Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

Crane scheduling for a Plate Storage in a Shipyard:
Solving the Problem

Jesper Hansen* Torben F. H. Kristensen?

April 23, 2003

Abstract

This document is the second in a series of three describing an inves-
tigation of possible improvements in methods for handling the storage of
steel plates at Odense Steel Shipyard (OSS). Steel ships are constructed
by cutting up plates and afterwards welding them together to produce
blocks. These blocks are again welded together in the dock to produce
a ship.

Two gantry cranes move the plates into, around and out of the stor-
age when needed in production. Different principles for organizing the
storage and also different approaches for solving the problem are com-
pared. Our results indicate a potential reduction in movements by 67%
and reduction in time by 39% compared to current practices. This leads
to an estimated cost saving by approx. 1.0 mill. dkr. per year.

This paper describes aspects of solving the model developed and
described in Hansen and Kristensen [§8]. Conducted experiments and
achieved results are reported in Hansen and Kristensen [7].

*Informatics and Mathematical Modelling, Technical University of Denmark, 2800 Lyn-
gby, Denmark, email:;jha@imm.dtu.dk

$Department of Production, Aalborg University, 9220 Aalborg @, Denmark, email:
tthk@wanadoo.dk

https://core.ac.uk/display/13701113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

This document describes an investigation of possible improvements in meth-
ods for handling the storage of steel plates at Odense Steel Shipyard (OSS).
Steel ships are constructed by cutting up plates and afterwards welding them
together to produce blocks. These blocks are again welded together in the
dock to produce a ship.

In Hansen and Kristensen [8] we described the physical environment on
the plate storage and how it fits into the overall process of building steel plate
ships. Based on the problem description a model was developed including both
the physical entities of the system and the planning and processing aspects.
In this paper we will discuss the aspects of solving the problem, but we will
first briefly repeat the main modelling concepts from [8].

Our model of the storage consists of 8 x 24 plate stacks, and two gantry
cranes can move plates between the stacks. 8 additional stacks are used for
arriving plates. Each plate has a due date specifying at which date it must
leave the storage and enter the production line. When a plate leaves the
storage, it is placed on a conveyer belt referred to as the exit-belt. A maximum
of 8 plates can be at the belt at the same time and a plate is drawn from the
exit-belt at certain intervals. The two gantry cranes share tracks and collision
conflicts must hence be avoided.

The problem adressed is to develop approaches for scheduling the crane
operations better than current practices. Three different storage principles
are considered:

The block storage is the current storage principle. Two stacks are associ-
ated to a specific block of the ship and all plates to be used to produce
that block are placed in these designated stacks.

The due date storage was suggested by the shipyard management as an
alternative to the block storage. Here each stack is assigned a due date
interval and a plate with a due date in that interval can be placed on
that stack. The storage is divided into zones and each zone is divided
into a number of due date intervals. Several stacks are assigned each
due date interval. The user can determine the layout of the storage by
specifying the different parameters regarding size of the intervals, stacks
per interval, number of intervals and overlap in due dates between zones.
Plates are initially placed in zone 3 and are afterwards moved through
the zones closer to the exit-belt. Refer to [8] for further details.

The self-regulating storage principle is the last alternative. No specific
purpose or due date is assigned to the stacks. The organization of the
storage is determined by the planning procedure.

Two approaches have been investigated to solve the scheduling problem.
The two approaches are based on different principles. The first approach is an
on-line algorithm or more precisely a heuristic discrete event feedback control
system where a movement is chosen in real-time. The other approach uses
the on-line algorithm off-line as a greedy construction heuristic to get a good
initial solution, which is then improved by local search heuristics. The off-
line algorithm makes a schedule for the controller to follow. The schedule
specifies the order in which the movements are to be executed. A control
module dispatches the movements in the sequences and adjusts the schedule
if the initial schedule becomes infeasible because of the underlying stochastic
nature of the system.

In section 2 we describe the different local search heuristics implemented,
and in section 3 the control system is described. Experiments and results are
reported in Hansen and Kristensen [7].

2 Planning Procedure

Given the model of the plate storage, the planning task is now to create a
schedule of movements for the 2 cranes without collision, that delivers the
plates needed for the given day and minimizes costs. In order to avoid colli-
sions of the two cranes extra positioning and wait movements may have to be
inserted in the sequence of movements.

To give a flavour of the size of the problem; consider the scheduling of
N movements for 1 crane and M possible stacks. All permutations of N
movements are potential, but not necessarily feasible sequences, resulting in
N!. For each non-exit-movement we have the choice of M possible destination
stacks. In total M N! potential solutions. For M and N only 100 we get a
157-digit number! If we consider the case where we only get plates from 10
stacks of 10 plates each, we get at least 10'° (10 billion) number of solutions.

We have implemented a construction heuristic (or control method) de-
scribed in section 3 and local search heuristics for improving the initial plan.
After improving the plan, it is returned to the control module to be executed
in the simulator with disturbances also described in 3.

A local search heuristic tries to improve the solution by making local or
small changes to the plan. A solution achieved by such a local change is
called a neighbour solution. How we define the changes on a plan is called the
neighbourhood structure. For a given solution S the set of neighbour solutions
reachable with the given neighbourhood structure is simply called the neigh-
bourhood of S, N(S). Refer also to Pirlot [12]| for an introduction to local
search heuristics.

The components in a local search procedure are then the following:

e The representation of a solution. In our case the initial storage and
the sequence movements with movement times for each crane exactly
determine the solution.

e The objective function is described in section 2.1. The evaluation of
the function is in our case done by simulation. This is described in
section 2.2. One of the most important points in a successful local
search approach is the fast evaluation of the cost function. As we see
later this is not trivial in our case. An alternative is trying to estimate
the costs, which is described in section 2.6.

e The neighbourhood structure is described in section 2.4.
e Search procedures are described in section 2.5.

Some of the components can be considered problem independent while
others are specific for the given problem. Generally, the objective function,
the representation of a solution and the neighbourhood structure are problem
specific.

We have implemented a local search object-oriented framework similar to
Andreatta et.al [2] where the problem independent parts of the algorithm is
separated from the problem specific. This allows easy reuse of code for other
problems. Other local search frameworks and class libraries can be found in
Voss and Woodruff [15].

2.1 Objectives

Costs include salary to the crane operators, power for the cranes to move and
activation of the magnetic lift as well as maintenance on the cranes. These
costs can be mapped to the make-span or finish time of the schedule, the total
travelled distance and total number of movements. Minimization of the time

when the last plate is put on the exit-belt is also important to be able to start
the following processes as early as possible.

One day of production is planned at a time, so in order to minimize the
long-term costs, we measure the quality of the state of the storage after each
day. The state is evaluated by 3 different criteria explained in the following.

How well are the stacks sorted by plate due date?

