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Abstract

The estimation of flow fields from time sequences of satellite imagery has a number of important
applications. For visualization of cloud or sea ice movements in sequences of crude temporal
sampling a satisfactory non blurred temporal interpolation can be performed only when the
flow field or an estimate there-of is known. Estimated flow fields in weather satellite imagery
might also be used on an operational basis as inputs to short-term weather prediction. In this
article we describe a method for the estimation of dense flow fields. Local measurements of
motion are obtained by analysis of the local energy distribution, which is sampled using a set of
3-D spatio-temporal filters. The estimated local energy distribution also allows us to compute
a certainty measure of the estimated local flow. The algorithm furhtermore utilizes Markovian
random fields in order to incorporate smoothness across the field. To obtain smothness we
will constrain first as well as second order derivatives of the flow field. The performance of
the algorithm is illustrated by the estimation of the flow fields corresponding to a sequence
of Meteosat thermal images. The estimated flow fields are used in a temporal interpolation
scheme.

E–mail: rl@imm.dtu.dk Phone: +45 4588 1433 FAX: +45 4588 1397
WWW: http://www.imm.dtu.dk/documents/users/rl/homepage.html



1 Introduction

Independently moving objects, rotation, dilation, shear in image sequences combine to produce
complex velocity fields. Therefore, valid velocity estimation is restricted to local computa-
tions. This ensures that for sufficiently smooth velocity fields the estimation can be based on
translational image velocity.

Coherent image translation is the basis for several computational methods. The main meth-
ods include correlation-based methods (Wahl & Simpson, 1990), differential methods (Horn &
Schunk, 1981; Nagel & Enkelmann, 1986), energy-based methods (Adelson & Bergen, 1985;
Heeger, 1987; Knutsson, 1989) and phase-based methods (Fleet & Jepson, 1990; Fleet, 1992).

Restricting measurements to small spatio-temporal neighborhoods, however, often results in the
measurements being based on one-dimensional intensity structures (edges and/or lines). In this
case we can only determine the component of the velocity orthogonal to the intensity contour
reliably. This is known as the aperture problem (Marr & Ullman, 1981).

In general this problem exists in neighborhoods of the image sequence that have a one di-
mensional structure only, as well as neighborhoods that have no structure at all, that is in
homogeneous areas. On the other hand, for image sequence neighborhoods that exhibit two
dimensional spatial structures, such as intensity corners or various textured regions, we can reli-
ably extract the true velocity. In order to identify the type of neighbourhood several approaches
have been reported. In a correlation-based approach Anandan (1989) used the curvature of
the match surface, Nagel & Enkelmann (1986) investigated the use of second order spatial
derivatives to identify the neighbourhood. The use of quadrature type filters tuned to different
spatio-temporal frequencies has been used to identify the type of the neighbourhood in energy-
as well as phase-based approaches (Haglund, 1992; Fleet, 1992)

Because the aperture problem results in flow fields that are not fully constrained an assumption
of smoothness of the velocity field must be applied in order to obtain a dense velocity field. One
way of doing this is by applying a restriction that force the spatial derivatives to be small. These
restictions are referred to as smoothness constraints (Horn & Schunk, 1981). Methods utilizing
this type of smoothness constraints include the work of (Nagel & Enkelmann, 1986; Terzopou-
los, 1986; Marroquin, Mitter, & Poggio, 1987; Konrad & Dubois, 1992). Other approaches
based on spatial filtering also have been reported. Simpson & Gobat (1994) for example used a
vector median filter to obtain a smooth velocity field.

It is evident that local velocity estimation algorithms that are able to distinguish between the
different natures of the neighborhood, and thus the estimated velocity - component velocity or
not - should be more successful than algorithms that are not. In Section 3.1 we will consider
a method to extract velocity estimates as well as related directional certainties of the estimates
based on the local energy distribution. This technique also will allow for the detection of un-
reliable results due to deviations from the assumption of coherent translational motion. This
is especially important because of the distortion of features due to physical processes that can
occur in fluids (e.g. Wahl & Simpson (1990)).

