
PREDICTION OF REGIONAL WIND POWER

T.S. Nielsen1, H. Madsen1, H. Aa. Nielsen1, L. Landberg2, G. Giebel2
1Informatics and Mathematical Modelling,

The Technical University of Denmark,
DK-2800 Lyngby, Denmark

Tel: +45 4525 3428, Fax: +45 4588 2673, E-mail: tsn@imm.dtu.dk
2Department of Wind Energy

Risø National Laboratory
DK-4000 Roskilde, Denmark

ABSTRACT This paper presents a new concept for predicting the total wind power production in a larger region
based on a combination of on-line measurements of power production from selected wind farms, power measure-
ments for all wind turbines in the area and numerical weather predictions of wind speed and wind direction. The
models are implemented in the Zephyr/WPPT system – an on-line software system for calculating short-term pre-
dictions of wind power currently being developed by IMM and Risø in coorporation with Elsam, Eltra, Elkraft and
SEAS – the major electrical utilities with respect to wind power in Denmark.
Zephyr/WPPT employs statistical models to describe the relationship between power production and the numerical
weather predictions. The statistical models belong to the class of conditional parametric models – a model class
particular useful for estimating non-linear relationships on-line. The estimation is furthermore made adaptively in
order to allow for slow changes in the system e.g. caused by the annual variations of the climate.
Keywords: Forecasting Methods, Models (Mathematical), Adaptive Estimation, Statistics.

1 INTRODUCTION

The amount of wind power installed is increasing rapidly
during these years and today wind power constitutes a sub-
stantial part of the total installed power production capac-
ity in some regions.

It is clear, however, that in order to incorporate a sub-
stantial wind power production efficiently and economi-
cally into the existing production system reliable short-
term predictions of the available wind power are a neces-
sity.

This paper presents a new concept for predicting the to-
tal wind power production in a larger region based on a
combination of on-line measurements of power produc-
tion from selected wind farms, power measurements for
all wind turbines in the area and numerical weather pre-
dictions of wind speed and wind direction. The models
are implemented in the Zephyr/WPPT wind power predic-
tion system [1] – an on-line software system for calculat-
ing short-term predictions of wind power currently being
developed by IMM and Risø in coorporation with Elsam,
Eltra, Elkraft and SEAS – the major electrical utilities with
respect to wind power in Denmark.

If necessary the total region is broken into a number of
sub-areas. The predictions for the total region are then
calculated using a two branch approach as illustrated in
figure 1.

• In the first model branch predictions of wind power
are calculated for a number of wind farm using on-
line measurements of power production as well as nu-
merical weather predictions as input. The prediction
of the total power production in the area is calculated
by upscaling the sum of the predictions for the indi-
vidual wind farms.

• The second model branch predicts the area power
production explicitly by using a model linking off-
line measurements of area power production to the
numerical weather predictions.

For both model branches the power prediction for the total
region is calculated as a sum of the predictions for the sub-
areas. The final prediction of the wind power production
for the total region is then calculated as a weighted average
of the predictions from the two model branches.

A central part of this system is statistical models for
short-term predictions of the wind power production in
wind farms or areas. Recent research has demonstrated
that conditional parametric models implies a significant
improvement of the prediction performance compared to
more traditional parametric models [2].

The conditional parametric is a non-linear model for-
mulated as a linear model in which the parameters are re-
placed by smooth, but otherwise unknown, functions of
one or more explanatory variables. These functions are
called coefficient-functions. For on-line applications it is
advantageous to allow the function estimates to be mod-
ified as data become available. Furthermore, because the
system may change slowly over time, observations should
be down-weighted as they become older. For this reason a
time-adaptive and recursive estimation method is applied.
Essentially, the estimates at each time step are the solution
to a set of weighted least squares regressions and therefore
the estimates are unique under quite general conditions.
For this reason the described method provides a simple
way to perform adaptive and recursive estimation in a class
of non-linear models. The method is a combination of the
recursive least squares with exponential forgetting [3] and
locally weighted polynomial regression [4]. In the paper
adaptive estimationis used to denote, that old observa-
tions are down-weighted, i.e. in the sense ofadaptive in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13701201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


time.
The time-adaptivity of the estimation is an important

property in this application of the method as the total sys-
tem consisting of wind farm or area, surroundings and nu-
merical weather prediction (NWP) model will be subject
to changes over time. This is caused by effects such as
aging of the wind turbines, changes in the surrounding
vegetation and maybe most importantly due to changes
in the NWP models used by the weather service as well
as changes in the population of wind turbines in the wind
farm or area.

