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Abstract— In this work a hybrid Residue Number System
(RNS) implementation of an adaptive FIR filter is presented. The
used adaptation algorithm is the Least Mean Squares (LMS). The
filter has been designed to meet the constraints of specific class
of applications. In fact, it is suitable for applications requiring
a large number of taps where a serial updating of the filter
coefficients is feasible (channel equalization or echo cancellation).
In the literature, it has been shown that the RNS implementation
of FIR filters grants earnings in area ad power consumption
due to the introduced arithmetic simplifications. Vice versa, the
RNS implementation of the adaptation algorithm needs scaling
circuits that are complex and expensive in RNS arithmetic. For
this reason, a serial binary implementation of the adaptation
algorithm is chosen. The advantages in terms of area and speed
of the RNS adaptive filter with respect to the two’s complement
one have been evaluated for a standard cells implementation.

I. INTRODUCTION

In recent years, it has been shown that the use of Residue

Number Systems (RNS) in the implementation of application

specific Digital Signal Processing (DSP) systems, and FIR

filters in particular, grants great advantages in terms of area,

speed and power consumption over their two’s complement

counterparts [1], [2], [3]. In particular, these advantages are

related to the arithmetic simplifications offered by the Residue

Number System in the implementation of the multipliers that

are used in the parallel implementation of FIR filters. A

multiplier is implemented in RNS by using the isomorphism

technique [4], [5] requiring two small LUTs (its size is related

to the moduli dynamic range) and a modular adder. Moreover

the basic operations in RNS are based on LUTs and for

this reason the RNS implementation of DSP algorithms is

particulary suitable for a FPGA implementation [2]. These

advantages have been proved also for RNS adaptive filters

[6], [8]. From the application point of view, adaptive filters are

often used for channel equalization in communication systems

(for time-varying channels) and for echo cancellation in full-

duplex communication systems [9], [10]. Different updating

algorithms (LMS, RLS, FBLS) are used, depending on the

performance of the adaptation process such as, for example,

steady state error and convergence speed. In certain class of

applications requiring a relative small number of coefficients

for the FIR filter and a fast adaptation rate, a fully parallel

implementation of the updating algorithm is requested and it

is feasible due the small number of filter taps (in fact, the

LMS algorithm complexity measured as number of multipliers

grows with the filter taps). In applications requiring a large

number of taps but characterized by a slow varying channel

a serial updating of the filter coefficients can be used. In

these cases, the complexity of the FIR filter can be reduced

by using RNS while maintaining a serial implementation in

binary arithmetic for the adaptation algorithm. In this paper,

the RNS implementation of an adaptive LMS FIR filter is

presented. The adaptive filter has been designed to match the

requirements of low rate time variable channels characterized

by high distortion in amplitude and phase, as in the case of

satellite links, power line carrier communications and beam-

forming networks. For this applications, a hybrid RNS-Binary

architecture grants earnings in area and power consumption for

the FIR filter implementation, but at the same time, a serial

binary implementation of the adaptation algorithm avoids the

use of complex and expensive scaling circuits in RNS. The

paper is organized as follows: Section II presents background

material on RNS computation and filtering, while in Section

III and IV respectively the channel equalization/adaptive fil-

tering background and channel equalizer design are shown. In

Section V the RNS hybrid architecture is presented while in

Section VI the conclusions are drawn.

II. BACKGROUND ON RNS COMPUTATION AND FILTERING

A Residue Number System (RNS) is defined by a set of

relatively prime integers {m1,m2, . . . , mP } which identify

the RNS base. Its dynamic range is given by the product

M = m1 ·m2 · . . . ·mP .

Any integer X ∈ {0, 1, 2, . . . M − 1} has a unique RNS rep-

resentation given by:

X
RNS→ ( 〈X〉m1 , 〈X〉m2 , . . . , 〈X〉mP

)

where 〈X〉mi denotes the operation X mod mi [4]. Oper-

ations, such as addition and multiplication, on different mi

(moduli) are done in parallel

Z = X op Y
RNS→

⎧⎪⎪⎨
⎪⎪⎩

Zm1 = 〈Xm1 op Ym1〉m1

Zm2 = 〈Xm2 op Ym2〉m2

. . . . . . . . .
ZmP

= 〈XmP
op YmP

〉mP

(1)

As a consequence, operations on large wordlengths can be

split into several modular operations executed in parallel and

with reduced wordlength [4].
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Fig. 1. FIR filter implemented in RNS.

A Finite Impulse Response (FIR) filter of order N is

described by the expression

y(n) =
N−1∑
k=0

akx(n− k) (2)

As a direct consequence of (1), (2) becomes in RNS
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ym1(n) =
〈∑N

k=1 〈Am1(k) ·Xm1(n− k)〉m1

〉
m1

Ym2(n) =
〈∑N

k=1 〈Am2(k) ·Xm2(n− k)〉m2

〉
m2

. . . . . . . . .

