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ABSTRACT
We have investigated the possibility of separating signals from a single mixture of sources. This problem is
termed the Monaural Separation Problem.
Lars Kai Hansen has argued that this problem is topological tougher than problems with multiple recordings.
Roweis has shown that inference from a Factorial Hidden Markov Model, with non-stationary assumptions
on the source autocorrelations modelled through the Factorial Hidden Markov Model, leads to separation in
the monaural case.
By extending Hansens work we find that Roweis’ assumptions are necessary for monaural speech separation.
Furthermore we develop a Factorial hierarchical vector quantizer yielding a significant decrease in complexity
of inference.

THE MONAURAL PROBLEM
The task of recovering multiple sources from a single
mixture is the monaural problem – and humans do
it all the time. Listening to a discussion through
an open door, we are able to keep track of what the
different people say – to great extend even when they
speak simultaneously.

BAYESIAN APPROACH
We estimate the sources by measures of the posterior
density. Others have investigated this problem using
the maximum a-posteriori (MAP) estimator[1]. We
build upon that work and use the posterior mean.
Obtaining the posterior density involves formulat-
ing a generating model (likelihood) and assuming
densities (priors) for the sources.

We assume that the signal x (a single number at a
given time) is the result of instantaneous mixing of
the two signals s1 and s2 with mixer coefficients a1

and a2.

x = as (1)

a =
(

a1 a2

)
(2)

s =
(

s1

s2

)
(3)

Under the assumption that a is known, the likeli-
hood is

p(x|a, s) = δ(x− as) (4)

With prior assumptions on the sources p(s), we ob-
tain the posterior through Bayes rule

p(s|x,a) =
p(x|a, s)p(s)

p(x|a)
(5)

We assume that the sources are white noise signals
following a Cauchy distribution, e.g. heavy tailed.
Hansen has shown that the MAP estimate fails in
separating the two sources[1] . Our experiments has
shown that using the mean as an estimator does
not solve this problem, even though that the mean
square error is decreased.

MAP = args max p(s|x,a) (6)

posterior mean =
∫

s p(s|x,a)ds (7)

The MAP estimate grants all variance to one of
the signals (implicitly decided by a) and the mean
estimate merely scales the observed signal according
to a. The problem is that the resulting estimates,
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Fig. 1: Contours of a joint Cauchy-densities (the
star shapes) with same a but different observation
x. The valid source estimates s1 and s2 live on the
straight lines.

which are functions of x (eq. (6) and eq. (7)), live
on a curve, whereas the original sources live in the
whole plane. We refer to this as the collapse of the
estimated sources. Furthermore figure 1 show that
the points on these curves have small probability in
p(s1, s2) thus the estimated sources are very unlikely
to occur under the prior. However they are the best
estimates that fulfill the likelihood (x = a1s1+a2s2).

From this we can draw the conclusion that we are
able to separate two white Cauchy sequences from
one mixture.

Colored sources
We believe that problem is shortage of information
– so we introduce additional information by assum-
ing that the signals have different autocorrelation
functions. In order to examine wether autocorrela-
tion improves the estimation, we are faced with the
task of formulating our new prior: the multivariate
density for a correlated Cauchy sequence.

For the simplest case of correlation, namely the
AR(1) process (autoregressive process of order 1),
we derive the strucutre of the conditional density
for the normal distribution and transfer this to the
Cauchy distribution. The correlation is created by
letting the previous value s(t) move the mean value
weighted by the correlation coefficients.

Given one signal s(t) at time τ and τ−1, the Cauchy
parameters α, β and the correlation coefficients γ(0)
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Fig. 2: Setup for experiments with colored Cauchy
sequences.

and γ(1) the conditional Cauchy density turns into

p (s(τ)|s(τ − 1)) =
π−1β

β2 +
(
s(τ)− α− γ(1)

γ(0)s(τ − 1)
)2

(8)

p(s(τ), s(τ − 1)) = p(s(τ), s(τ − 1))p(s(τ − 1)) (9)

x = aS (10)

S =
(

s1(τ) s1(τ − 1)
s2(τ) s2(τ − 1)

)
(11)

p(S) =
2∏

i=1

p(si(τ), si(τ − 1)) (12)

Estimating the sources
With the new two-dimensional densities with corre-
lation (priors) and Bayes rule we are ready to re-
estimate the sources. Our setup is as in figure 2,
we mix two sources, both being the result of feed-
ing an AR(1) process with white noise following a
Cauchy distribution. We expect that the collapse of
the estimated sources is decreased, i.e. that the esti-
mates are likely estimates under both the prior and
fulfilling the likelihood.

Figure 3 shows that the estimates have moved away
from the line, thus the collapse is reduced. We note
that this is also accompanied by a decrease of the
mean squared error [2]. In some sense nothing has
changed, with N observations we still need to esti-
mate 2N source values, we just utilize the structure
of the sounds.

We expect that if the sources have longer correlation,
i.e. coming from higher order AR processes, then
the collapse and the mean square error decreased
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Fig. 3: The estimates obtained omitting respectively
using autocorrelation. The sources where colored
sequences following Cauchy distributions. The ones
estimated using the autocorrelation does not live on
a line

further. The reason is that the longer the correlation
the more observations go into estimating each source
value – and we know this is good for the estimation
process.

