1 + Efay (3.3)
Nsed,t = aNSNsed,t—l +0b ,sepr,tfl + (1 - bb - fsl,t)Xb,t—l - bp,thed,t
—_————
Termb Termb6 TermT7 Term?2b
\
1
Nsed,t = (aNSNsed,t—l + bp,sepr,tfl + (1 - bb - fsl,t)Xb,t—l)
1+bpt
(3.4)

The idea of this model is that the sediment works as a nutpeokwhere nutrient
from dead phytoplankton is stored until it returns to theawatolumn or is per-
mantly removed. The benthic vegetation uses the nutriesitipaghe sediment to
expand and dead vegetation will contribute to this nutrjgdl. Note thatVg.q ¢
is not observable.

Each of the terms will be presented in the following.
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Term 1:

This is a loading term, which determine what part of the eutrioadingV,, ¢
that is used locally. This fraction is.,. Note here that external loading of the
system only enters the nutrient cycle of the system throhgipelagic vegetation
(phytoplankton).

Term 2 (aand b):

The terms describe how nutrients from the sediment pooleleased to pelagic
production. This process depends on the “regime” that tlséesy is in. In the
“healthy” regimeb, ; should be small and in the “unhealthy” regime it should be
large. This correspond to the situation described in eatetions b, ; is given by

bpt = (1 — ©(Xpy—1,7p,75))d + 1 (3.5)

where® is the normal distribution functiond and¢, determine the intercept and
range ofb, ;. b, gives the part of the nutrients from the sediment that gots in
the pelagic vegetation. It is noticed that the nutrient ia sediment at time is
used rather than the nutrients at time 1. This is because the phytoplankton is
assumed to die every winter and go into the sediment and tbervery year by
use of the available nutrient. The term is subtracted in ¥peession for nutrient
in the sediment.

Term 3:

The term describes how the benthic vegetation is influengeheblimiting factors,
namely nutrients in the sediment and the light that is abtedach the benthic zone.
These two limiting terms are given by

fsed,t = (I)(Nsed,tflv Tsed, 7_s2€d) (36)
fighte = 1= ®(Xpt—1,Ttight: Tiight) (3.7

The product of these describes the growth potential undengionditions. This

is multiplied by the level of benthic vegetation plus a cansttermk. k can be
conceived as the potential of new vegetation to be transgadnto the area from
other locations. Mathematically ensure that the steady state solution is different
from zero. b, is a constant term and this should be chosen in such a wayhihat t
solution is stableb, + bs; < 1 will ensure this, but due to the non-linearity of the
expression it possible that this can be partly relaxed. @h#ysis is, however, not
trivial.
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Term 4:

The term describes how much of the benthic vegetation, whicarried over from
one year to the next.

Term 5:

This is the fraction of avaliable nutrients in the sedimeartied over from one year
to the next. The fraction of nutrients not carried over wélfermanently buried.

Term 6:

The term describes the part of the dead phytoplankton whégts $n the system.

Term 7:

The term is the part ok}, , not carried over from one year to the next.

The equations given above is given without noise and thiksestae way these
will be analyzed in the next section.

3.1 Realizations

A realization of this model is given i Figufe_B.1. The loading this figure is a
series of estimated loading of the Danish waters, irom Gosfl@l (in press).

The figure shows a break down of the system around 1960. Thhiberg-
etation disappears completely and the pelagic vegetatipariences a dramatic
growth. This regime shift is also seen in the parametersdrmight column of the
figure. It is also worth to note that,.; is not really active (with values between
0.94 and 1).

Figure[32 shows stationary points for the model in figure Bte figure shows
a hysteresis effect when nutrient loading is increased etapproximately 4.5,
when the system breaks down. A good indicator for the syseems to be,,
since the shift in this parameter is very clear.

Figurel[3.B shows the same plot as Fiduré 3.2, but with a diffeset of param-
eter values. It is seen that there is also a hysteresis kkwsition as the loading
is decreased from 6 to 0. It is quite clear that the model caplaly some very
complicated behavior.
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Figure 3.1: A realization of the model described in Eq.1(33A) with the param-

eters given in Table_3.1
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Stationary points
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Parameterl Fig[3d and312 Fig[33
p 4 4
Hlight 10 10
Used 15 15
op 1 1
Olight 2 2
Osed 5 2
d 0.1 0.2
t 0.1 0.1
by, 0.5 0.5
bl 0.48 0.48
bp.sed 0.9 0.9
ans 0.9 0.9
Qez 0.9 0.9
k 1 15

Table 3.1: Parameters for the mdels presented in FIguy&.3.1-

3.2 SomeAnalytic Results

The model given above is very nonlinear and a complete doalynalysis is not
possible. It is, however, possible to say something on thgl#y of the model or
rather the requirements that have to be imposed on the psrae ensure that
the model is stationary. Such conclusions will only applgame part of the space,
or rather for some specific loadings.

