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Abstract

Given a temporal sequence of images of fluids we will use local polynomials to regularise obser-
vations of normal flows into smooth flow fields. This technique furthermore allows us to give a
qualitative local description of the flow field and to estimate the position of stagnation points. The
algorithm is applied to two data sets. First a series of Meteosat images are processed with the
purpose of estimating cloud motion. Secondly, the airflow in livestock buildings is estimated using
the technique on images recorded of smoke patterns illuminated by a laser sheet. Here the purpose
is the evaluation of the ventilation system.

I Introduction

The estimation of flow fields is usually implemented as a two-step procedure. First, local estimates
of (normal) flow are extracted from the image sequence based on an assumption of conservation of
some image feature over time. This image feature may be the intensity of a pixel itself, or it may be
some function (e.g. the Laplacian) of the image intensities. The techniques for the local estimation
of flow usually also assume that locally the image features move with constant velocity. The
techniques for estimating the local flow field include correlation methods (Leese & Novak, 1971;
Anandan, 1989; Schmetz & Holmlund, 1993), differential methods (Horn & Schunk, 1981; Nagel
& Enkelmann, 1986), energy-based methods (Adelson & Bergen, 1985; Heeger, 1987; Knutsson,
1989) and phase-based methods (Fleet & Jepson, 1990). Some of these techniques even include the
possibility of quantifying the directional certainty with which the flow has been estimated locally.
In (Anandan, 1989) the curvature of the match surface is used, Nagel & Enkelmann (1986) use
second order spatial derivatives to identify the neighbourhood under investigation. In the second



by some sort of smoothness constraint. One way of doing this is by applying a restriction that
forces the spatial derivatives to be small. Such methods include (Horn & Schunk, 1981; Nagel &
Enkelmann, 1986; Terzopoulos, 1986; Konrad & Dubois, 1992). Other approaches are based on
spatial filtering (e.g. (Simpson & Gobat, 1994)).

As the first step we will apply an energy-based method described in (Larsen, Conradsen, & Ersbøll,
1995) that allows for the extraction of velocity estimates as well as related directional probabilities
of the estimates based on the local energy distribution. This technique is described in Section II-A.

In Section II-B we will describe a technique for integrating the locally estimated (normal) flows
that is based on approximating a first order polynomial to each of the velocity components in a
neighbourhood of every pixel. In addition to providing a regularised flow field the polynomial
parameters also allow for the classification of the flow into a number of descriptors corresponding
to the Jordan canonical forms of the matrix that describe the flow. A similar technique is used by
Rao & Jain (1992) for the purpose of classifying oriented texture fields. Herlin, Cohen, & Bouzidi
(1995) use this type of method for the detection and tracking of vortices from a series of flow
fields corresponding to the temporal evolution of ocean temperature patterns. However, in this
work the flow fields are first extracted using an elaborated version of the regularisation technique
originally described by Horn & Schunk (1981), after which the different high-order structures are
identified. In this work we propose a technique that allows for simultaneous estimation of high-
order structures (such as vortices) and regularised flow fields.

In Section IV we will show how the proposed technique may be used to estimate fluid flow fields
in two cases. First we consider a temporal sequence of meteorological images from the Meteosat
satellite, and secondly, we will use the method in order to estimate the air flow in livestock build-
ings. In both cases the topological features (i.e. stagnations points) are extracted.

II Methods

A Local Velocity Estimation

Consider a neighbourhood containing a one dimensional intensity structure (e.g., a line) that trans-
lates coherently through time. In the spatio-temporal domain this corresponds to a neighbourhood
of iso-grey level planes. Let these planes be given by their unit normal vectork = (k1; k2; k3)

T . We
will refer to this vector as the spatio-temporal orientation vector. The non-zero Fourier coefficients
of this neighbourhood are concentrated to the line defined byk.

The relationship between the spatio-temporal orientation vector and the normal flow vector� =
(�; �)T is illustrated in Fig. 1. In this figure a line translating with constant velocity through space
is shown at four time instances. These lines span a plane in space-time,k is the normal vector of
this plane. In the figure�� = (�; �; 1)T and the line orientation vectore = (�k2; k1; 0)

T . Beacuse
�� is perpendicular tok as well ase, its direction is given by the outer product of these vectors.
Finally this outer product should be normed so that the temporal coordinate equals 1. This results
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� = (�; �)T =
�k3

k21 + k22
(k1; k2)

T (1)

Now, in order to estimate the spatio-temporal orientation vector, we will sample the Fourier domain
using a set of spatio-temporal filters. Using a method developed by Knutsson (1989) this can be
achieved by applying a set of directional quadrature filter pairs symmetrically distributed over the
spatio-temporal orientation space. As an approximation to such a set of filters we will employ a set
of 6 Gabor filters (Gabor, 1946) with center frequencies given by the vertices of a semi-icosahedron
Finally, the energy distribution of the Fourier domain as estimated by the set of quadrature filter
pairs may be represented by the tensor (e.g. (Knutsson, 1989))

T =
6X

p=1

qpnpn
T
p (2)

whereqp is the output from thepth quadrature filter pair, andnp is the unit normal vector defining
the direction of the filter.