In Section 3.2 we will describe the implementation of the smoothness constraint. This smooth-
ness constraint is formulated as a prior probability distribution for the velocity field that assigns
high probability to fields that have small first and second order spatial derivatives, and low prob-
ability to fields that have large spatial derivatives. We will furthermore suggest an observation
model that carefully relates the local estimates of normal velocity to a particular realization of
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Figure 1: This is the infrared channel from the Meteosat 5 satellite mapped to a polar stereographic
projection showing the cloud cover over Europe at August 24, 1994, 05:00 GMT. We will apply the flow
estimation algorithms to the subimage marked here. The images a provided by the Danish Meteorological
Institute.

the velocity field. Finally, we will combine the prior distribution and the observation model into
a posterior distribution using Bayes’ theorem.

The algorithm is illustrated by the estimation of smooth cloud velocity fields in a series of
Meteosat satellite images. The estimated flow fields will be used in two temporal interpolation
schemes. First, intermediate frames between each of the originals are generated, second, the
estimated flow field is used to generate a frame to replace a drop-out in the sequence.

2 Data

The algorithms described in this article will be applied to a sequence of images recorded by the
Meteosat 5 satellite. The images are from the infrared channel (10.5 - 12.5µm). Preliminary
processing performed by the Danish Meteorological Institute consist of mapping to a polar
stereographic projection, interpolation to a equirectangular 7 km grid, and subsection to576 ×
768 images. The center of the grid is at48.4◦ N latitude and8.2◦ E longitude. The images are
recorded with a time interval of 30 minutes. We will be using a384×512 subsequence centered
at August 24, 1994, 05:00 GMT. The center image of the sequence is shown in Figure 1.
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Figure 2: k is the unit normal vector of the iso-grey level planes generated by a translating line.k1

is the unit direction vector of the translating lines, and is therefore perpendicular tok. k2 is a vector
perpendicular tok as well ask1. The normal flow is found as the projection onto the(z1, z2) of k2

multiplied so its temporal coordinate equals 1.

3 Methods

This section is divided into two subsections. In Section 3.1 we will consider the local velocity
estimation using a set of spatio-temporal directional quadrature filter pairs. After which in
Section 3.2 we will formulate an algorithm for integrating these local estimates to a dense
velocity field using smoothness constraints based on first and second order spatial derivatives
of the velocity field.

3.1 Local Velocity Estimation

Because motion estimation in image sequences can be viewed as identification of patterns re-
peating themselves over time, it is natural to try to describe the motion analysis in the Fourier
domain. Let us consider a neighbourhood containing a one dimensional intensity structure (e.g.,
a line) that translates coherently through time. In the spatio-temporal domain this corresponds
to a neighbourhood of iso-grey level planes. Let these planes be given by their unit normal
vectork̂ = (k1, k2, k3)

T . We will refer to this vector as the spatio-temporal orientation vector.
The non-zero Fourier coefficents of this neighbourhood are concentrated to the line defined by
k. Furthermore the correspondence between this vector and the normal flow of the intensity
structure is illustrated in Figure 2. The normal flow is given by

µ = (µ, ν)T =
−k3

k2
1 + k2

2

(k1, k2)
T (1)

Now, in order to estimate this line, we will sample the Fourier domain using a set of spatio-
temporal filters. Using a method developed by Knutsson (1989) this can be achieved by
applying a set of directional quadrature filter pairs symmetrically distributed over the spatio-
temporal orientation space. The directional quadrature filter pairs consist of a real even part
and an odd imaginary part. The phase of the transfer function for the real part is shifted90◦

relative to the imaginary part. By squaring and adding the two filter responses we obtain a phase
independent estimate of the spectral density of the corresponding image structure.
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In order to sample the Fourier domain we will employ a set of Gabor filters (Gabor, 1946)
tuned to frequencies distributed evenly across all spatio-temporal orientations, i.e. the cen-
ter frequencies of the filters are the vertices of a diametrical symmetric regular polyhedron
(Knutsson, 1989). Thepth Gabor filter consists of a Gaussian function shifted to the point
kp = (kp1, kp2, kp3)