More specifically, how many dig-ups have to be done for each stack with the
given plate due-dates. For stack (2,4) in figure 1 plate py is the first to be
removed from the storage on November 1. This requires the dig-up of p;. The
next plate to be removed from the stack is p4, which causes the dig-up of ps.
The result is 2 dig-ups. We have defined the cost of a dig-up to be the sum of

(1,4) (2,4) (3,4) (4,4)

Pl: 04/11/01

P2: 01/11/01

P3: 07/11/01 P5: 05/11/01 P7: 01/11/01

P4: 06/11/01 P6: 06/11/01 pP8: 05/11/01

Figure 1: Objective function example.

the following terms:

e Estimated cost of power and maintenance used for lifting and dropping
a plate.

e The cost of power for moving the crane to the nearest stack and back.

e The cost in salary for operating the crane in the amount of time accord-
ing to the dig-up movement.

It is perhaps a bit surprising that according to the management of the yard,
the main part of the cost comes from maintenance on the cranes.

How close are the plates to the exit-belt compared to the due date
of the plates?

When minimizing travelling distance it is better always to move plates in
direction of the exit-belt and when the due-date of a plate is close to the
current date, we want it to be located close to the exit-belt. We have chosen
to model the cost for each plate p as:

dist(cp, ce) (1)
diff(dp, today) + 1

where dist(cp, cc) returns the distance from the location, ¢,, of plate p to
the exit-belt, c. and diff (d,, today) returns the difference in days between the
due-date d), of plate p and the current date.

Let us assume that the exit-belt is located at the coordinate (1,4) in figure
1, then stack (2,4) is 1 closer than (3,4). If for instance today is 01/11,/2001
then the cost for plate p; is 1/4, for ps: 1/6 and pg it is 1/3. The above exit
distance can be converted to time and the cost is then achieved by multiplying
with the salary of the operators.

How many plates are there in each stack?

We want the plates to be as evenly distributed on the stacks as possible, which

will result in less dig-ups when changes in due dates occur. The cost for a

stack s is defined to be:
size(s)?

(2)

where maxsize is a user supplied upper limit on the number of plates in the
stacks. We observe that the cost per stack is in the interval from 0 to the
maximum number of plates in the stack.

If we have an upper limit of 10 plates, then the stacks in figure 1 on the
page before will have a cost of % = 2.4 while if p; was moved to stack
(3,4), the cost would be % = 2.2, and hence better.

What we are minimizing is in some sense the worst case number of dig-
ups if a plate in the bottom of a stack is requested. The cost of a dig-up is
therefore used here as well.

mazxrsize

Due-date and block principles

For the due date and block principles all criteria are used except for the stack
sorting criteria, since that criteria is not relevant for these principles.

2.1.1 Weighting of criteria

We have chosen to convert all the criteria into a common unit, which is then
minimized. The user has to supply the operating costs and the wage of the
operators. The operating costs of the crane are dividided into costs per lift
and per moving second. The majority of the costs are due to maintenance
especially on the electromagnetics. The wage of the operators are divided into
operators of the cranes and operators of the following production processes and
again with the possibility of different wages per shift or for working overtime.
The user specifies the length of the three shifts in seconds. The wage is
calculated per second, which of course is a simplification of the real world.
It is however possible to model a fixed cost of one shift with overtime pay
in second shift: Set the wage in the first shift to zero and to the wage plus
overtime in second shift. If it is desired to avoid work for instance in shift A
a penalty in form of the power, p, can be set:

max(0, tt — tp,)P * wy,

where tt is the total time, t,_; is the user specified time length of shift h — 1
and wy, is the wage in shift h. Larger p > 1 makes it much more expensive to
violate the soft constraint. This flexible setting makes it very easy to model
different wage structures. This is similar to Lagrangian Relaxation in Integer
Programming (IP) where constraints are relaxed and added to the objective
function. In IP we usually only allow linear constraints, but in this setting
any non-linear constraint can be modelled.

We will later see that the objectives are used both for evaluating solutions
and to guide the search for good solutions. In the next section we describe
how to calculate the objective value.

2.2 Simulation

Assume that we have given a sequence of movements for each crane. To com-
pletely determine the plan we need to find the start time for each movement,
determine destination stacks for dig-up and sort movements and perhaps insert

necessary positioning and wait movements in the two sequences. Simulating
the crane movements for the given sequences of plate movements does this.
Note that we in the system have 2 simulators one for the planning module and
one for the control module. The one described here is the planning simulator.

The times for lifting and dropping plates, moving the crane and speed of
the exit-belt are not deterministic, but for the purpose of planning they are
considered to be. During execution of the plan, changes in times may cause
the plan to be infeasible. In that case the plan must be revised. One approach
is to adjust the plan according to the changes (control with a plan) and the
other approach is to use the construction heuristic as an on-line algorithm
(control without a plan). We will consider these issues in detail in section 3.

The complex part of the simulation procedure is handling each type of
occuring event:

e Before moving a crane, a potential conflict between the cranes must be
identified and taken care of.

e The exit-belt is not ready to receive plates.
e A plate is for some reason not ready to be moved to or from stacks.

In the following we describe in detail how these events are handled in the
simulator. Figure 2 on the following page shows an activity diagram of the
process of simulating a movement of a plate by a crane.

First the crane must move to the source stack of the plate. Then the plate
is lifted, moved to the destination and dropped. Before actually moving the
crane, it must be checked whether a collision conflict between the cranes will
occur. We will later get back to the handling of conflicts.

The cranes work in parallel. The simulator must therefore keep track of
which crane first finishes its current operation and then determine the next
operation for that particular crane. When entering the box in figure 2 the
next activity of the crane to perform is depending on the previous operation
done by the crane. If for example the last operation was lift, then the next is
to go to the destination of the movement.

Figure 3 on page 10 elaborates the choices made before moving to the
source stack. In situations of choice, arrows with no legend cover the situa-
tions not described by any other legend. Text in boxes written in italics are
elaborated in other figures. There can be several reasons for the requested
plates not being ready to be moved. We return to these issues later. If the

Choose crane with
earliest idle-time

:

Move crane to source
stack of movement

:

Lift Plate

:

Move crane to
destination stack

:

Drop Plate

Figure 2: Simulation of a movement.

plate is ready and no crane conflicts will occur the crane is moved to the source
stack.

Handle stack
not ready

[Plate is on top of pource stack AND
(is exit movement OR dgstination stack is ready)]

Move crane to
source stack

[Move will capise a conflict]

Handle Confflict

Figure 3: Move crane to source stack of movement.

When the crane arrives at the source stack it is again tested if the requested
plate is ready to be moved, since the state of the storage can have changed,
while the crane was moving to the source stack. This process is shown in
figure 4 on the following page.

After lifting the plate the crane must move to the destination stack as
shown in figure 5 on the next page. Again potential crane conflicts must be
handled properly.

When the crane arrives at the destination stack, the plate can be dropped
immediately. However if the destination is the exit-belt a slot must be avail-
able. Otherwise the crane waits until a slot becomes available.

After dropping the plate the crane is ready for a new plate movement as
shown in figure 7 on page 13. If a crane has no more movements to execute, it
is moved to the end of the tracks in either direction. The tracks end outside
the area defined by the stacks and conflicts between the cranes are in that

10

Handle stack
not ready

[Plate is on top pf source stack]

Lift top plate

Figure 4: Lift plate.