YmP
(n) =

〈∑N
k=1 〈AmP

(k) ·XmP
(n− k)〉mP

〉
mP

and the filter can be implemented in RNS by decomposing it

into P filters working in parallel, as shown in Fig. 1. Each of

the P filters is implemented with additions and multiplications

mod mi.
A drawback of RNS is the need for converters from/to the

conventional number system (two’s complement or sign-and-

magnitude). However, the conversion overhead has a small

impact for high-order (large N ) filters such as the ones needed

for adaptive filtering.
Moreover, a number of simple operations in binary arith-

metic, such as sign-detection and truncation, are non trivial to

implement in RNS.
Because of the complexity of modular multiplication in

RNS, it is convenient to implement the product of residues

by the isomorphism technique [7]. By using isomorphisms, the

product of the two residues is transformed into the sum of their

indices which are obtained by an isomorphic transformation.

According to [7], if m is prime there exists a primitive radix

q such that its powers modulo m cover the set [1,m− 1]:

n = 〈qw〉m with n ∈ [1,m− 1] and w ∈ [0,m− 2].

The transformations n → w and w → n can be implemented

with m − 1 entries look-up tables, if the moduli are not too

large (for mi ≤ 251 the tables have less than 28 entries).
Therefore, the product A(k)X(n − k) in the filter modulo

m can be obtained as:

〈A ·X〉m = 〈qW 〉m
where

W = 〈Â + X̂〉m−1 with A = 〈qÂ〉m and X = 〈qX̂〉m

Fig. 2. Details of a baseband data transmission system equipped with an
adaptive channel equalizer

Summarizing, to implement the modular multiplication the

following operations are performed:

i) Two direct isomorphic transformations (DIT) to obtain

Â and X̂;

ii) One modulo m− 1 addition 〈Â + X̂〉m−1;
iii) One inverse isomorphic transformations (IIT) to obtain

the product.

By using isomorphic transformations, the modular multi-

pliers are replaced by modular adders which are simpler and

faster. On the other hand, the use of isomorphism limits the

selection of the moduli to only those which are prime numbers.

III. CHANNEL EQUALIZATION AND ADAPTIVE FILTERING

BACKGROUND

In Fig. 2, the block diagram of a typical equalization system

is shown. The equalizer is used to recover the distortion

introduced by the channel while minimizing its effects. Given

a channel H(z), a equalizer work perfectly when its transfer

function is W (z) = 1/H(z). Consequently, the transfer

function of the overall channel will be H(z)W (z) = 1, and

the transmitted signal s(n) go through the channel without any

distortions. Given the input d(n) the signal x(n) is expressed

as

x(n) = hH
c dn. (3)

The variable filter is a p order FIR with coefficients

wn = [wn(0), wn(1), · · · , wn(p)]T . (4)

The error signal is

e(n) = d(n)− d∗(n) (5)

The variable filter estimates the desired signal by the

convolution of the input signal with its impulse response. In

vector notation this is expressed as

d∗(n) = wT
nx(n) (6)

where

x(n) = [x(n), x(n− 1), · · · , w(n− p)]T (7)
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TABLE I

SYSTEM REQUIREMENTS

Description Before equalization After Equalization

Amplitude distortion 5 dBpp 0.5 dBpp

Phase distortion 10 degreepp 2 degreepp

Input sampling rate 160 Msps

is the input vector to the adaptive filter. The updated coeffi-

cients are

wn+1 = wn + Δwn. (8)

Different algorithms can be used for the coefficient updat-

ing, depending on system requirements. Among the most used

there are: Least Mean Square (LMS), Block LMS, Fast Block

LMS and the Transform Domain LMS [13].

IV. CHANNEL EQUALIZER DESIGN

In order to evaluate the benefits coming from the proposed

hybrid architecture, some requirements related to the channel

equalization system have been fixed. In Table I, the amplitude

and phase distortions before and after the equalizer are sum-

marized. Moreover, a quasi-stationary channel is assumed, and

a training sequence is used to update the filter coefficients. The

above assumptions allow for a serial updating of the variable

filter coefficients, resulting in area and power consumption

savings.

The LMS algorithm has been chosen for the coefficient

updating, since it is not very expensive in terms of hardware

requirements with respect to other algorithms, and results

sufficiently fast in tracking. The coefficient update vector Δwn

using the LMS algorithm is

Δwn = μ · x(n) · e(n). (9)

where μ is a scaling factor chosen to normalize the error with

respect to the input signal power.