T in frequency space. By dividing the filter into an odd and an even part we
get the two transfer functions

Qe
p(k) =

1

(2π)3

[
exp

(
(k − kp)

2σ2

2

)
+ exp

(
(k + kp)

2σ2

2

)]
(2)

Qo
p(k) =

1

(2π)3

[
exp

(
(k − kp)

2σ2

2

)
− exp

(
(k + kp)

2σ2

2

)]
(3)

The corresponding convolution masks are easily computed by taking the Fourier transforms

qe
p(z) =

1

(2π)3/2σ3
cos(kT

p z) exp

(
− z2

2σ2

)
(4)

qo
p(z) =

1

(2π)3/2σ3
sin(kT

p z) exp

(
− z2

2σ2

)
(5)

Although Gabor filters are not quadrature pairs, they provide a reasonably good approxima-
tion for sufficiently small bandwidths (Fleet & Langley, 1993). If the bandwidth in octaves is
measured at one standard deviation of the Gaussian envelope it is given by

B = log2

[‖k‖ + σ

‖k‖ − σ

]
(6)

Finally, the energy distribution of the Fourier domain as estimated by the set of quadrature filter
pairs may be represented by the tensor

T =
∑
p

qpnpn
T
p (7)

whereqp is the output from thepth quadrature filter pair, andnp is the unit normal vector
defining the direction of the filter.

In order to find the direction of maximum spectral density we must find the unit vectork that
maximizeskT Tk. This vector is the eigenvector corresponding to the largest eigenvalue ofT
(Anderson, 1984). So for the coherently translating one-dimensional intensity structure, which
has an effectively one dimensional Fourier domain, the spatio-temporal orientation vector is
found by an eigen analysis ofT . Because the Fourier domain is one dimensionalT has only
one non-zero eigenvalue.
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Figure 3: The true flow,u, is constrained by the linear constraints given by the two normal flows,µ1,
andµ2.

Now, if the translating structure has a two-dimensional intensity structure (e.g., a grey level
corner) the spatio-temporal domain is described by two spatio-temporal orientations, each of
which give rise to a non-zero eigenvalue ofT . The eigenvectors corresponding to these non-
zero eigenvalues each translates into a normal flow by using Equation (1). These two normal
flows each constrain the true flow in one direction as can be seen in Figure 3.

We can furthermore determine the perpendicular distance of the true flow to either of the con-
straint lines, this is given by

dk(xi, yi) = ‖(u(xi, yi) − µk(xi, yi))
T · µk(xi, yi)

‖µk(xi, yi)‖‖, k = 1, 2 (8)

whereu(xi, yi), µk(xi, yi) are the true flow and the normal flows taken at the position(xi, yi).

It is the (weighted) sum of squares of these distances that should be minimized across the image
in order to obtain the velocity field.

Deviation from the assumption of coherent translation, imperfectly designed filters and noise
will result in non-zero Fourier coefficients not being contained in one single line or plane. In this
case all three of the tensor eigenvalues will be non-zero. This allows us to extract information
of the quality of the estimates of constraint lines we get from the eigenvectors corresponding to
the two largest eigenvalues. Because imperfect conditions result in a non-zero third eigenvalue
we suggest using a confidence measure for each of the linear constraints based on the difference
of the corresponding eigenvalue and the least eigenvalue. Furthermore, a normalization of this
difference should be made. This is evident as a noise free high step edge measures the motion
just as well as a lower step does. We propose the following confidence measure for each of the
linear constraints given by the eigenvectors corresponding to the two largest eigenvalues.

wk(xi, yi) =
λk(xi, yi) − λ3(xi, yi)

λk(xi, yi)
, k = 1, 2 (9)

Whereλ1(xi, yi) ≥ λ2(xi, yi) ≥ λ3(xi, yi) ≥ 0 denote the eigenvalues of the tensor at position
(xi, yi). This confidence measure approaches zero when the difference of the corresponding
eigenvalue and the least eigenvalue approaches zero, and it attains its maximum value of one,
when the least eigenvalue is zero, and the corresponding eigenvalue is the largest, or is equal to
the largest eigenvalue, respectively.
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3.2 Integration of local measurements