2 MODEL OVERVIEW

The Zephyr/WPPT modelling system described in the fol-
lowing calculates predictions of the available wind power
from wind turbines in a region. For a larger region this is
done by separating the region into a number of sub-areas.
Wind power predictions are then calculated for each sub-
area and hereafter summarized to get a prediction for the
total region.
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Figure 1: Overview of the model structure in
Zephyr/WPPT. Two different predictions are calculated
for the wind power production in a region: In the left
model branch the wind farm models,PPw f

i; j
, are used to

calculate power predictions for the reference wind farms
in sub-areai. The predictions for the reference wind farms
in sub-areai are summarized to ˆpw f

i;1
, which hereafter is

upscaled by the upscaling modelPPar
i;1 to a power predic-

tion, p̂ar
i;1, for all wind turbines in the sub-area. The pre-

dictions for the sub-areas are then summarized to get the
power prediction of the left model branch for the total re-
gion, p̂to

1 . In the right model branch power predictions
of the power production in sub-areai, p̂ar

i;2, are calculated
directly by the area modelPPar

i;2. The predictions for the
sub-areas are then summarized to get the power prediction
of the right model branch for the total region, ˆpto

2 . The fi-
nal power prediction for the region, ˆpto, is calculated by
model p̂to as a weighted average of the predictions from
the two model branches.

The predictions are calculated using on-line production
data from a number of wind farms in the area (reference
wind farms), off-line production data for the remaining

wind turbines in the area and numerical weather predic-
tions of wind speed and wind direction covering the area.
The predictions covers a horizon corresponding to the pre-
diction horizon of the numerical weather predictions hours
– typical from 0 to approximately 48 hours ahead in time.
The time resolution of the predictions can be chosen freely
but a reasonable choice for the longer prediction horizons
is to use the same time resolution as the numerical weather
predictions.

The predictions for the total region are calculated using
a two branch approach as illustrated in figure 1.

• In the left model branch predictions of wind power
are calculated for a number of reference wind farm
using on-line measurements of power production as
well as numerical weather predictions as input (see
section 3.1). The predictions from the reference wind
farms in a sub-area are summarized and hereafter up-
scaled to get the prediction of power production of all
wind turbines in the sub-area (see section 3.2). This
model branch takes advantage of the auto-correlation
which is present in the power production for predic-
tion horizons less than approximately 12 hours.

• The right model branch predicts the power produc-
tion in a sub-area explicitly by using a model link-
ing off-line measurements of total power production
in the sub-area to the numerical weather predictions
(see section 3.3). This model branch takes advan-
tage of the smooth properties of the total production
as well as the fact that the numerical weather models
perform well in predicting the weather patterns but
less well in predicting the local weather at a particu-
lar wind farm.

For both model branches the power prediction for the
total region is calculated as a sum of the predictions for the
sub-areas. The final prediction of the wind power produc-
tion for the total region is then calculated as a weighted
average of the predictions from the model two branches
(see section 3.4).

3 PREDICTION MODELS

Conditional parametric models are used to describe the
relationship between observed power production in wind
farms or areas and meteorological forecasts of wind speed
and wind direction – the power curve – as well as the wind
direction dependency in the dynamic behavior of a wind
farm. These relationships are difficult to parametrize ex-
plicitly, but can, as it is shown in [2], readily be captured
by conditional parametric models.

3.1 The wind farm model (PPw f
i; j

)

The wind farm model uses wind direction dependent
power curves in the transformation of forecasted wind
speed and wind direction to power. The model for thej th
wind farm in theith sub-area is given as

p̂pc
i; j(t +k) = f (ww f

i; j (t +k);θ w f
i; j (t +k);k)

p̂w f
i; j (t +k) = a(θ w f

i; j (t +k);k)pw f
i; j (t)+

b(θ w f
i; j (t +k);k)p̂pc

i; j(t +k)+h24(θ w f
i; j (t +k);k) (1)



wherepw f
i; j

(t) is the observed power at timet, ww f
i; j
(t + k)

andθ w f
i; j

(t +k) are local forecasts of wind speed and wind

direction, respectively, andf , a, b, andh24 are smooth
time-varying functions to be estimated. The difference be-
tween observed and forecasted diurnal variation of wind
speed is contain in theh24 term.