Choose destination,
if non chosen

Move crane to
destination stack

[Move will cagise a conflict]

Handle Confilict

Figure 5: Move crane to destination stack of movement.

11

Wait

[Is exit-belt]
[Is sjack]

receive]

plate

;

Get next
movement

Figure 6: Drop plate.

way avoided.

2.2.1 Handling of Stack not ready

Figure 8 on page 14 shows the process of handling the case when a requested
plate is not ready to be moved. Several cases must be taken into account:

The plate is not in the source stack

A plate will need to be moved more than once, if it is moved to a stack in
which there are plates that are going to be moved later on the same day.
Generally one or more movements are necessary for a given plate.

If at some stage a plate is not in the expected stack, it means that it has
not yet arrived from some other stack. If the current movement of the other
crane is to move the plate to the stack, then we wait for the other crane to
finish its movement. Otherwise we remove the movement from the sequence
of the crane as well as any following movements of that plate if any exists.
Note that the movement cannot be an exit-movement, since plates involved in
exit movements are moved directly to the exit-belt and are therefore always
present in the source stack until it is moved.

12

Move crane
out of storage

[More movements |n crane sequence]

Get next movement
in sequence

Figure 7: Get next movement in sequence of crane.

The plate is not the top plate of the source stack

If the plate is not the top plate of the source stack, the crane does a dig-up of
the top plate, unless the current movement of the other crane is to dig-up the
top plate. In that case we wait for the other crane to take the plate.

The destination stack is not ready to receive the plate

If the destination stack is not ready to receive the plate, the reason is that all
plates to be removed from the destination stack have not yet been removed.
To manage that we first consider moving the plate to another stack, which is
ready, and alternatively removing the top plate of the destination stack before
the current plate movement. In that way we will in many cases avoid moving
a plate more than once on the same day.

This is especially a problem for the block storage where only two stacks
are designated to each block, and hence a large number of dig-ups can occur.
In the worst case the simulation will enter an infinite loop of dig-ups and
positioning movements of the cranes: Assume that crane 1 is going to move
several plates from the first block stack and crane 2 from the second stack.
First crane 1 lifts a plate from the first block stack and puts it on the second.
Meanwhile the crane 2 is requesting the top plate of the second, but has to wait
for crane 1 to finish its move. Now another plate is on top and crane 2 needs
to do a digup. Crane 2 then moves the plate to the first stack. Again crane 1
has an extra plate to dig-up etc. We deem the solution infeasible if a relatively
large number of dig-ups has been done from the same stack. This is actually

13

the only case not taken directly into account by the simulation. Infeasible
solutions are not a problem when using a local search heuristic, since we can
simply try other neighbour solution until we find a feasible one. We must
however make sure that the first solution is guaranteed to be feasible. The
strategies of the online heuristic are somewhat different avoiding this cyclic
behavior. Experiments have shown that the cycles only occur for the block
storage caused by the many digups. Cycles can hence be avoided by only
allowing one of the cranes to move plates from stacks dedicated to a particular
block.

Remove this movement

[Plate is not in source stack]
and following movements

Y

/ of this plate
[Other crane is movjng requested plate]
Y
Handle Conflict Get next

movement

. . A

[Other crane is rhoving top plate]
Y
\ [Plate is not on top of source stack] Insert movement of top plate
> before current movement
\ in sequence
A

Find a destination stack,
ready to receive

[No destination stack ready to receive]

Figure 8: Handle stack not ready.

2.2.2 Collision Handling

It is quite easy to check for collision, when the speed of the cranes is fixed.
We only need to check the destination of the crane movement. Assume that
the following holds for cranes 1 and 2: z1 < zo. If crane 1 is moving from x

14

to z, we need to check if crane 2 is moving or not. If it is not moving, we
check if] < w9, or if it is moving the same for the destination x| < .

If a collision of the cranes would occur we handle this as depicted in figure 9.
If possible the crane moves closer to the other crane, which will always be closer
to the destination of the crane. If the crane is already next to the other crane
we either wait or move away for the other crane to finish its operation. This
procedure will solve any collision conflict between the cranes.

Galculate collision
positions for both cranes

[Possible for crane to move closer]
»| Move crane next

to other crane

[Crane already n¢xt to other crane]

[Other crane is waiting]
Move away to make
room for other crane

Wait until other
crane has finished

Figure 9: Handle collision conflict between cranes.

Note that this heuristic is not guaranteed to result in the best sequence of
positioning and wait movements globally or even locally. We have tried differ-
ent strategies for handling collisions, and clearly there is a trade off between
tight and efficient schedules where the cranes are allowed to move very close to
each other and robust but inefficient schedules where the crane movements are
more restricted. The most “loose” strategy is when a crane can only perform
its plate movement if the other crane is completely out of the area defined by
the current position of the crane and the source and destination stack of the
plate. Our choice is hence much more tight.

15

The simulation ends when all movements have been executed. The sched-
ule can now be evaluated according to the criteria mentioned earlier.

2.3 Choosing a destination stack

For movements other than exit-movements we have to decide to which stack
to move the plate. This is done during simulation just after lifting the plate.
How the stack is chosen depends on the storage principle.

For the block principle either the plate is going to leave the storage tomor-
row and a corresponding set of due-date stacks exist, or another block stack
next to the source stack is selected.

For the due-date principle a set of due-date stacks exists where stacks in
zone 1 are preferred to stacks in zone 2 and so on. From the set of preferred
stacks we always choose at random.

For the self-regulating storage principle all stacks are evaluated with regard
to several criteria similar to the objective function. Preferably we want to put
the plate on a stack where the plate with the minimum due date has a due
date, which is later than or equal the due date of the plate we are moving. In
that case the stack sorting will not deteriorate. On the other hand, we want
the difference to the minimum due date in the stack to be as small as possible,
because this will make it easier to find suitable stacks for other plates.

Consider for example the case in figure 10 on the next page. If we in our
sequence are moving plate p7 followed by pg, we have to decide to which stack
of (2,4) and (3,4) to move p;. The plate p; will not deteriorate the sorting of
either stacks in position (2,4) or (3,4), but it is still better to move it to (2,4):
If p7 is moved to (3,4), then moving pg will cause an extra dig-up at a later
stage.

We want to minimize travelled distance to the stack and further on to
the source stack of the next movement. For this criteria (3,4) is better than
(2,4), since the crane afterwards will move back to (4,4) to pickup pg. When
minimizing stack height, again (3,4) is better than (2,4) according to the stack
height criteria. For minimizing distance to the exit-belt, (2,4) is better than
(3,4) since stack (2,4) is closer to the exit-belt placed at (1,4).