As mentioned in the Introduction we will apply an assumption of smoothness with the purpose
of fully constraining the velocity field by forcing the spatial derivatives of the velocity field to
be small. Since Horn & Schunk (1981)’s original paper this has been investigated be several au-
thors (e.g. (Hildreth, 1984; Nagel, 1987). One way of formulating such a smoothness constraint
is by use of markovian random fields (Geman & Geman, 1984; Konrad & Dubois, 1992). We
do this using the Bayesian paradigm (Besag, 1989). First we will formulate a prior distribution
for the velocity field based on the spatial derivatives of the field. If the spatial derivatives are
implemented using these finite differences

ux(xi, yi) = u(xi+1, yi)−u(xi, yi)
uy(xi, yi) = u(xi, yi+1)−u(xi, yi)
uxx(xi, yi) = u(xi+1, yi)−2u(xi, yi)+u(xi−1, yi)
uxy(xi, yi) = u(xi+1, yi+1)−u(xi, yi+1)−u(xi+1, yi)+u(xi, yi)
uyy(xi, yi) = u(xi, yi+1)−2u(xi, yi)+u(xi, yi−1)

(10)

where(xi, yi), i ∈ {0, 1, . . . , N − 1} are the pixel positions, then the prior distribution of the
flow field may be described by a Gibbs distributionp({u}) = 1

Z
exp(−β1U1 − β2U2), whereZ

is a normalization constant and the two energy terms are given by

U1 =
N−1∑
i=0

‖ux(xi, yi)‖2 +
N−1∑
i=0

‖uy(xi, yi)‖2. (11)

U2 =
N−1∑
i=0

‖uxx(xi, yi)‖2 +
N−1∑
i=0

2‖uxy(xi, yi)‖2 +
N−1∑
i=0

‖uyy(xi, yi)‖2, (12)

where‖ ·‖ is the Euclidean norm. This probability distribution assigns high probability to fields
that exhibit small derivatives and low probability to field with high spatial derivatives. We will
need a first order neighbourhood to implementU1, and a third order neighbourhood to imple-
mentU2. In Figures 4(a) and 4(b) these neighbourhoods are shown. In Figures 4(c) and 4(d)
the cliques necessary to implement the energy functions are shown.

Having constructed this prior distribution for the flow field we will now concern ourselves
with an observation model. The observation relates the local observations or measurements of
velocity to any particular realization of the prior distribution. This is done by a conditional
Gibbs distribution

P (y|u) =
1

Z
exp(−αU0) =

1

Z
exp(−α

N−1∑
i=0

2∑
k=1

wk(xi, yi)dk(xi, yi)
2) (13)

wheredk(xi, yi) is the difference between the projection of the true flow onto the normal
flow given by thekth eigenvector and the normal flow itself at pixel(xi, yi) as described by
Equation (8).wk(xi, yi) is the certainty measure corresponding to this normal flow given by
Equation (9).Z is a normalization constant. By using a Gibbs energy function that punishes
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(a) (b)

(c) (d)

Figure 4: Neighbourhood systems and cliques for the pixel process. The neighbourhood configurations
for (interior) points for (a) a first order and (b) a third order Markovian random field, respectively. The
points marked with the symbol◦ are the neighbors of the point marked•. (c) The cliques correspond-
ing to the neighbourhood configuration in (a). (d) Some of the additional cliques corresponding to the
neighbourhood configurations in (b). This neighbourhoods contains 24 cliques in all.

larger deviation in the projection of the true flow onto the observed normal flows we allow
smoothing in the direction not constrained by the normal flows while smoothing in the direc-
tion of the normal flow is punished. Furthermore the use of the confidence measureswk derived
in the previous section as weights allow us to take into consideration the quality of our mea-
surements.