This toy example sketches how the knowledge of au-
tocorrelation yields better estimates of the sources.
If we want to use this for separating the voices of
two speakers, we’ll also need a system that is able to
learn and handle their individual but multiple auto-
correlation functions.

AN ALGORITHM: HIERARCHICAL RE-
FILTERING
The fact that the human is capable of focusing on
one particular stream of sound has delivered many
CASA systems with built-in knowledge about indi-
vidual sources (see e.g. [3, 4]). In our method we
represent any signal by the logarithm of an element-
wise squared spectogram (log-power spectogram) —
mimicing the human cochlear time-/frequency de-
composition. Roweis has pointed out that the log-
power spectogram of a mixture of two speakers is
“nearly” the element-wise max of the individual log-
power spectograms [5]. In context, note that a log-
power spectrum is the Fourier spectrum of an auto-
correlation function.

Let K denote the number of frequency bands consti-

tuting one log-power spectrum, and let bn(t) be the
n’th subband signal component of the mixture

s1(t) + s2(t) ≈
K∑

n=1

bn(t). (13)

To extract the contribution from one speaker over
the other we make use of spectral properties of both
speakers. Re-filtering is then applied yielding an es-
timate of one speakers post-cochlear contribution:

ŝ1(t) =
K∑

n=1

αn(t)bn(t), (14)

and now the key to succesful separation is finding
“good” masking signals αn(t). We restrict masking
signals to be binary and piecewise constant with the
spectogram time resolution.

By finding that pair (S(1),S(2)) of log-power spec-
tograms that best approximates the measured spec-
togram S, in the 2-norm i.e.

(Ŝ(1), Ŝ(2)) = arg min
S(1),S(2)

∑
i,j

[Sij −max(S(1)
ij , S

(2)
ij )]2,

(15)
we find masking signals for extracting speaker-1 by

αn(t) =
{

1 , Ŝ
(1)
nt > Ŝ

(2)
nt

0 , otherwise
. (16)

In this presentation we make no use of structure
across time intervals1 so solving eq. (15) simpli-
fies to solving the problem for each time-step in-
dividually. We use two lookup tables—one for each
speaker—with typical log-power spectra which are
found by clustering spoken examples hierachically
using a very simple algorithm:

1. Extract the mean from the data

2. Find direction of largest variance using the first
singular vector of the Singular Value Decompo-
sition.

3. Project data onto that direction, and split data
in two clusters using the sign of the projection
to discriminate.

1We have a generalized algorithm which includes inter-
window time structure—indeed giving rise to other complica-
tions which is currently subject to future work.
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4. For each of these two clusters: go recursively
to step-1 unless satisfactory level of preci-
sion (small within-cluster varinace) has been
achieved.

By storing the mean from step-1 of this algorithm
into an appropriate data structure we later utilize
this to solving eq. (15) very efficiently:

1. Given s as one column vector from the mix-
ture’s log-power spectogram we start at the top
hierarchical level.

2. On this level, pick a combination of cluster
means from the two speaker-dependent clus-
tered data structures. The clustering algorithm
doubles the number of clusters for every hierar-
chical descend, so on this hierarchical level we
only have to measure 2 × 2 = 4 combinations,
and pick the one that satisfy (15).

3. Descend one hierarchical level in the direction
of the picked combination.

4. If not on bottom hierarchical level go to step-2.

. . . this strategi yields four times the number of lev-
els comparisons — in contrast, exhaustive search-
ing among combinations of all typical spectra would
yield a number of comparisons growing exponen-
tially with the number of typical spectra.

This substantial reduction in calculations has en-
abled us to do ”fast” separation of speech. Figure
4 and 5 show two speech signals prior to their mix-
ing which is shown in Figure 6. As promised, we
calculate the log-power spectogram of the measured
signal and Figure 7 shows the result.

Based on the spectogram from Figure 7 we use the
proposed hierarchical algorithm to find estimates of
individual spectograms (shown in Figure 8 and Fig-
ure 9).

Equation (16) gives gives the masking signals shown
in Figure 10 and Figure 11, and using those to refilter
the mixed signal the procedure ends up in finding the
separated signals shown in Figure 12 and Figure 13.

This example of separation was performed on a
800MHz Intel machine using Matlab. The complete
separation process took less than 10 seconds making
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Fig. 4: Female speech signal.
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Fig. 5: Male speech signal.
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Fig. 6: Mixture of female and male speech.

us witnessing a real-time algorithm for separation of
speech.

WRAP UP
We have shown that knowledge of source autocor-
relation is necessary for monaural separation. By
training a pattern recognition system on the speaker
spectrograms we obtain a model capable of handling
the multiple local autocorrelation functions for each
speaker. In order to make the training feasible we
have developed the Hierarchical Vector Quantization
making real-time monaural separation possible.
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Fig. 7: Log-power spectogram of mixed speech.
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Fig. 8: Result of hierarchical matching typical fe-
male spectra.
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Fig. 9: Result of hierarchical matching typical male
spectra.
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Fig. 10: Found female masking signals.
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Fig. 11: Found male masking signals.
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Fig. 12: Female speech separated by refiltering the
mixture.
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Fig. 13: Male speech separated by refiltering the
mixture.
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