We will now describe in more detail how a new destination is found for
a movement m of a plate p,, with due-date dd,. First stacks different from
the source stack and the currently chosen stack (if any) are identified. From
that set we select stacks that are ready to receive the plate, i.e. all plates
leaving the stacks have been removed. If that set of stacks is empty, the new

16

(1,4) (2,4) (3,4) (4,4)

P1l: 04/11/01

pP2: 01/11/01

P3: 07/11/01 P5: 05/11/01 P7: 01/11/01

P4: 06/11/01 P6: 06/11/01 pP8: 05/11/01

Figure 10: Choosing destination stack example.

destination stack is picked randomly. Let us in the following call the set S’
and let mds be the minimum due date of a plate in stack s € S”:

mds = mein{ddp}, Vs e S (3)
pEs

From the set S’, we identify two subsets:
SZ = {s € §'|mdy > dd,}, S< = {s € §'|md, < dd,}, (4)

If S # () we in the following use that set otherwise we use S< and refer
to that set as S”. A subset of the best destination stacks are now chosen and
the new destination stack for the movement is a random one from this subset.
In the following we describe how the destinations are ranked.

For s € S” we record mds — dd,, multiplied by the cost of a dig-up. Let
dcs be that value. We will then have dcs > 0 when dd, < mds. Minimizing
this cost, we want dc, to be as small as possible. If dd, > md,, this cost
is disregarded, since no matter the cost we will have to do one dig-up. In
addition to the stack sort the following cost changes are calculated:

e Change in cost caused by change in source and destination stack size.

e The cost of moving the crane: The change in cost is based on the time
to move from the source to the new destination stack, dist(sp,,dn),
and further on to the start of the next movement in the sequence,
dist(dm;, Ssuce(m)), Where succ(m) is the successor of m in the sequence
of movements.

17

e The new distance to the exit-belt: The distance is weighted, such that
the cost of plates with a due date close in time is larger than for plates
due further into the future.

The motivation for these criteria is of course to minimize dig-ups, minimize
makespan, travelling time and moving plates due for exit in the near future
closer to the exit station. The weighting of these criteria is the same as for
the objective function.

2.4 Neighbourhood Structures

It has turned out to be difficult to construct neighbourhood structures where
local changes can easily be propagated to global changes in the objective value.
Therefore the first attempt was to evaluate the change in objective value by
“simply” simulating the crane movements from start to end for every new
neighbour solution. This is of course computationally expensive and we have
therefore investigated the possibility to estimate the change in objective value
instead. This is discussed in section 2.6. Three simple operators define the
neighbourhood structure:

Destination operator: Delete a specified destination for a movement and
any following movements of that plate. A new destination will then be
chosen afterwards while simulating the sequences.

TSP operator: Remove a movement from a crane sequence and insert it at
another position in the same sequence.

VRP operator: Delete a movement from one crane sequence and insert it
in the sequence of the other crane. The insertion is done at a position
in the sequence at approximately the same time in the sequence.

Assume that two plates, p; and po in a stack are going to be moved. When
using the TSP or VRP operator, it must be checked that plate p; above po, is
earlier in the schedule. We make the following checks for the TSP operator:

e If the movements are in the same sequence, we check if p; is earlier in
the sequence than po.

e If the movements are in different sequences, the solution will always be
legal, since the crane doing the succeeding movement just waits until the
other crane has finished the preceding movement. This can obviously

18

result in poor solutions. Therefore we try to estimate the new start and
end times of the movements and if waiting is introduced we reject the
neighbour solution. Note that this is also handled in the simulation if
necessary.

For the VRP operator the two cases are in principle the same. In order to speed
up these checks we set up suitable data-structures, such that it is possible to
access both predecessors and successors of a movement in constant time. Note
that we have two types of predecessors and successors of a movement given
by the order of the plates in the stack and in the case that a plate is moved
more than once.

In order to reduce the amount of copying object data we simulate the
schedule backward to place the plates in the stacks they were at the beginning
of the day.

One could come up with more complex neighbourhood structures. Ba-
sically all structures suitable for multiple travelling salesman type problems
could be used. Note however that more complex structures will also lead to
more difficulties in estimating possible savings and trying to check feasibility.
This is the reason for our choice of simple operators.

2.5 Local Search Heuristics

A local search heuristic tries to improve the solution by continuously making
local or small changes to the plan. We will in the following describe some of
the different local search heuristics, which have been implemented.

2.5.1 Steepest Descent

The most simple heuristic is the Steepest Descent algorithm shown in algo-
rithm 1. If the neighbourhood is very large we can search for the best neigh-
bour in a subset of the neighbourhood set. The algorithm can be modified to

Algorithm 1 Steepest Descent

1: Select a solution, sp € S with objective F(sg). n = 0.

2: repeat

33 n=n+1

4: Find the best neighbour s, in the neighbourhood N (s;,,—1).
5. until F'(s,) > F(sp—1)

19

a Descent algorithm if the first improving neighbour solution is picked when
searching the neighbourhood.

One obvious disadvantage of a simple descent algorithm is it’s lack of
ability to escape local optima. Other heuristics that do not suffer from this
lack are Simulated Annealing and Tabu Search described in the following.

2.5.2 Simulated Annealing

Simulated Annealing originates in thermodynamics and metallurgy. Basically
the problem is that of slowly cooling down metal to a state of minimal energy.
In the local search version we have a temperature T as well, the state of the
metal is our solution and the energy is our objective function value, which
we want to minimize. Kirkpatrick et.al. [10] was the first to “discover” this
analogy. The procedure is shown in algorithm 2. We see in that it is possible

Algorithm 2 Simulated Annealing
1: Select a solution, sp € S with objective F(sg). n = 0.
2: F* = F(sp). s* = s0.
3: T(O) = Tinit-
4: repeat

5. Draw a random neighbour s from N (s,,).
6: if F(s) < F(sp) then

7 Sp+1 = S.

8: if F'(s) < F* then

9: s*¥ =s.

10: end if

11: else

12: Draw a random number p € [0;1].
13: if p <exp (W) then

14: Sp+1 = S.

15: end if

16: end if

172 n=n+1.
18: until Stopping criteria fulfilled.

to move to solutions, which are not better than the current solution. If the
neighbour is worse, we still accept it with a probability depending on the
temperature and how much worse the solution is.

20

The point is that we start with a relatively large temperature T;,;; where
almost every solution is accepted, the temperature is gradually decreased until
only improving solutions are accepted. In theory this procedure guarantees
convergence to the global optimum with probability 1, but unfortunately in an
exponential number of iterations, which is generally not feasible in practice.
Instead we accept good solutions in a reasonable amount of time.

A number of decisions have to be taken. Choice of initial temperature,
Tinit, the procedure by of which the temperature is decreased (often referred
to as the cooling schedule), and the stopping criteria.

Initial Temperature

Generally we want the temperature to be high in the beginning, but if the
initial solution is reasonably good, we risk destroying the good features of the
solution and waste time in the beginning of the search moving to increasingly
worse solutions. If the temperature on the other hand is too low, the search will
behave like a descent algorithm. Note also that the probability of accepting
solutions depends on the objective function. The initial temperature should
therefore depend on the objective function as well.

We want in the beginning to accept worse solutions with a probability pg
which is relatively large: Experiments of Johnson et. al. [9] indicate that
a value between 0.4 and 0.9 is appropriate, depending on the quality of the
initial solution and how much time is available. We have found that much
lower values around 0.1 and 0.2 are required in order not to destroy a good
initial solution.

