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Abstract. Generalizability in a multi-subject fMRI study is investi-
gated. The analysis is based on principal and independent component
representations. Subsequent supervised learning and classification is car-
ried out by canonical variates analysis and clustering methods. The gen-
eralization error is estimated by cross-validation, forming the so-called
learning curves. The fMRI case story is a motor-control study, involving
multiple applied static force levels. Despite the relative complexity of
this case study, the classification of the ’stimulus’ shows good generaliz-
ability, measured by the test set error rate. It is shown that independent
component representation leads to improvement in the classification rate,
and that canonical variates analysis is needed for making generalization
cross multiple subjects.

Keywords: Independent Component Analysis (ICA), functional Mag-
netic Resonance Imaging (fMRI), Canonical Variates Analysis (CVA),
Principal Component Analysis (PCA), Multiple Subjects.

1 Introduction

Biomedical signals, that originate from physiological processes, are in general
difficult to measure isolated. Especially when non-invasive measuring techniques
are used. The signals measured from the body are often a mixture of signals from
different physiological processes, contaminated with noise and artifacts from the
data acquisition equipment. This is also the case when we here are analyzing
neuroimages, estimated by use of functional magnetic resonance imaging (fMRI).
fMRI signals measured from the brain further has the disadvantage of being high
dimensional and highly correlated, due to the high degree of connectivity in the
brain.

From the neuroimages we seek to reveal knowledge, giving us the opportunity
to model the functionality of the brain. To complete this task, it is essential to
isolate the interesting macroscopic spatial and temporal patterns of brain activa-
tion, to create a reliable model. For this model to be interesting, generalizability
across subjects must be adapted into the model, so one group of subjects also
can be used to interpret another group of subjects. Due to the problems men-
tioned, the task of generating reliable generalizable models is a non-trivial task.
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Multivariate statistical tools that can help us understand the brain activation
patterns is therefore topic of great interest.

Independent Component Analysis (ICA) has been applied to different biomed-
ical signals, but only recently to Functional Magnetic Resonance Imaging (fMRI)
[23]. Many experiments where ICA has been applied to fMRI, has been binary
experiments, where the subjects are either exposed or not exposed to some stim-
uli, see eg. [12]. In the experiments presented here, the subjects are exposed to
different degree of stimuli. The following classification of the experiment results,
therefore falls into multiple classes. At the same time the experiment is per-
formed by multiple subjects, making classification based on group inference. We
here examine how the classification generalization performance is affected by
choice of an ICA representation instead of the often used representation based
on PCA.

2 Functional Magnetic Resonance Imaging

fMRI is a sub-species of Magnetic Resonance Imaging (MRI) techniques. In
MRI, the difference in magnetic susceptibility in different tissue in the human
body, is used as a non-invasive technique, to localize different body structures.
In fMRI, the difference in magnetic susceptibility, in De-oxygenated hemoglobin
(HbR) and oxygenated hemoglobin (HbO2) is used determine changes in blood-
flow [11]. The Blood Oxygen Level Dependent (BOLD) contrast is the most
common signal, used to determine blood-flow changes, and is therefore a indirect
measurement of brain-areas with neural activity.

The measured fMRI signal has many sources, that originate from various
physiological processes, including processes that are not related to experiment
stimuli. The most prominent confound signal components originates from the
cardiac (about 1Hz) and the physiological respiratory signal (about 0.3Hz). Ar-
tifacts from eye and body movement also influences the measured signals. The
sampling frequency used in this paper and many other fMRI experiments, is well
below 1Hz. This implies that some of the confound signal components becomes
aliased, resulting in non-trivial temporal behavior for these confounds. On top
of physiological confounds, also noise from the data acquisition equipment occur
in the data.