The wind farm model takes advantage of the auto-
correlation which is present in the power production for
prediction horizons less than approximately 12 hours.

In [2] the performance of the proposed model is evalu-
ated for six different wind farms - five in Denmark and one
from the Zaragoza region in Spain (La Muela). The wind
farm at La Muela is investigated further in [5] and [6],
where the performance of the wind farm model is evalu-
ated for various wind forecasts.

3.2 The upscaling model (PPar
i;1)

The predicted power production in sub-areai is calcu-
lated by multiplying the summarized power predictions for
the wind farms in the sub-area by a upscaling function,
which depends on area forecasts of wind speed and wind
direction. The model is given as

p̂ar
i;1(t +k) =

b(war
i (t +k);θ ar

i (t +k);k)∑
j

p̂w f
i; j (t +k) (2)

wherewar
i (t +k) andθ ar

i (t +k) are area forecasts of wind
speed and wind direction, respectively, andb is a smooth
time-varying function to be estimated.

3.3 The area model (PPar
i;2)

The area model transforms area forecasts of wind speed
and wind direction to power in a way similar to the wind
farm power curve model by explicitly linking weather
forecasts for the area to off-line observations of the power
production in the area. For sub-areai the model is given
as

p̂ar
i;2(t +k) = f (war

i (t +k);θ ar
i (t +k);k): (3)

wheref is a smooth time-varying function to be estimated.
This model takes advantage of the smooth properties of

summarized power productions and the fact that the nu-
merical weather models perform well in predicting the
weather patterns but less well in predicting the local
weather at a particular wind farm.

3.4 The total model (PPto)
The prediction of the total power production in the re-

gion is calculated using the total predictions from the two
model branches in figure 1. The prediction is calculated
as a prediction horizon dependent weighted average of the
power predictions for the two model branches using Root
Mean Square (RMS) as weighting criterion. The model is
given as

p̂to
t+k = b1(k)p̂

ar
1 (t +k)+b2(k)p̂

ar
2 (t +k) (4)

wherep̂ar
1 (t + k) and p̂ar

1 (t + k) are the power predictions
for model branch 1 and 2, respectively, andb1 andb2 are
smooth time-varying functions to be estimated.

The predictions from the two model branches are
closely correlated especially for the longer prediction hori-
zons. Thus a regularized estimation procedure must be
used to ensure stable estimates of theb1 andb2 functions.
Here Ridge Regression [7] have been used.

4 MODEL AND ESTIMATION METHOD

When using a conditional parametric model to model
the responseys the explanatory variables are split in two
groups. One group of variablesxs enter globally through
coefficients depending on the other group of variablesus,
i.e.

ys = xT
s θ(us)+es; s= 1; : : : ;N; (5)

where the responseys is a stochastic variable,us andxs are
explanatory variables,es is i.i.d. N(0;σ2), θ(�) is a vector
of unknown but smooth functions with values, ands =
1; : : : ;N are observation numbers.

Estimation in the model (5) aims at estimating the func-
tionsθ(�) within the space spanned by the observations of
us; s= 1; : : : ;N. The functions are only estimated for dis-
tinct values of the argumentu. Belowu denotes one single
of these fitting points and̂θ(u) denotes the estimates of the
coefficient-functions, when the functions are evaluated at
u.

One solution to the estimation problem is to replace
θ(us) in (5) with a constant vectorθu and fit the result-
ing model locally tou, using weighted least squares

θ̂(u) = argmin
θu

N

∑
s=1

wu(us)(ys�xT
s θu)

2
: (6)

Below two similar methods of allocating weights to the
observations are described. For both methods the weight
functionW : R0 ! R0 is a nowhere increasing function.
In this paper the tri-cube weight function

W(u) =

�
(1�u3)3; u2 [0;1]
0; u2 [1;∞[

(7)

is used. Hence,W : R0 ! [0;1]
In the case of a spherical kernel the weight on observa-

tion s is determined by the Euclidean distancejjus� ujj
betweenus andu, i.e.

ws(u) =W

�
jjus�ujj

h(u)

�
: (8)

A product kernel is characterized by distances being cal-
culated for one dimension at a time, i.e.

ws(u) = ∏
j

W

�
juj ;s�uj j

h(u)

�
; (9)

where the multiplication is over the dimensions ofu. The
scalarh(u)> 0 is called the bandwidth. Ifh(u) is constant
for all values ofu it is denoted a fixed bandwidth. Ifh(u)
is chosen so that a certain fraction (α) of the observations
fulfill jjus� ujj � h(u) it is denoted a nearest neighbor
bandwidth. Ifu has the dimension two or larger, scaling of
the individual elements ofus before applying the method
should be considered, see e.g. [4]. Rotating the coordinate
system in whichus is measured may also be relevant. In
this study the models have been estimated using a product
kernel with a fixed bandwidth.