Let AF be the change in objective function value between solutions. Tj,;+
should then for neighbours with increasing costs be set such that

AF

eTinit =2 pg (5)

The most widely used procedure to find T5,;¢, is to run the simulated annealing
in an initial phase where the temperature is adjusted to approach the prob-
ability po of accepting worse solutions. Johnson et. al. [9] were the first to
suggest this procedure. Let AF " be the average increase in objective value for
neighbour transitions to worse solutions. The temperature is then adjusted in
the following way:

AFT
In (po)

(6)

Tn+1 = -

21

After a number of iterations the initial phase is stopped and the decrease of the
temperature is started according to the cooling schedule. T,,,1 will approach
the probability pg in (5).

The cooling schedule

The most widely used cooling schedule is the geometric schedule. Starting with
the initial temperature Tj, the temperature is kept constant for L consecutive
moves. Then after L moves it is decreased by multiplication with a constant
a, 0 < a < 1. After nL iterations the temperature is

T(nL) = a"Ty (7)

No definite rules can be given on how to choose L and «, but generally «
should be close to 1, e.g. o = 0.99. L is more difficult to determine. When
the temperature is low it should in principle be possible to try all possible
neighbour solutions at least once, which suggests a correlation of the size of
the neighbourhood and L. For some problems with huge neighbourhood sizes
it is unrealistic to have L even close to this value. We decided to set a low L
of 10. Assume that a given number of iterations are to be used to get from the
initial temperature to the final temperature. Then if L is increased, a must
be decreased accordingly and vice versa. In that sense the choice of L and «
cannot be separated.

We have implemented a more complex cooling schedule introduced by
Aarts and van Laarhoven [1] and also discussed in van Laarhoven and Aarts
[14]. Here we will give a brief description of the schedule. It is suggested that
the search should be able to reach some quasi-equilibrium in the objective val-
ues for the given temperature before adjusting it. To ensure a fast convergence
to a quasi-equilibrium and hence a small L the decrements of the tempera-
ture must be small. During the n’th value of the temperature, we record the
objective values and calculate the mean, u,, and variance, o,, assuming that
the values are normally distributed. The decrement rule is then specified as:

Ty

— T (8)
1+ T 1;5:"_6)

Tn+1 =

The distance parameter, §, set by the user, specifies the rate of decrease
of T. Larger § generally result in faster convergence, but worse solutions.
After initial experiments the value was set to 0.5. A small value of ¢ basically

22

means that the search has reached a quasi-equilibrium and a larger decrease
in T is justified. Refer to van Laarhoven and Aarts [14]| for an overview of
other similar cooling schedules.

Several runs with a faster decrease of the temperature can be superior
to one run with a very slow decrease. In particular if the initial solution
has been generated with a good construction heuristic. Another possibility
we have implemented as well, is a re-heating procedure, which increases the
temperature, if the search has been trapped in a local optima or has not
improved the best solution in a number of iterations. Rules for when, how
much and how often to re-heat proved difficult to determine. Since complete
restart of the search was just as good, we decided to recommend multiple runs
instead.

Stopping criteria

We want the algorithm to stop when future improvements are expected to
be small. Usual criteria are therefore maximum number of iterations without
improvement or temperature less than a threshold value. In other situations
the search has to be stopped because of limited time: maximum running time
or maximum number of iterations.

2.5.3 Tabu Search

Tabu Search is like Simulated Annealing a general local search heuristic con-
structed to be able to escape local optima. Glover et. al. [6] gives an extensive
guide to the use of Tabu Search.

The basic idea of Tabu Search is to move to the best solution in the neigh-
bourhood as in Steepest Descent, but where moving to worse solutions is
possible in order to escape a local optimum. In case of a symmetric neigh-
bourhood the following cyclic behaviour will occur: When reaching a local
optimum there is an immediate risk that moving away from the optimum will
result in a move back to the local optimum. To avoid the cyclic behaviour
a tabu list, T'L, is introduced: We want it to be tabu to move back to the
solution we came from, so in principle we could save the entire solution and
check whether or not we had visited this solution earlier in the search. It can
be both time and memory consuming to do this. Instead we store certain
attributes, a(s), in the list representing the movement from one solution to
another solution. In the following |T'L| iterations, it is then forbidden to make

23

any changes to the solution according to the attribute preventing a return to
previously visited solutions.

Let us review the tabu list issue for our crane scheduling problem. For
example when changing the destination of a plate movement m from stack
(z1,y1) to (z2,y2), the following different attributes are possible to save in the
tabu list:

1. Save the combination move, m, and stack (z1,y;), which means that
in a certain number of iterations we cannot change the destination of
movement m back to (z1,y1).

2. Make it tabu to change the destination to any other stack.

3. Make it tabu to change m at all, for instance by assigning it to the
sequence of the other crane.

We see that the first is less restricting than the second one and again
less restricting compared to the third. Later we discuss different ways of
representing the tabu list. The pseudo-code of the algorithm is shown in
algorithm 3 on the following page. Note that we accept a solution if it is
better than the best solution found so far even if it is tabu. This is often
called an aspiration criterion.

Defining a move to be tabu in the above algorithm is done by adding the
attribute to a FIFO list. Alternatively we can define an attribute to be tabu
in a number of future iterations. In our application we have an array for each
neighbourhood operator and an entry in the array for each plate movement.
When a neighbour solution is selected, we record in the appropriate array-
entry the iteration number when the plate movement can be changed again
by the given operator. We are in other words using the second attribute
alternative discussed earlier on the current page.

The most difficult aspects of implementing good Tabu Search heuristics
are the questions of which attributes to set tabu and how long the attributes
should be tabu. The first is very much depending on the chosen neighbourhood
structure and how much cyclic behaviour is observed, but this is however not
known in advance.

2.5.4 Reactive Tabu Search

Concerning how long attributes should be tabu, a good choice is to implement
a reactive tabu search introduced by Battiti and Tecchiolli [4, 3]. The tabu

24

Algorithm 3 Tabu Search
1: Select a solution, sp € S with objective F'(sp).
2: F* = F(sp). s* =s0. n=0.
3:TL = (Z)
4: repeat
F = .
for all s € N(s,) do
if (F(s) < F and a(s) ¢ TL) or F(s) < F* then
3=s. F=F(s).
end if
10: end for
11: Spn+1 = S.
122 TL=TLUa(spt+1). If TL is filled up, remove the oldest element.
13: if F < F* then
14: s*=3 F*=F.
15: end if
16: n=n-++1.
17: until Stopping criteria fulfilled.

length is changing dynamically in order to intensify the search in promising
regions and to diversify the search to investigate other regions of the solution
space. In this way the issue of tuning parameters is partially avoided, since
parameters controlling the dynamic algorithm still have to be tuned. These
parameters are however in our experience easier to adjust and more robust.
In our implementation we record the solution value, iteration number and
the number of occurrences of the solution value in a map-type data structure.
In that way we can check if the search repeatedly return to the same solution.
The chain of neighbour solutions leading back to an already visited solution
is often refered to as a cycle. Different solutions can of course result in the
same objective function value, but that is not a major problem. For a more
detailed discussion on that and other ways to store solution configurations,
we refer to [4, 3|. If, during the search, the current solution has been visited
earlier or rather the objective value has occured earlier, the tabu length is
increased. If solutions are chosen which have not been visited earlier, the
tabu length is slowly decreased. The reactive search scheme includes a final
escape mechanism, when revisiting solutions repeatedly. In that case a random

25

number of random neighbour movements are performed. The number of moves
is depending on the length of the cycle.