Apart from the confounds, the signals we want to measure are not ideal. This
is because the response in blood-flow to the neural active areas in the brain is
not instant. The response of the blood-flow is described by the Hemodynamic
Response Function (HRF) [11]. The HRF is the theoretical impulse response,
that BOLD fMRI measures, when a subject is exposed to a very short stimulus.
In [7] it is shown that differences in HRF time-to-peak values, varies from 2.7
to 6.2 sec. In [10] it is shown, that the HRF to the same type of subject-stimuli
varies. It is also shown that the HRF may vary due to trial, site, stimulus and
subject. It is not easy to make a reliable model of the HRF. There has been a
lot of effort trying to model the HRF, see eg. [6], but a complete model has not
yet been discovered. In this paper we try to eliminate the effect of the HRF on



our experiment signals, by simply removing the samples, where the HRF takes
place. It is reasonable to believe that by removing 8 seconds of the samples, before
and after subject stimuli, the effect of HRF will be eliminated. Our reason for
eliminating the HRF is that neural networks applied to the fMRI data, waste
too much effort trying to model the nonlinearities in the HRF, instead of the
modelling the underlying stimuli function. It is reasonable to believe that other
nonlinear models will have similar problems with the HRF. The confounds and
the HRF makes data analysis of fMRI signals, a non-trivial task.

3 Neuroimaging data acquisition and Preprocessing

The fMRI data are acquired during a motor control study, where 16 involved
subjects were doing a static force task. In the experiment the subjects were
to apply a static force to a pressure gauge, using right hand thumb and index-
finger. Following a visual cue, the subjects were to apply five different force levels
(200,400,600,800,1000g) to the pressure gauge. The order of the force-levels was
randomized. The subjects could visually monitor the force-level on the pressure
gauge during the experiment. Between each force level, there was a baseline
resting period. The baseline and force periods were approximately 10 TR’s (TR
= 4 seconds). The experiment was carried out on a Siemens 1.5T clinical scanner
(fMRI: EPI BOLD, TR/TE=3986/60 m.sec., FOV=22×22×15cm, slices=30,
voxels=3.44×3.44×5.00mm, MRI: T1-weighted 3D FLASH).

The scans from the 16 different subjects has been aligned, using AIR1 and
AIR7 six-parameter rigid body transformation with 5th order polynomial warp
to a reference MRI [20] [19]. The alignment reduces the inter-subject vari-
ance, hence increases the generalizability. The data has following been spatial
smoothed with a 2D Gaussian kernel (FWHM = 0 or 6.0 pixels). The voxel time
series were de-trended using linear basis of cosine basis functions.

4 Modelling

The brain activation is modelled by the relationship between the subject stimulus
and the fMRI response. This is carried out by the joint probability distribution
p(X,G) between the microscopic variables X and the macroscopic variables G.
The macroscopic variables covers the whole experimental setup that is used
during the data acquisition, including the subject stimulus. The microscopic
data are the observations measured during the experiment.

When modelling the joint distribution, two approaches can be chosen see eg.
[18]. The joint distribution p(X,G) can be factorized into either p(X|G)p(G)
or p(G|X)p(X). With p(X|G)p(G), p(X|G) is modelled as a high dimensional
conditional density estimate in the space of the macroscopic data. In the other
approach, p(G|X)p(X), the dependency p(G|X) is modelled as a low dimen-
sional conditional density estimate. In the ladder approach the dimension of X
is reduced, leaving the conditional density estimate in much lower dimension
than the first approach. The ladder approach has been used here.



5 Representation and data reduction

In this study, two representation (PCA and ICA) for the fMRI data are used.
Both representations are obtained by modelling p(X) by use of unsupervised
learning, based on generative models of the form (1).

p(X) =
∫

p(X|S, A)p(S)dS (1)

Where p(X|S, A) = δ(X − AS) is the observation model and p(S) is the source
distribution. For PCA, the source distributions 1st and 2nd order moments are
uncorrelated. For ICA also higher order moments are uncorrelated.

Principal Component Analysis is carried out by Singular Value Decomposi-
tion (SVD). PCA applied to the V × T matrix X, where V is the number of
voxels and T is the time.