In order to find the direction of maximum spectral density we must find the unit vectork that
maximiseskTTk. This vector is the eigenvector corresponding to the largest eigenvalue ofT

(e.g. (Anderson, 1984)). So for the coherently translating one-dimensional intensity structure,
which has an effectively one dimensional Fourier domain, the spatio-temporal orientation vector
is found by an eigen analysis ofT . Because the Fourier domain is one dimensional,T has only
one non-zero eigenvalue.

Now, if the translating structure has a two-dimensional intensity structure (e.g., a grey level corner)
the spatio-temporal domain is described by two spatio-temporal orientations, each of which give
rise to a non-zero eigenvalue ofT . The eigenvectors corresponding to these non-zero eigenvalues
each corresponds to a normal flow by using Equation (1).

Given the true flow we may determine the difference between the projection of the true flow on to
either of these estimated normal flows and the normal flows themselves

dk(xi) = j(u(xi)� �k(xi))
T �

�k(xi)

k�k(xi)k
j; k = 1; 2 (3)

whereu(xi), �k(xi) are the true flow and the estimated normal flows taken at the positionxi. It
is the (weighted) sum of squares of these distances that should be minimised in order to obtain an
estimate of the velocity field.

Deviation from the assumption of coherent translation, imperfectly designed filters and noise will
result in non-zero Fourier coefficients not being contained in one single line or plane. In this case
all three of the tensor eigenvalues will be non-zero. This allows us to extract information about
the quality of the estimates of normal flows we get from the eigenvectors corresponding to the
two largest eigenvalues. Because imperfect conditions result in a non-zero third eigenvalue we
suggest using a confidence measure for each of the linear constraints based on the difference of the
corresponding eigenvalue and the least eigenvalue. Furthermore, a normalisation of this difference
should be made. This is evident as a noise free high step edge measures the motion just as well as
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given by the eigenvectors corresponding to the two largest eigenvalues.

wk(xi) =
�(xi)� �(xi)

�(xi)
; k = 1; 2 (4)

Where�(xi) � �(xi) � �(xi) � 0 denote the eigenvalues of the tensor at positionxi. This
confidence measure approaches zero when the difference of the corresponding eigenvalue and the
least eigenvalue approaches zero, and it attains its maximum value of one, when the least eigen-
value is zero, and the corresponding eigenvalue is the largest, or is equal to the largest eigenvalue,
respectively.

B Integration of Local Measurements

As mentioned in the Introduction we will approximate our flow field by local first order polynomi-
als in the spatial coordinates, i.e. in the vicinity of the positionxi = (xi; yi)

T the flow field may
be parametrised like this

u(x) = Ai(x� xi) + bi; x 2 Ni; (5)

whereNi denote the set of pixels in the neighbourhood of pixeli. We will estimate the parameters
of this model for every pixel by minimising the sum of the squared differences within a neighbour-
hood between the model and the observations of normal flows given by Equation (3), i.e.

(Âi; b̂i) = (6)

arg min
Ai;bi

OBJ(Ai; bi) =

arg min
Ai;bi

X
j2Ni

2X
k=1

wk(xj)

"
((Ai(xj � xi) + bi)� �k(xj))

T �
�k(xj)

k�k(xj)k

#
2

By differentiating with respect to the parameters and setting the partial derivatives equal to zero
we find that the estimate of the flow field is obtained by solving a six dimensional linear system
for every pixel in our image.

It is evident from Equation (5) that the estimate of the flow field at pixeli is given by

û(xi) = b̂i: (7)

Furthermore, we may characterise the type of the flow field in the vicinity ofxi depending on the
nature of the matrixAi. Following Rao & Jain (1992), ifAi is non-singular, the local model of
the flow field has exactly one stagnation point (i.e. a pointc satisfyingu(c) = 0), and this point
is given by

ci = xi � Â
�1

i b̂i: (8)

Moreover, based on the eigenvalues,�1 and�2 of Ai we may classify the type of neighbourhoods
into a finite number of classes (Rao & Jain, 1992; Herlin et al., 1995)

1. �1 and�2 are real, and�1; �2 > 0: ci is a node
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3. �1 and�2 are complex:ci is a center or a spiral.

If, on the other hand,Ai is singular, it has either rank 1 or 0. In the first case, there is a line of
stagnation points, in the second case, the flow field is constant.

III Data

A Case 1: Cloud flow fields.