2.6 Estimation

Calculating start and end times of the movements and evaluating a solution by
simulation has shown to be very time consuming. This is especially a problem
for heuristics that investigate the entire neighbourhood like Tabu Search. For
some real-life-size instances with approximately 800 movements on a day every
solution has up to 1/4 million potential neighbour solutions. For this reason
we have investigated the possibility of estimating the change in cost of a local
change to the solution. Since the cost is a weighted sum of different criteria,
we must estimate the change of all these different criteria. In the following we
will describe the calculation of the estimates for the different neighbourhood
operators.

2.6.1 Destination Stack Neighbourhood

For the destination stack neighbourhood we evaluate changing the current
destination stack of a movement to all other stacks. The evaluation is divided
into two parts: The saving in cost of not moving the plate to the current
destination stack and the cost of going to another stack instead.

The cost saving is a sum of the following terms. Saving in moved distance
by the crane from the source stack to the destination and further on to the
source stack of the next movement. This saving can influence several cost
criteria: Cost of moving the crane, change in makespan for all movements,
change in makespan of exit movements and stack costs.

The potential saving in makespan is not at all guaranteed for several rea-
sons. The movement might not be in the sequence defining the makespan
and the fact that the two cranes cannot cross each other may later reduce
the saving to nothing or even increase the makespan. To reduce the error we
only count the saving in makespan, if the sequence is actually defining the
makespan.

The saving in makespan of exit movements can only be decreased if the
movement is before the last exit movement and it is actually possible to de-
crease the exit time. We say that it is only possible to reduce the makespan,
if the following is fulfilled:

e The crane at the exit belt does the movement.

26

e No crane has been waiting at the exit belt to deliver a plate.

e The exit time of the current solution is larger than a bound on the best
possible exit time. The bound is the time to get all exit-plates through
the exit-belt assuming that the belt is never empty.

Note that the issues above for the total makespan also apply for the exit
makespan.

Finally we calculate the saving in stack sort, size and exit distance. These
costs are estimated by removing the plate from the stack. For the size and
exit distance this estimate is correct. For the stack sorting this is however not
necessarily the case. Removing a plate and recalculating the cost is of course
correct, but the change in the plan can actually change the order of plates
being put on the stack later on the same day and hereby result in an error.

Now the plate is to be moved to another stack. The estimated cost of a
new destination stack follows the same procedure as for the saving above, but
is a bit different for the stack sorting. Now we are to find the correct position
in the stack to put in the plate. This is done by estimating the arrival time at
the stack and other plates removal times from and arrival times to the stack
and by this estimating the position in the stack. Again this estimate may be
crude.

2.6.2 TSP and VRP operators

Now we consider the neighbourhood defined by re-insertion of a movement at
another position in the same sequence. When removing a movement from a
sequence the saving is the start time of the following movement minus the end
time of the previous movement plus the time of moving the crane from the end
of the previous movement directly to the following movement. When inserting
the movement between movement ¢ and j the opposite applies. Instead of
going directly from ¢ to j we go via the inserted movement. Whether or not
the saving is effective again depends on the movements of the other crane and
the exit-belt. If the movement was inserted earlier in the sequence, the plate
might have a lower position in the destination stack, and if the movement is
inserted later a higher position may result. This is estimated in the same way
as for the destination stack neighbourhood.

The estimate for the VRP operator is calculated basically in the same way
as for the TSP operator.

27

2.6.3 Comparison of estimation and correct evaluation

When comparing estimation and exact evaluation two factors are important,
speedup and quality of the evaluation. On an example instance with 1856
movements on a day by two cranes it took 67 seconds to evaluate 1000 solutions
exactly while estimating the same number of solutions took only 0.19 seconds.
A significant speedup of 352.

Figure 11 shows an indication of the quality of the estimation compared
to the correct objective function evaluation. The quality is measured in the

80 T T T T R N I.
Pessimistic ~ +
X Optimistic ~ x

70 & 3 Correct

60

Percent

0 100 200 300 400 500 600 700
Iteration

Figure 11: Quality of estimation.

following way. If the estimated change in objective value and the correct
change are of the same sign, then we say that the estimate is “correct”. If
on the other hand the estimate indicates an improvement and the change
is actually the opposite, the estimate was “optimistic”. The last possibility
is the “pessimistic” estimate compared to an improvement of the solution.

28

The stars () in figure 11 indicate the percentage of neighbour solutions that
were estimated correctly. On average only about 50% of the solutions were
estimated correctly and it is down to 40%. About 30-40% of the solutions were
wrongly estimated to improve the solution, which is too high to be useful. The
figure also indicate that after around 500 iterations the quality significantly
deteriorate. This is partly caused by the way we measure the quality. At that
stage the best changes in objective value are close to zero and hence much
more likely to be estimated with an opposite sign.

Figure 12 shows a plot with the first 100 iterations comparing the best
estimated change and the corresponding correct value as well as the neighbour
solution with the best correct value and the corresponding estimate. After each
iteration the best estimated neighbour solution is picked. In all 100 iterations
the best estimate is too optimistic, but the correct value is still improving the
solution.

10 T T T T
Best Estimaiec -
Correct x
5| Best Correct x |
Estimate ©
0 -
” +>t§< ¥ % L
‘5 B w++ X .
% *
= - 5:9% .
§ 10 o
b3
15 | i
B
B
-20 F x B
*
B
25 i
*
-30 1 1 1 1
0 20 40 60 80 100

lteration

Figure 12: Estimates compared to correct values for iteration 0-100.

29

In figure 13 the following 100 iterations are shown. As in the previous
figure, the best correct value is disregarded since the estimate is too pessimistic
— now above zero. In a lot of cases the best estimate is completely wrong

leading to very poor solutions.

Value

30 T T T T,
Best Estimate
Correct x
o5 | Best Correct x|
SOOOOOOONK X XXX OO X IOV S0XK X SRR OOOXEK XXX
20 E
15 1
10 | 1
XXX X
X X X
5| .
OLXWK E«% X+ x « e Merer I
@ = X%

SRRROR0EE 3ok 000K SAHHAAK o
5+ * 4
¥ A+ B el 0 e el o o o o ++ A

Fved = R]
10 EkaadRan +) X)
100 120 140 160 180 200
Iteration

Figure 13: Estimates compared to correct values for iteration 100-200.

To avoid this behaviour we sort the neighbour solutions in increasing order
of the change in objective value. Before picking a neighbour as a new solution,
the correct objective value is found. If the value is improving the current
solution we pick the solution otherwise the next best estimate is evaluated.
This is done until all neighbours are evalutated. At that stage we select the
neighbour with the best correct value which is then worse than the current.

In a trial run of 3000 iterations, the first solution was picked in 1997 cases,
one of the first 4 solutions were picked in more than 90% of the iterations and
the maximum number of solutions evaluated was 14. This simple procedure

significantly improves performance.