Floating Point (FLP) simulations have been carried out to

define the minimum number of the taps of the equalizer,

obtaining N = 192. The number of bits used to represent

the input samples x(n) and the coefficients of the variable

filter ak is 12, resulting in a dynamic range for the FIR filter

of 32 bits. The scaling factor μ is chosen to be a power of

two, so that only one multiplication is needed for the serial

implementation of the LMS algorithm.

In Fig. 3, the block diagram of the proposed channel

equalizer is sketched. When the system is processing the user

data, the serial LMS block is freezed (the control unit is not

shown). Once the training sequence is detected, the variable

filter output signal d∗(n) is used to calculate the error signal

e(n) and the new coefficients are computed one at a time by

means of eq. 8. When all the coefficients have been updated, an

iteration of the LMS algorithm is completed and the variable

filter coefficients are updated with the new ones. The main

drawback of this solution is the fact that a single iteration of

Fig. 3. Proposed Adaptive Filter Block Diagram

Fig. 4. Magnitude and phase response of signals in passband (simulation
time: 5.5×106 Tclk). �· · · channel to be recovered; ◦−− Reference channel;
•— equalized channel.

eq. 8 is carried out each time the training sequence is detected,

meaning that the LMS algorithm converges in a longer time.

In Fig. 4 the results of the fixed point simulations are shown.

The magnitude and group delay of the disequalized channel

response (star marker), the reference channel (circle marker)

and the output of the adaptive filter (bullet marker) show a

good matching with the desired response both in magnitude

and phase.

V. HYBRID RNS ARCHITECTURE AND IMPLEMENTATION

The straightforward implementation of the proposed equal-

izer in RNS would require a dynamic range extension to

44 bits, because the scaling operation is not trivial in RNS.

In fact, the variable filter is a 192 taps filter, 12 bits for

input samples and 12 bits for coefficients, resulting in an

output dynamic range of 32 bits. So the error e(n) would

be represented with 32 bits and the multiplication by x(n)
required by the LMS algorithm adds 12 extra bits. In order

to limit the dynamic range of the RNS implementation and

the size of the filter, the multiplication needed for the serial
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Fig. 5. Hybrid Adaptive Filter Architecture.

LMS algorithm implementation has been carried out in binary

arithmetic. In this way, the adaptive filter is partly implemented

in RNS (the FIR filter) and partly in two’s complement (the

LMS algorithm). In this hybrid architecture, we take advantage

of the better characteristics of RNS filters concerning reduced

area and power dissipation, and we perform the scaling to

obtain the new filters coefficients in two’s complement by a

simple truncation.

The resulting system block diagram is shown in Fig. 5 (3

RNS channels, P = 3). In the figure, the parts implemented

in RNS are displayed inside dotted boxes. In addition to the

hardware for the programmable RNS FIR filter, the variable

filter of Fig. 5 requires an extra binary-RNS converter (right

hand side of the figure) to convert the updated coefficients in

RNS and an extra bank of registers to store the new coefficients

while the update is in progress.

The characteristics in terms of speed and area of the RNS

filter depends on the choice of the moduli set used to match

the given dynamic range. In order to select the RNS base

for the best delay/area/power tradeoffs, the tool described in

[11] has been used. It implements a selection of the moduli

set based on the characterization of all the RNS components

of the filter (modular adders and multipliers, converters, etc.)

under several timing conditions.

For the 192-taps and 32-bit dynamic range filter proposed

in this paper, the selected moduli set is { 5, 7, 11, 13, 17, 19,

23, 128 }. The hybrid RNS adaptive filter has been compared

with a filter implemented in two’s complement (TCS). Table II

reports the characteristics of the variable filter implemented in

TABLE II

RESULTS OF FILTERS IMPLEMENTATIONS.

clock freq. Area Power
[MHz] [mm2] ratio [mW ] ratio

TCS 200 3.1 1.00 215 1.00
RNS 200 1.7 0.55 125 0.58

RNS and in TCS. Both filters were synthesized by Synopsys

Design Compiler by using the STM 90 nm library of standard

cells [12].

Table II shows that the implementation of the hybrid RNS

implementation of the LMS adaptive filter offers savings in

area and power dissipation of about 50%.

VI. CONCLUSION

In this work, a hybrid Residue Number System (RNS)

implementation of an adaptive FIR filter based on the Least

Mean Squares (LMS) adaptation algorithm is presented. The

filter has been designed to meet the constraints of applications

requiring a large number of taps where a serial updating of

the filter coefficients is feasible such as channel equalization

or echo cancellation. The advantages in terms of area and

speed of the hybrid RNS adaptive filter with respect to the

two’s complement one have been evaluated for a standard cells

implementation showing savings in area and power dissipation

of about 50%.
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