The prior distribution and the observation model are combined into a posterior distribution using
Bayes’ theorem. The energy function of the posterior distribution thus becomes

U = α
N−1∑
i=0

2∑
k=1

wk(xi, yi)dk(xi, yi)
2 (14)

+β1

N−1∑
i=0

(
‖ux(xi, yi)‖2 + ‖uy(xi, yi)‖2

)

+β2

N−1∑
i=0

(
‖uxx(xi, yi)‖2 + 2‖uxy(xi, yi)‖2 + ‖uyy(xi, yi)‖2

)

In this energy function we can control the properties of estimated motion field. The smoothness
is controlled byβ1, andβ2, and the faith in the observed or measured normal flows is controlled
by α.

We can now apply a maximization scheme to the posterior distribution in order to obtain the
maximum a posteriori estimate of the velocity field. This has been implemented using the
Iterated Conditional Modes scheme by Besag (1986).
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Filter no. x y t
1 a 0 b
2 -a 0 b
3 b a 0
4 b -a 0
5 0 b a
6 0 b -a
7 -c c c
8 -c c -c
9 -c -c c
10 c c c

Table 1: The spatio-temporal directions of the Gabor filters are given by these coefficients, wherea =
2/(10 + 2

√
5), b = (1 +

√
5)/(10 + 2

√
5), andc = 1

√
3.

4 Results

This section is divided into three subsections. First we will illustrate the local estimation of
normal flows and how these normal flows may be integrated into a smooth flow field using the
proposed prior distribution. Secondly we will use an estimated flow field to perform a temporal
interpolation and thirdly we will investigate how the estimated flow field may be used in order
to generate replacement frames in the case of drop-outs in an image sequence of a time varying
scene.

4.1 Estimation of the Flow Field

As described in Section 3.1 we will describe the local Fourier domain by the tensor given in
Equation (7). We will use a set of ten Gabor filter pairs to sample the Fourier domain. The
spatio-temporal directions of the Gabor filters are shown in table 1 (Haglund, 1992).

By setting the standard deviation of the Gaussian envelope equal to 2.5 and truncating the
envelope at three standard deviations we arrive at the filter size,17 × 17 × 17. Following Fleet
& Langley (1993) we set the bandwidth measured at one standard deviation to 0.8 octaves. This
results in a spatio-temporal frequency of the filters of 1.48 from Equation (6). Since the Gabor
filter kernels are separable (Heeger, 1987) the 20 3-D convolutions may be performed by 140
1-D convolutions. Thus reducing the computational load by a factor 40.

With Gabor filtering and the computation of normal flows using Equation (1) on the 05:00 GMT
image of the Meteosat sequence we obtain the normal flows corresponding to the largest eigen-
values as can be seen in Figure 5. The computations are carried out on a spatially subsampled
version of the image sequence. In order to remove unreliable measurements we have applied
two threshholds. First, neighbourhoods of non-translational velocity are removed by only con-
sidering normal flows whose corresponding eigenvalue is at least twice as large as the smallest
eigenvalues, i.e.wk > 0.5, secondly by demanding that the local energy, i.e. the sum of the
eigenvalues, exceeds 10 % of the maximum energy taking over the entire image we remove
measurements of problematic signal-to-noise ratio.

11



Figure 5: These are the normal flows computed from the Meteosat sequence corresponding to the 5:00
GMT frame.

α β1 β2 U0 U1 U2

0.999 0.001 0.000 0.0005267 280.1 0
0.100 0.900 0.000 3.171 213.9 0
0.999 0.000 0.001 0.004539 0 430.1
0.999 0.0005 0.0005 0.001917 525.8 296.2

Table 2: Energies

It is evident from Figure 5 that the estimated normal flow field is unsuited as an estimate of the
velocity field, and unsuited as a means of performing non-blurring temporal interpolation. The
normal flows are dependent on the orientation of the underlying image structure. To get a proper
estimate of the velocity field, we will use the integration technique described in Section 3.2.