30

2.7 Hybrid Search

The entire neighbourhood size was 458.012 for the example in the beginning of
section 2.6.3. It takes 86 seconds to evaluate all neighbours even with estima-
tion and hence it is too slow to be useful in practice. Instead of evaluating the
entire neighbourhood a random subset is evaluated. We have experimented
with an initial subset size of 100 (subsize = 100), which is slowly increased
according to different strategies in order to allow a more thorough investiga-
tion of the neighbourhood when it becomes more difficult to find improving
neighbour solutions. Specially we increase the subset by one, if the picked
neighbour was not the best estimated or if the best estimated was worse than
the current solution. In addition to that is a more radical change of the size:
If no improvement of the best solution so far has occurred in the last subsize
iterations, the subsize is doubled. Trial runs were also done with the descent
algorithm. Here a neighbour were only picked if the solution was strictly better
than the current. The subset size was incremented in the same way.

Voudouris and Tsang [16] introduces a more intelligent way of restricting
the size of the neighbourhood called Fast Local Search. Another possibility
is Variable Neighbourhood Search by Mladenovic and Hansen [11] where the
algorithm shifts from one neighbourhood structures to the next at certain
intervals or each time a local optima is found.

In Reactive Tabu Search the tabu length determines the degree of inten-
sification and diversification during the search. In Simulated Annealing the
temperature and randomness take this role. As we have seen above, ran-
domization can be successfully combined with Tabu Search as well and more
intensive neighbour search can be used in Simulated Annealing.

In the literature a lot of other interesting ideas have been suggested to
diversify and intensify the search. We will briefly comment on some of them
in the following, although we have not implemented them in our system.

Frequency functions are widely used in combination with Tabu Search [6].
The frequency of specific movement attributes are recorded during the search.
A high frequency is perhaps an indication of long cycles, which could then be
avoided by penalizing the move attribute in the objective function and hence
diversify the search. Another strategy is to intensify the search by recording
solution features occurring in good solutions and fixing them in a number of
iterations.

Augmenting the cost function with penalty functions is also the main idea
in Guided Local Search by Voudouris and Tsang [16]. The method works on

31

top of another local search heuristic guiding the search to unexplored regions
by penalizing solution features occurring in local optima. Solution features in
the plate storage case could for instance be of the following types:

e Destination stack d for a movement m.
e Movement m; followed directly by m;.
e Movement m assigned to crane c.

The question is how to represent the features in the objective function: One
way is directly, by setting up penalty matrices with elements, p;n & p?j and p3 ..
We get the total penalty by multiplying the penalty matrices with matrices
indicating occurring features. Another possibility is to adjust the distance
between stacks, which is similar to [16] for the Travelling Salesman Problem.
Note that this should only influence the cost — not feasibility.

Our problem is a multi criteria problem where the criteria have been
weighted to form one single objective. If we were interested in a pareto efficient
set of solutions, forcing the search to visit different parts of the solution land-
scape by changing the weights in objective function could be applied. Ehrgott
and Gandibleux [5] gives a good overview of multi-objective combinatorial
optimization related papers.

3 The Control System

The control modules are developed in order to handle the stochastic phenom-
ena at the storage and deadlocks or blocking situations.

Two different types of control modules are developed. Both are heuristic
discrete event feedback control methods. One of the control modules simply
execute the plan received from the planning module. The method is described
in section 3.6.

The other module discussed in the following choose the “optimal” job on-
line for the crane that “asks” for a new job. Basically the state of the storage
plant is fed back to the control module and it chooses the optimal job from
the list of movement jobs and the state of the storage plant in order to fulfil
the control-rules and respect the constraints. The concept of the module is
depicted in figure 14 on the next page.

Before the control module is called the movements are generated that are
to be executed the current day. These movements are kept in an unsorted

32

Constraints

Control rules Job list Disturbance
| l |
r u (k) y
p|{ Controller | g f Plant Syste >
x (k)

Figure 14: The concept of the controller.

movement list. When the control module is called it splits the movement list
into two lists. Ome of the lists contains all executable movements and the
rest of the movements are contained in the other. This is done to reduce the
computation time when the movement to be executed next is found, because
only the executable movement list has to be searched. A movement is put into
the executable movement list when the plate for the movement is located at
the top of the stack and the destination stack for the plate is ready to receive
the plate. The destination stack is ready to receive a plate when all plates
that are supposed to leave the stack the current day have been removed. If
the destination is the exit-belt then at least one slot has to be empty.

3.1 Performance

The control systems developed are making decisions by use of information of
the current state of the storage. The decision is made without considering how
the decision will affect the performance in the future, but when measuring the
performance of the system, it is done over a period of time. This means that
the rules used by the control system should be formulated to fulfill the goals
over a period of time. Performance and robustness are strongly related. It is
important that the control system can handle situations where the number of
resources is reduced or the capacity of the plant is reduced because of a break
down or other reasons. Furthermore it is important that disturbances that

33

result in variations in process times do not cause the system to break down.
If a control system is designed to support good performance it often uses
simulation into the future based on estimates for the process times.

3.2 Robustness

It is important to remember that humans operate the cranes, so the control
system is a so-called Human-in-the-loop feedback control system. A control
system can control both humans and fully automated systems, e.g. robot
welding cells. The main difference between controlling humans and robots is
that robots must have a control system while the workers use the control sys-
tem as a guide to make better decisions and thereby increase the utilization of
the production equipment and the attached resources. The difference means
that control systems developed for automated systems are more detailed and
the constraints are not to be violated, whereas control systems developed to
control humans can profit by the flexibility of the human brain. With respect
to rules and constraints, humans can handle some special or extreme situa-
tions. In other words automated systems have a higher need for robustness.
A couple of examples on this for the plate storage:

e One of the cranes breaks down. If the crane can be moved to the safe-
position, then the other crane just executes all the remaining movements.

e The exit-belt breaks down. The two cranes execute all movements except
from the exit-movements and the movements that are blocked by the
exit-movements.

3.3 Collision check

Critical situations never occur when the cranes are moving in the same di-
rection. The cranes move linearly between two points and therefore it is only
necessary to check these end-points. The check is performed by simulating one
movement forward. Critical positions and respective times for the idle crane
are calculated according to table 1 on the following page. These positions
and times are compared with the position of the other crane at the respec-
tive times. To make a robust check the check is performed by calculating the
combinations of worst/best case scenarios with respect to the lift /drop times.
In extreme situations when there is no job to execute and the job list is not
empty then new destinations are found for these plates and the control module

34

Position Point of time

Current position Current time; (time = 0)

Current position of the plate Arrival time for the crane

Current position of the plate Departure time for the crane
Destination for the plate Arrival time for the crane

Destination for the plate Ready to departure time for the crane

Table 1: Collision check points.

tries to find a job to execute. This is just done for a limited number of times
and if an executable job is still not found then the idle crane is moved to a
safe position.