X = UΛV T , Xm,n =
T∑

i=1

Um,iΛi,i(V T )i,n (2)

Where U is a M × N matrix, and Λ, V are N × N matrixes. Λ is a diagonal
matrix containing the singular values, arranged by size. U contains the eigenvec-
tors corresponding to the eigenvalues of XXT , in the columns. V contains the
eigenvectors corresponding to the eigenvalues of XT X, in the rows. The dimen-
sion of X is reduced from T to K, by simply using only the K first columns of
U and the first K rows of V T as representation.

The ICA can be applied to the fMRI in either spatial or temporal domain,
to produce either independent time-series or independent image components.
The general ICA decomposition is defined in eq. 3, where X is a M ×N matrix
containing the fMRI.

X = AS, Xm,n =
K∑

i=1

Am,iSi,n (3)

Where A is a matrix of image columns and S the corresponding matrix of time-
series. When doing spatial ICA the columns of A becomes independent, and
similarly the rows of S becomes independent when temporal ICA is applied.
Temporal ICA is can be defined:

Y ≡ UT X = UT AS ≡ BS (4)

Where Y is the N × N matrix containing the PCA time-series and S are the
independent time-series. On the other hand we can define spatial ICA by the
transformation:

Y T ≡ V T XT = V T ST AT ≡ (BS)T (5)

Here Y is the N ×M matrix containing the PCA images and S are the indepen-
dent images. Both transformations (Spatial and Temporal) are simple re-writings
of the separation problem, and no loss of generality is generality is introduced.



The spatial and temporal ICA approaches should probably not compete
against each other but could be used together. The independent time series
should be used to model the paradigm. It is most likely that the independent
time series will model the paradigm best. The images that are associated with
the independent time series, will model multiple areas in the brain, that are ac-
tive with the paradigm. The independent images will model volumes in the brain
that are independent. These places are most likely isolating the functional differ-
ent places in the brain, that are used during the experiment. The brain area for
vision would fx. follow the experiment paradigm, but would also be influenced
by the eye flickering. In [3] fMRI data was analyzed searching for temporal in-
dependent activation sequences. Here temporal ICA was able to separate two
induced effects and CO2 inhalation (hypercapnia). Since hypercapnia induces
a global spatial effect, temporal independence is more appropriate than spatial
independence.

ICA can be carried out by various algorithms. Different assumptions has led
to multiple approaches for solving the ICA problem. In [12] three ICA algo-
rithms were compared. The first approach is using De-correlation techniques,
which was first proposed by Molgedey and Schuster [14]. The algorithm was
later enhanced [15][16][22], eliminating the limitations in the original algorithm
and applying a delay estimate. The second approach is the info-max algorithm
[2][1]. The info-max algorithm maximizes the information-transfer through a
artificial neural network (ANN), thereby separating independent components.
This approach can also be seen from a maximum likelihood point of view [5].
The info-max approach needs a probability density function (PDF) estimate
of the components to make a correct estimate of the independent components.
In the first algorithms, the components was just expected to have the same
PDF’s, often super-Gaussian. Later the info-max algorithm was extended [24],
enabling it to distinguish between either a super- or sub-Gaussian PDF. In the
third approach, Dynamic Component Analysis (DCA) [8] [9], the assumptions
from the De-correlation and information-maximization algorithms are combined
into one single algorithm. The three algorithms were compared using spatial
and temporal modes and shown to produce consistent spatial activation maps
and corresponding time-series. There are lots of algorithms to choose from, each
having different advantages over each other. In the following, the enhanced De-
correlation algorithm has been used [21], due to low computational time, which
has been important due to size of the fMRI data sets.