The image sequence used here was recorded by the Meteosat 5 satellite. The images are from the
infrared channel (10.5 - 12.5�m). Preliminary processing performed by the Danish Meteorological
Institute consist of mapping to a polar stereographic projection, interpolation to a equirectangular
7 km grid, and subsection to384 � 512 images. The center of the grid is at48:4� N latitude and
8:2� E longitude. The images are recorded with a time interval of 30 minutes. Furthermore, the
image sequence has been down sampled by a factor 4.

B Case 2: Livestock Building Airflow.

The data have been recorded at the Department of Agricultural Engineering and Production Sys-
tems at the Danish Institute of Animal Science using a light sensitive consumer video camera
(frame rate: 25 Hz). All measurements are carried out under iso-thermic conditions. The experi-
mental setup is shown in Figure 2. The Plexiglass model of the segment of a pigs sty is 1 m broad
and 0.5 m deep. The air velocity in the inlet is measured to 3 m/s. Smoke is induced in the airflow
at the inlet. The laser illuminated plane is placed in the center of the model

IV Results

For both sequence we have used a set of Gabor filters with the bandwidth in octaves measured at
one standard deviation of the Gaussian envelope set to 1, and the standard deviation of the Gaussian
envelope set to 2 pixels. The Gaussian envelope was truncated at�2:5 standard deviations. Using
Equation (1) we obtain the estimates of normal flow. These are then integrated by fitting the first
order polynomial model to the flow locally. For this procedure a circular window with a radius of
20 pixels has been used. In Figures 4 and 7 the estimated flow field for the cases are shown.

Finally, again following Rao & Jain (1992), we may estimate the stagnation points of the global
flow field. Because parts of a given pattern (e.g. a spiral) is observed in several neighbourhoods, we
may gather ”votes” for the candidates for the stagnation point from each of these neighbourhoods.
Suppose we find estimateŝAi and b̂i in a given neighbourhoodNi. From these estimates we
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having a stagnation point atci = �Ai bi. We may then increment a measure for the likelihood
of a stagnation point of typePl being atci. Consequently, two neighbourhoods in two different
sections of the same (spiral) pattern will update the likelihood measure at the same stagnation
point. In our case we have three of these likelihood measures (which in a sense corresponds to
Hough-like accumulator arrays), one for each of the patterns (e.g. node, saddle, center/spiral)
listed in Section II-B. We will increment the likelihood measure by the inverse of the value of
the object function OBJ in Equation (6). The reason for this is that the ”vote” for a particular
stagnation point should be weighted by the closeness of fit of the model at the neighbourhood that
casts this vote.

In Figures 5 and 8 thesholded versions of these likelihood measures are shown for both cases. In
Figure 5 we see two clusters of points corresponding to the two centers that are easily identified
in the flow field in Figure 4. In the livestock building case, in Figure 8, the single center seen in
Figure 7 is also identified.

V Conclusion

This paper has presented a method to integrate estimates of normal flows into smooth flow fields
using a local first order polynomial model for the flow vectors. This model furthermore allows
for an interpretation of the type of pattern (i.e. vortex, spiral, node, saddle) that the area under
consideration is part of, and enables us to estimates the position of the stagnation (i.e. fixed)
point for that particular pattern. The position and type of stagnation points gives a topological
description of the flow field.

Furthermore, results on applying this technique have been demonstrated for two cases. The first
case is a sequence of infrared images from the European meteorological satellite Meteosat, the
second sequence visualises the airflow in livestock buildings by means of inserting smoke in the air
inlets and recording the moving smoke patterns that are illuminated by a laser sheet. In both cases
the global flow field has been successfully estimated and stagnation points found and identified.
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Fig. 1: Relationship between the spatio-temporal orientation vector and the normal flow. The reader is
referred to the text for a detailed explanation.

Laser

Plexiglas model of pigs sty 1:10

Inlet

Outlet

Fig. 2: Experimental setup. The 1:10 Plexiglass model of a segment of a pigs sty is illuminated by a laser
sheet. The video camera is placed with its optical axis perpendicular to the laser plane. The air is drawn into
the model by putting suction on the outlet.
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Fig. 3: An image from the Meteosat sequence.

Fig. 4: The flow field corresponding to the cloud image in Figure 3.

Fig. 5: The three accumulator arrays corresponding to nodes, saddles, and centers/spirals, respectively. By
applying a thresholding operation in the likelihood measures we have identified the two centers in the flow
field corresponding to he cloud image in Figure 3.

Fig. 6: An image from the livestock airflow sequence.
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Fig. 7: The flow field corresponding to the livestock airflow image in Figure 6.

Fig. 8: The three accumulator arrays corresponding to nodes, saddles, and centers/spirals, respectively. By
applying a thresholding operation in the likelihood measures we have identified the centers in the flow field
corresponding to the livestock building airflow image in Figure 6.
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