3.4 Deadlocks

A deadlock is a situation in which resources used for the same process are
effectively preventing each other from executing any task, resulting in both
resources ceasing to fulfill their task. Basically there are two ways of dealing
with deadlocks. The control module can either be designed to avoid them or
they can be designed to deal with the problem when they occur. One may
argue that it is obviously better to avoid the problem than deal with deadlocks
when they occur. Avoiding them may be cheapest, but it is not necessarily the
case, because it also cost to avoid deadlocks. Furthermore it is not guaranteed
that all deadlock situations can be avoided, because of disturbances. Dealing
with deadlocks dynamically when they occur also costs. If a deadlock occurs
a strategy is needed to decide which of the resources that has "the right of
way". The other resource should then allow this resource to start executing a
task. The strategy can be more or less simple. A simple strategy can be more
expensive, but more robust, while a more complex strategy can be better, but
less robust.

At the plate storage a deadlock occur when the only executable movements
are on the other side of the other crane or if none of the remaining movements
are executable, e.g. when the top plates are exit-moves and the exit-belt is
full. In these situations when no movement can be dispatched to the idle crane
a movement is generated for the crane ordering it to move out of the storage.
These positions are denoted as safe-positions. When one of the cranes is in
its safe-position the other crane can operate freely in the entire storage area.

35

When the idle crane arrives to the safe-position it naturally asks for a new
movement to execute. If there is still no movement to execute then the crane
is told to stay at the safe-position until a movement is executable.

The exit-belt cannot result in a deadlock because the cranes are not allowed
to start executing a job that is not possible to finish.

3.5 Priorities

If a set of tasks is possible to execute, a choice have to be made as to which
of the tasks to execute first. The tasks can often be divided into types with
different priorities. The priorities can indicate the necessity of executing a
task. The priority can be static or dynamic. If the priority is dynamic the
state of the plant and the available resources determines the priorities. The
purpose of having different priorities is to increase the performance of the
resources and plant.

Generally exit and dig-up movements have higher priority than doing sort
movements or moving arriving plates into the storage. These priorities change
dynamically for instance if the exit-belt is filled up.

Other rules ensure that one crane is operating in the area near the quay
and the other crane is operating near the exit-belt. Thereby the cranes are
separated as much as possible and more movements are possible to execute.

As an alternative one could choose to use just one crane instead of two
cranes and hence the coordination problem would be eliminated. Naturally
the collision check is then not performed, the priorities are different and the
crane is allowed to operate in the entire storage area.

3.6 Control with a reference Sequence

A simple control system has been implemented to execute the optimized se-
quences of movements returned from the planning module. This control mod-
ule uses the same method as described above for the collision check. If there
is no collision the execution continues. Otherwise the controller adjusts the
progress of the execution of the sequences for the two cranes. If a crane is de-
layed the other crane waits. Alternatively if a crane is ahead in time compared
to the plan it is ordered to wait for the other crane.

More advanced control systems include the possibility to change the ref-
erence plan or let the planning module dynamically improve the plan to take
disturbances into account.

36

Range and Yde [13]| suggest another decomposition where the planning
module determines a partial order of the movements and the control module
afterwards schedules the movements with respect to the partial order. A
partial order is found in the following way. For plates in the same original stack
a partial order is naturally defined. For all the movements the destination
stacks are determined and an order in which the plates are to arrive at the
destinations is found. Two movements can then be scheduled independently
if all source and destination stacks are different. Given the partial order of
movement a second planning phase can either on-line or off-line fully determine
the order in which the movements are to executed by the cranes. The suggested
approach have not been implemented and will hence not be discussed further.

4 Conclusion

In this paper we have described different approaches to solving the problem
of scheduling cranes at a plate storage. The problem is hard to solve since
it is both a question of placing the plates on stacks in order to minimize fu-
ture movements, but also scheduling the crane movements to minimize moved
distance and at the same avoiding collisions.

Two different approaches were suggested to solve the problem. An on-line
approach and a control approach executing sequences of movements achieved
by meta-heuristics.

The complexity of the problem makes it impossible to evaluate exactly
feasibility and change in cost for neighbour solutions without simulating the
entire sequence. Experiments on estimating the change instead were reported,
showing the difficulty of estimating the cost function.

37

References

1]

2]

3]

[4]

[5]

(6]

[7]

8]

[9]

[10]

[11]

E. AARTS AND P. VAN LAARHOVEN, Statistical cooling: A general ap-

proach to combinatorial optimization problems, Philips Journal of Re-
search, 40 (1985), pp. 193—226.

A. A. ANDREATTA, S. CARVALHO, AND C. RIBEIRO, A framework for
local search heuristics for combinatorial optimization problems, in Voss

and Woodruff [15], 2002, ch. 3.

R. BATTITI, Reactive Search: Toward Self-Tuning Heuristics, Modern
Heuristic Search Methods, John Wiley and Sons Ltd., 1996, ch. 4, pp. 61—
83.

R. BATTITI AND G. TECCHIOLLI, The reactive tabu search, ORSA Jour-
nal on Computing, 6 (1994), pp. 128-140.

M. EHRGOTT AND X. GANDIBLEUX, A survey and annotated bibliog-

raphy of multiobjective combinatorial optimization, OR Spectrum, 22
(2000), pp. 425-460.

F. GLOVER, E. TAILLARD, AND D. DE WERRA, A user’s guide to tabu
search, Annals of Operations Research, 41 (1993), pp. 3-28.

J. HANSEN AND T. F. H. KRISTENSEN, Crane scheduling for a plate

storage in a shipyard: Experiments and results, Informatics and Mathe-
matical Modelling, Technical University of Denmark, IMM-TR-12 (2003).

—, Crane scheduling for a plate storage in a shipyard: Modelling the
problem, Informatics and Mathematical Modelling, Technical University
of Denmark, IMM-TR~4 (2003).

D. Jounson, C. ARAGON, [.. McGEOCH, AND C. SCHEVON, Optimi-
sation by simulated annealing: an experimental evaluation; part i, graph
partitioning, Operation Research, 37 (1989), pp. 865-892.

S. KIRKPATRICK, C. GELATT, AND M. VECCHI, Optimization by simu-
lated annealing, IBM Research Report, RC9355 (1992).

M. MLADENOVIC AND P. HANSEN, Variable neighbourhood search, Com-
puters and Operations Research, 24 (1997), pp. 1097-1100.

38

[12]

[13]

[14]

[15]

[16]

M. PIrLOT, General local search heuristics in combinatorial optimiza-
tion : a tutorial, Belgian Journal of Operations Research, Statistics and
Computer Science, 32 (1992).

T. M. RANGE AND S. YDE, Storage management at odense steel ship-
yard. simulation, product placement and control., Master’s thesis, Univer-
sity of Southern Denmark, 2002. (In Danish).

P. vAN LAARHOVEN AND E. AARTS, Sitmulated Annealing: Theory and
Applications, Mathematics and its applications, D. Reidel Publishing
Company, 1987.

S. Voss AND D. WOODRUFF, eds., Optimization Software Class Li-
braries, Kluwer Academic Publishers, 2002.

C. VOUDOURIS AND K. TSANG, Guided local search and its application

to the travelling salesman problem, Kuropean Journal of Operational Re-
search, 113 (1999), pp. 469—-499.

39