6 Subject Inference and Classification

When using PCA and ICA for preprocessing the fMRI data, inference between
subjects is not achieved. Especially the ICA algorithm separates the signals
associated with different subjects. The ICA algorithm makes the signals inde-
pendent resulting in independent signals for different subjects. when wanting
to make classification of fMRI data with multiple subjects, group inference is
needed. Canonical Variates Analysis (CVA), can create group inference based



on labelling. The objective in CVA is to find a linear transformation of two
data sets, x and y, so that the transformed data-sets have the largest possible
correlation [13]. We here use the CVA to find the largest possible correlation be-
tween the labels and the ICA components. In figure 1 lack of group inference for
the ICA components is shown together with the CVA components where inter-
subject inference is present. The CVA algorithm combines the ICA components
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Fig. 1. CVA and ICA components. The ICA algorithm has separated similar compo-
nents from different subjects. This makes it impossible to make inter-subject learning.
The CVA algorithm combines the ICA components into few components that can be
used for classification. The CVA algorithm combines the components by maximizing
the correlation between the paradigm and ICA components.

by maximizing the correlation between the paradigm and ICA components. Full
subject inference can only be achieved for the training data. Subject inference
for the test data is only achieved if the training data looks similar to part of
the test data. The CVA components can following be used for classification with
various clustering algorithms. Due to relative few data points, we here use the
N Nearest Neighbors approach, see e.g. [4].

7 Experiments

The fMRI data from the 16 subjects is arranged in a 2D data matrix, where
the first dimension is the time and the second dimension is the 3D voxel image



arranged in one dimension. The subjects are stacked in the first dimension, in
hope that the subject are activated in the same parts of the brain, during the
experiments. The data could also be stacked in the second dimension, if the
time activation patterns were expected to be the same. This is not possible in
our case, since the static force task is performed in random order. Data reduction
is performed by PCA, reducing the fMRI-data from 2984 to 400 components.
The no. of relevant components to be found in the fMRI data was first estimated
by use of the Bayesian Information Criteria [17]. The result is shown in figure 2.
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Fig. 2. The Bayesian Information Criteria BIC is applied to determine the no. of
relevant components to use from the fMRI data. BIC finds approximately 20 relevant
components in the fMRI data. At least 5 times the no. of components found by BIC,
must be used to achieve accurate classification.

The BIC settles for about 20 components as the most optimal choice. Unfor-
tunately the no. of components BIC finds optimal, shows very poor performance
when CVA and classification is applied. At least 5 times the no. of components
found by BIC, must be used to achieve accurate classification. The reason that
BIC fails to find the optimal no. of components for classification, should prob-
ably be found in the fact that the ICA algorithm separates similar components
that emerge in different subjects.

The optimal no. of components is instead found by estimating the bias-
variance tradeoff, shown in figure 3.

When using low-dimensional representation of the data the classifier has
high error-rates, because the representation is not rich enough, i.e. biased. On
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Fig. 3. Bias variance tradeoffs for ICA and PCA. The classification error rates based
on test-sets is shown, when the classifier is based on ICA and PCA bases. For low
dimensional bases the classifier has high error-rate because the representation is not
rich enough, i.e. biased. For to high bases, for PCA D > 90 and ICA D > 140, the
test error-rates increases because of the over-fit of the classifier in the high-dimensional
representation. When using the best ICA representation, the generalization error is
much lower than when using the best PCA representation. It is likely that the ICA
algorithm is better suppressing the noise to the lower components, leading to enhanced
generalization error.



the other hand, when representation is high-dimensional, the error-rate increase
because the classifier over-fits. The best bias-variance tradeoff is approximately
90 components for the PCA representation, and 140 components for the ICA
representation.

The generalization error, when using the best ICA representation is much
lower than when using the best PCA representation. When using ICA, the com-
ponents from 90 to 140 can be used for generalization, without over-fitting the
model. It is likely that the ICA algorithm is better suppressing the noise to the
lower components. This will result in more useful components which can be used
to lower the generalization error.