If the bandwidthh(u) is sufficiently small the approxi-
mation ofθ(�) as a constant vector nearu is good. This im-
plies that a relatively low number of observations is used
to estimateθ(u), resulting in a noisy estimate or large bias
if the bandwidth is increased. See also the comments on
kernel estimates in [4].



It is, however, well known that locally tou the elements
of θ(�) may be approximated by polynomials, and in many
cases these will be good approximations for larger band-
widths than those corresponding to local constants. Let us
describe how local polynomial approximations are used
in a local least squares setting. Letθ j(�) be the j’th ele-
ment of θ(�) and letpd(u) be a column vector of terms
in a d-order polynomial evaluated atu, if for instance
u = [u1 u2]

T then p2(u) = [1 u1 u2 u2
1 u1u2 u2

2]
T . Fur-

thermore, letxs = [x1s : : :xps]
T . With

zT
s =

h
x1;sp

T
d(1)(us) : : :xp;spT

d(p)(us)
i

(10)

and
φ̂ T(u) = [φ̂ T

1 (u) : : : φ̂ T
j (u) : : : φ̂ T

p (u)]; (11)

whereφ̂ j(u) is a column vector of local constant estimates
at u corresponding toxj ;spd( j)(us), estimation is handled
as described above, but fitting the linear model

ys = zT
s φ(u)+es; s= 1; : : : ;N; (12)

locally to u. Hereafter the elements ofθ(u) is estimated
by

θ̂ j(u) = pT
d( j)(u) φ̂ j(u); j = 1; : : : p: (13)

This method is identical to the method described in [4]
when x j = 1 for all j with the exception that in [4] the
elements ofus used inpd(us) are centered aroundu and
hencepd(us) must be recalculated for each value ofu con-
sidered.

Interpolation is used for approximating the estimates of
the coefficient-functions for other values of the arguments
than the fitting points. This interpolation should only have
marginal effect on the estimates. Therefore, it sets require-
ments on the number and placement of the fitting points.
If a nearest neighbour bandwidth is used it is reasonable
to select the fitting points according to the density of the
data as it is done when usingk-d trees [8, Section 8.4.2].
However, in this paper the approach is to select the fitting
points on an equidistant grid and ensure that several fitting
points are within the (smallest) bandwidth so that linear
interpolation can be applied safely.

5 ADAPTIVE ESTIMATION

As pointed out in the previous section local polynomial
estimation can be viewed as local constant estimation in a
model derived from the original model. This observation
forms the basis of the method suggested. For simplicity
the adaptive estimation method is described as a general-
ization of exponential forgetting. However, the more gen-
eral forgetting methods described by [3] could also serve
as a basis.

Using exponential forgetting and assuming observa-
tions at times= 1; : : : ; t are available, the adaptive least
squares estimate of the parametersφ relating the explana-
tory variableszs to the responseys using the linear model
ys = zT

s φ +es is found as

φ̂t = argmin
φ

t

∑
s=1

λ t�s(ys�zT
s φ)2

; (14)

where 0<λ < 1 is called the forgetting factor, see also [3].
The estimate can be seen as a local constant approximation

in the direction of time. This suggests that the estimator
may also be defined locally with respect to some other ex-
planatory variablesut . If the estimates are defined locally
to a fitting pointu, the adaptive estimate corresponding to
this point can be expressed as

φ̂t(u) = argmin
φu

t

∑
s=1

λ t�swu(us)(ys�zT
s φu)

2
; (15)

Following [9] the solution to (15) can be found recur-
sively as

φ̂t(u) = φ̂t�1(u)+

wu(ut)R
�1
u;t zt

�
yt �zT

t φ̂t�1(u)
�
: (16)

where
Ru;t = λRu;t�1+wu(ut)ztz

T
t (17)

It is observed that existing numerical procedures for recur-
sive least squares estimation can be applied by replacing
zt andyt with zt

p
wu(ut) andyt

p
wu(ut), respectively.