To do this analysis the nonlinear functions are simply agslito be constant
and the steady state solution under this assumption islatddu The system equa-
tion is now written as a multivariate time series model,\ve.get

1 0 _bp Xp,t aemNem
0 1— (bp+ fa)B 0 Xot | = fsk  [(3.8)
_bp,sed (bb + fsl - 1)B 1+ bp - CLNSB Nsed,t 0

where B is the back shift operatordx; = z;—1). FollowinglJenkins and Alavi
(1981) this system could be written in a compact form as

P(B)X; = a; (3.9)
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Stationary points
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Figure 3.3: Stationary points of the model in Eq._(B.1)={3.4) for thegmaeter

values in Tabl&3l1
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Such a system will be stable if the rootsdaft(®(z~1)) lie inside the unit circle.
The determinant ob(z 1) is

det(@(z_l)) _ (Z - fsl - bb)(z(l +zb2p) —anNs — bp,sedbp) (310)

The roots of this equation is given directly as

Jsi+ by
= { bs,sedbp+aNS (3.11)
115,

If this had been a linear system, then the requirements wmaild

bp,sedbp +ans

b 1 and
fsi+by < T+,

<1 (3.12)

The parameters in the model are to be thought of as fractibtite@omponents.
E.g. b, describes the part of the nutrient in the sediment that motlest watercol-
umn.
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Chapter 4

Discussions and Conclusions

We have presented two different models for the interactietwben benthic and
pelagic production. These have been analyzed in a framegfarkiltivariate time
series analysis. The models are nonlinear, the nonlifesdre imposed in such a
way that we can simulate regime shift imposed by increas&ibntiloadings. The
models are quite simple in the sense that the models onlaicotwto or three state
variables. The models are, however, able to display veryptioated behavior
like thresholds, hysteresis and multiple hysteresis effeéach behavior are impor-
tant, because it is the hypothesis that biological systemcoatain hysteresis and
threshold effect.

For the two-state model we presented a hard threshold modehamooth
threshold model. We consider the smooth threshold appradesintageous to the
hard threshold approach since this is more general in treedéat it contains the
hard threshold model as a special example. In addition tl@dnthreshold model,
have smooth transitions (even if these can be very fast) adwae expected in
nature.

In the presented models, there is one parameter that carokthe hysteresis
span. It is therefore straight forward to control this span.

The presented models have not been quantitatively compardata. It is of
course an important issue to go from the parameter caliboragagiesented here to
parameter estimation. The ability to do this is of coursdtéohby the data series
available.

Even though the models presented here are quite simple, ithstill large de-
gree of freedom within the model structure and the non-fiteaf the models can
lead to very different behavior of models that are seemictgge. It is therefore
important to have tools that in a simple way can distinguistnieen models. This
could e.g. be the stability or sensitivity of a model. Thesatdires of the mod-
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els should preferably be described in one single numberéh suway that it is
possible to compare models in a quantitatively way.

30



Bibliography

Carpenter S. R., Ludwig D. and Brock W. A. (199®)anagement of Eutrophica-
tion for Lakes Subject to Potentially Irreversible Changes. Ecological Applica-
tions, 1999, 9(3), pp. 751-771

Carpenter S. R. (2005FEutrophication of Aquatic Ecosystems. Bistability and Soil
Phosohorus. PNAS, July 2005, vol. 102, no. 29, pp. 10002-10005

Conley, D.J., J. Carstensen, G. Artebjerg, P.B. ChristeriseDalsgaard, J.L.S.
Hansen & A. Josefson (in presd)ong-term changes and impacts of hypoxia in
Danish coastal waters. Ecological Applications.

Giusti E. & Marsili-Libelli S. (2004) Modelling the Interaction between Nutrients
and the Submerged Viegetation in the Ortobetello Lagoon Ecological Modelling
184, pp. 141-161.

Jenkins G. M. and Alavi A. (1981)Some Aspects of Modeling and Forecasting
Multivariate Time Series. Journal of Time Series Analysis, Vol.2 Issue. 1, p.
1-47.

Ludwig D., Carpenter S. R. and Brock W. A. (2003ptimal Phosphorus Loading
for a Potentially Eutrophic Lake. Ecological Applications, 13(4), pp. 1135-1152

Schindler D. W. (2006 Recent advances in the understanding and management of
eutrophication. Limnology and Oceanography, 51 (1, part 3), pp. 356-363

Scheffer M., Szab6 S.,van Nes E. H., Rinaldi S., KautskyNérperg J., Roijackers
R. M. M. and Franken R. J. M. (2003}loating Plant Dominance as a Sable
Sate. PNAS, vol. 100, no.7, pp. 4040-4045

Tong H. (1990)Non-linear Time Series - A Dynamical System Approach. Oxford
Science University Press

31



	1 Introduction
	2 A Benthic/Pelagic Interaction Model
	2.1 The Concept
	2.2 A Hard Threshold Set Up
	2.2.1 Some Realizations of The Model

	2.3 A Smooth Threshold Set Up
	2.4 More Simulation Studies

	3 Including the Sediment
	3.1 Realizations
	3.2 Some Analytic Results

	4 Discussions and Conclusions