Data spatially smoothed with a 2D gaussian kernel are compared with non-
smoothed data. Two different brain warp approaches are also compared [20] [19].
Learning curves [18] for the four combinations are shown in figure 4.
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Fig. 4. Learning curves for different smoothing and registration warp method (AIR1 vs.
AIR7). Without smoothing the generalization error is high. The effect of the different
warp methods is limited, but AIR7 performs better than AIR1. This result was obtained
with random re-sampled disjoint training- and test-sets. The classifier is based on CVA
with an ICA representation of 140 basis vectors. The error-bars represent the standard
deviation of the mean, and are estimated from 100 re-samples.

From figure 4, it is clear that spatial smoothing is a important parameter
when making subject inference. The difference in using AIR1 or AIR7 warp
technique is not dramatic. The AIR7 warp method is the best though.



Our primary objective is the question of representation. In figure 5 the learn-
ing curves for high dimensional PCA and ICA bases are shown. We are consid-
ering a six way classifier, making it interesting to see whether the classifier can
distinguish between baseline and force, and following to see how well it predicts
the actual force level. To be able to tell whether we can make the distinction
between baseline and force, the force-level distinction line is introduced in figure
5. The error rate at the force level distinction line is P = 0.4, and is calculated
by random selection between the force-levels.
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Fig. 5. Learning curves when using ICA and PCA representation with 110 and 140
components. The best performance for the PCA algorithm is found when using 110
components, and for ICA representation using 140 components. The error bars repre-
sent the std. of the mean for 100 repetitions. When using the ICA basis, the force-level
distinction line is clearly passed. There are still scans though, for which baseline- and
force-labels are confused.

Even though the ICA basis clearly passed the force-level distinction line in
figure 5 , there are scans for which baseline- and force-labels are confused. All
four representations has lower generalization error than the force-level distinction
line, when using a sufficient amount of training examples, i.e. some knowledge
about the force-level is preserved for all representations. Using the force-level
distinction line as offset, the best ICA basis is clearly the best representation.

The distribution of the errors for the ICA representation with 140 compo-
nents, is further elaborated in figure 6. Here the different types of errors that
occurs in the classification experiment are shown. The figure shows that when



the classifier makes an classification error, the correct force level is typically
not far away in terms of force level. To specify this, the errors are compared
with baseline probabilities assuming that the classifier would only be able to
distinguish between force and baseline states.
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Fig. 6. Error distribution for the multi-subject experiment. The errors are compared
with baseline probabilities assuming that the classifier would only be able to distinguish
between force and baseline states. The re-sampling experiment is based on a CVA
classifier using an ICA basis with 140 vectors. We used 14 training subjects and AIR7
warp with smoothing corresponding to 3 voxels. The ’false force/baseline’ distinction
is used to indicate scan classifications where the subject is in the resting baseline state
but the classifier outputs a force level label or vise versa. The ’correct baseline’, are the
scans for which the scan is correctly estimated to be resting. The ’force error’ is the
difference in grams predicted by the classifier, hence zero ’force error’ indicates that
the force level is estimated correct.

The classifiers ability to predict the force states is further illustrated in figure
7, where the reference activation function (the ’paradigm’) is compared with the
classifier predictions.

In figure 8, a 3D model of the most salient spatial activation regions in the
brain are shown. The regions are based on the two first CVA components. The
first component forms the force baseline discriminant, and the second the force-
level discriminant. The statistical means of the two CVA components are shown
in figure 9
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Fig. 7. The predicted activation function, compared with the actual experimental
paradigm. The shown predictions are from one of the more easy subjects to predict.

8 Conclusion

Multi subject fMRI analysis based on two different representations, PCA and
ICA bases, has been investigated. Based on the two representations, supervised
classification been performed using Canonical Variates Analysis. We conclude
that ICA allows for higher dimensional representation, providing a less biased
estimate, resulting in an improved test-set classification. While the choice of
representation is important, spatial smoothing and alignment by warp are still
more important determinants for good generalization. We also conclude that it
is important apply CVA to the ICA and PCA bases, to get group inference for
generalization.
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