Whenut is far from u it is clear from (17) thatRu;t �

λRu;t�1. This may result in abruptly changing estimates
if u is not visited regularly. This is considered a serious
practical problem and consequently (17) has to be modi-
fied to ensure that the past is weighted down only when
new information become available, i.e.

Ru;t = λv(wu(ut);λ )Ru;t�1

+wu(ut)ztz
T
t ; (18)

wherev(� ;λ ) is a nowhere increasing function on[0;1]
fulfilling v(0;λ ) = 1=λ and v(1;λ ) = 1. Note that this
requires that the weights span the interval ranging from
zero to one. Here only the linear functionv(w;λ ) = 1=λ�
(1=λ �1)w is considered. Thus (18) becomes

Ru;t = (1� (1�λ )wu(ut))Ru;t�1+

wu(ut)ztz
T
t : (19)

It is resonable to denote

λ u
e f f(t) = 1� (1�λ )wu(ut) (20)

the effective forgetting factorfor point u at time t. For
a further discussion of adaptive estimation of conditional
parametric models see [10].

5.1 Summary of the method
To clarify the method the actual algorithm is briefly de-

scribed in this section. It is assumed that at each time step
t measurements of the outputyt and the two sets of inputs
xt andut are received. The aim is to obtain adaptive esti-
mates of the coefficient-functions in the non-linear model
(5).

Besidesλ in (17), prior to the application of the al-
gorithm a number of fitting pointsu(i); i = 1; : : : ;nf p in
which the coefficient-functions are to be estimated has to
be selected. Furthermore the bandwidth associated with
each of the fitting pointsh(i); i = 1; : : : ;nf p and the de-
grees of the approximating polynomialsd( j); j = 1; : : : ; p
have to be selected for each of thep coefficient-functions.
For simplicity the degree of the approximating polynomial
for a particular coefficient-function will be fixed across
fitting points. Finally, initial estimates of the coefficient-
functions in the model corresponding to local constant es-
timates, i.e.φ̂0(u

(i)), must be chosen. Also, the matrices



R
u(i)

;0
must be chosen. One possibility is diag(ε ; : : : ;ε),

whereε is a small positive number.
In the following description of the algorithm it will be

assumed thatR
u(i)

;t
is non-singular for all fitting points. In

practice we would just stop updating the estimates if the
matrix become singular. Under the assumption mentioned
the algorithm can be described as:

For each time stept: Loop over the fitting points
u(i); i = 1; : : : ;nf p and for each fitting point:

• Construct the explanatory variables corresponding to
local constant estimates using (10):
zT

t = [x1;tp
T
d(1)(ut) : : :xp;tpT

d(p)(ut)].

• Calculate the weight using e.g. (8) and (7):
w

u(i)(ut) = (1� (jjut �u(i)jj=h(i))3)3, if

jjut �u(i)jj< h(i) and zero otherwise.

• Find the effective forgetting factor using (20):
λ (i)

e f f
(t) = 1� (1�λ )w

u(i)(ut).

• UpdateR
u(i)

;t�1
using (19):

R
u(i)

;t
= λ (i)

e f f
(t)R

u(i)
;t�1

+w
u(i)(ut)ztzT

t .

• Updateφ̂t�1(u
(i)) using (16):

φ̂t(u
(i)) = φ̂t�1(u

(i))

+w
u(i)(ut)R

�1
u(i)

;t
zt

h
yt �zT

t φ̂t�1(u
(i))
i
.

• Calculate the updated local polynomial estimates of
the coefficient-functions using (13):
θ̂ j ;t(u

(i)) = pT
d( j)(u

(i)) φ̂ j ;t(u
(i)); j = 1; : : : p

The algorithm could also be implemented using the ma-
trix inversion lemma as in [3].

6 SUMMARY

In this paper a new method for short-term prediction of
wind power in a region is proposed. The predictions are
calculated using a combination of on-line measurements
of power production from selected wind farms, off-line
power measurements for all wind turbines in the region
and numerical weather predictions of wind speed and wind
direction as input.

The prediction models are formulated as conditionally
parametric models, which can be described as conven-
tional linear models in which the parameters are replaced
by smooth, but otherwise unknown, functions of a low-
dimensional input process. These functions are estimated
adaptively and recursively without specifying a global
parametric form. Methods for on-line estimation of pa-
rameters in such models are outlined in the paper.
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