The parametersα, β1, andβ2 of Equation 15 allows us to control the final velocity field. By
increasingα while keeping theβ’s the same, we would expect the velocity field to become more
rough, because this corresponds to increasing our faith in the measurements. On the other hand
by increasing theβ’s while maintaing the sameα, we would expect a smoother field. Also, a
largerβ2 should allow for a more rapidly changing field as opposed to a largerβ1, becauseβ1

tends to force small first order derivatives whereasβ2 tends to force the second order derivatives
to be small.

In order to illustrate this, we have estimated a series of flow fields using different parameter
settings. In Figure 6 the flow field corresponding toα = 0.999, β1 = 0.001, andβ2 = 0 is
shown. We can see that we have captured the motion as perceived from the image in Figure 1.
This is especially clear in the vicinity of the rotational pattern up and left from the image center.
It may also be noted that although the contours in this area are almost perpendicular to the

12



Figure 6: This is the velocity field is computed from the Meteosat sequence corresponding to the 5:00
GMT frame usingα = 0.999, β1 = 0.001, andβ2 = 0.

Figure 7: Analogous to Figure 6, exceptα = 0.1, β1 = 0.9, andβ2 = 0.
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Figure 8: Analogous to Figure 6, exceptα = 0.999, β1 = 0, andβ2 = 0.001.

direction of motion, resulting in very small normal flows, see Figure 5, the estimated flow still
captures the true motion. By computing the observation energy function (Equation (13)) of
the estimated flow we can see to how high a degree we have violated the observations. These
energies are tabulated in Table 2. For this flow fieldU0 = 0.0005267. This is very small
compared to the average estimated speed, which is1.1 So the smoothing of the field is primarily
done within the constraints given by the normal flows.

As expected, the estimated flow field becomes smoother as thebeta to α ratio increases. In
Figure 7 we can see the flow field resulting from settingα = 0.1, β1 = 0.9, andβ2 = 0. This
field is considerably smoother than the the one from the previous case. It may also be noted that
U0 has increased to3.171, i.e. the observations are violated to higher degree.

In Figure 8 we have tried to estimate the flow field by resticting the second order derivatives
only. The parameter settings areα = 0.999, β1 = 0, andβ2 = 0.001. We can see that restricting
the second order derivatives allow for to much variation in the field. The algorithm has not been
able to fill in the areas where no observations are available (e.g., the lower left corner), and the
rotational pattern is not reconstructed.

4.2 Temporal Interpolation in a Meteosat Satellite Sequence

An obvious application of the the flow field estimation temporal interpolation. We will illustrate
how this may done using the flow field from Figure 6. We will generate an intermediate images
between the the original images recordes at 5:00 GMT and 5:30 GMT. We extrapolate from
the each of the two original images using the corresponding flow field estimates. As we put an
emphasis on not blurring the image, we will use a nearest neighbour interpolation scheme, as

14



Figure 9: This is the artificially generated intermediate image corresponding to 5:15 GMT.

Figure 10: This is the simple average of the two original images recorded at 5:00 and 5:30 GMT. Note
the echoing of all the moving contours.

opposed to for instance bilinear or cubic interpolation, to sample the extrapolated images to the
original grid. Finally, we take the average of the two extrapolations. This is our intermediate
image.

In Figure 9 the interpolated images is shown. A na¨ıve approach to an interpolation would be
to simply take the average of the two originals, the result of this is shown in Figure 10. We
can see that the naïve approach results in a much more blurred result than the method based on
the estimated flow field. This intermediate image on the other hand displays a very saticfactory
temporal interpolation.

4.3 Drop-out Replacement by Temporal Interpolation

At least twice every day we have drop-outs in the Metosat sequences. This is very disturbing
to the eye when viewing the sequence as a film. We will show how the algorithm described
above may be used to generate a satisfactory replacement for the drop-outs. First we need to
estimate the flow field at the time of the missing image. When performing the filtering operation
we will replace the missing image with the average of the previous and the next images. In
order to evaluate how this affects the flow estimation we have removed the original 5:00 GMT
image from the sequence, substituted it with the average of the 4:30 and 5:30 GMT images and

15



Figure 11: This is the velocity field is computed from the Meteosat sequence corresponding to the 5:00
GMT frame, estimated using the average of the 4:30 and the 5:30 GMt images in the place of the 5:00
image.

computed the flow field. The resulting field is shown in Figure 11. When compared to the flow
field estimated using the original 5:00 GMT frame in Figure 6 changes are obvious only in the
upper left corner, where the measurements are sparse, as can be seen in Figure 5. Now we can
generate the replacement 5:00 image by warping the 4:30 image according to this flow field.

In Figure 12(a) and Figure 12(b) the replacement and the original 5:00 GMT images are shown.
The replacement corresponds well to the original. When viewing the new sequence as a film
the replaced images can not be distinguished from the originals.

5 Discussion

5.1 Data

The purpose of the exercises described above have been to perform a non-blurred temporal
interpolation of the sequence. It should be noted that the extracted flow fields not necessarily
assimilate the corresponding wind fields. This is true because only some clouds move with the
wind. Another problem is that we are only observing the top layer of the clouds, and the winds
may vary with height (Cracknell & Hayes, 1991).
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(a)

(b)

Figure 12: (a) The replacement image and (b) the original 5:00 GMT image
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5.2 Estimation of Normal Flows

The spatio-temporal Gabor filtering described in Section 3.1 provides a robust estimation of
normal flows. In addition to identifying the zero, one or two normal flows at each pizel, it
provides us with a measure of the confidence we should attach to the corresponding normal
flow. It is, however, only sensitive to spatio -temporal frequencies within a certain range. So for
a specific set of filters the scale at which the computations are made should be carefully chosen
from knowledge of the range of the velocities , and thus the spatio-temporal frequencies. In the
examples shown above the filtering where carried out on the second level of a Gaussian pyramid
(Burt, 1981), corresponding to a subsampling of a factor four.

To overcome this problem simultaneous filtering on a number of levels in a pyramid using the
same set of Gabor filters will allow us to measure velocities over a larger range. Preliminary
studies of this has been carried out by Heeger (1987).

5.3 Integration using Markovian Random Fields

The Markovian random field approach to integrate the measured normal flows has proven a
powerful and succesful technique. We have used restictions of the first and second order spatial
derivatives of the flow field to reconstruct the flow field. The diversity of the admissible fields
has proven sufficient for the estimation of flow fields in the case shown. The experiments
indicate that it is necessary to restrict the first order derivatives in order to propagate velocities
across regions of sparse measurements. This has not been possible by restricting the second
order derivatives only.

The smoothness constraints have been chosen from a mathematical and not a physical point
of view. Smoothness constraints involving parts that are more easily intepreted may be con-
structed. The sum of the norm of the first order spatial derivatives may for instance be separated
into three forms of deformation: dilation, shear, and rotation (J¨ahne, 1991). Knowledge of the
physical phenomena we are observing may then be translated into different weights for the three
parts. Also the estimation may be improved be including restictions on temporal variation.

5.4 Temporal Interpolation

By using the flow field when performing the temporal interpolations we have achieved much
more satisfying results than the simple alternatives shown. The flow field estimations and the
interpolations shown have, however, been contingent on the intensity variation across the image
being due to clouds only.

In case of intensity variation due to variation in the terrain, sea/land-, land/ice-boundaries etc.
these areas should be screened prior to applying this algorithm. If these areas are not screened
they would create false normal flows. Algorithms for cloud screening, however, do exist (e.g.,
(Simpson & Humphrey, 1990; Gallaudet & Simpson, 1991)).
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6 Conclusion

A technique for estimation of smooth flow fields based on observations of the local distribution
of energy measured by a set of Gabor-type filters and a prior distribution involving restrictions
on the first and second order derivatives has been described. Measures based on the local
energy distribution to detect unreliable observations are also presented. These measures include
deviation from coherent translation and the total energy present. The estimated flow fields have
been used succesfully in two temporal interpolation scheme. First we have used the flow fields
to generate intermediate frames in a sequence of Meteosat images, secondly, we have used the
estimated flow fields to generate replacement frames in stead of drop-outs in the sequence. Both
schemes are superior to the simple alternatives shown.
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