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ABSTRACT The fundamental frequency estimator and tracker is first
The problem of estimating and tracking the fundamental tested on a S|mu_lated_ mechgnlcal system with one degree
frequency of a periodic signal is formulated in Bayesian of freedom, desribed in section 3. Then the experimental
data described in section 4 are used for validation. The re-

terms and a solution is proposed. For multichannel mea- ults from both simulated and experimental data are found
surements both simulated and experimental data show tha?n section 5 and 6 P

the estimate improves when more data channels are used for
the estimation. The method is tested on a multichannel vi-
bration measurement from the interior of a passenger car. 2. BAYESIAN ESTIMATION AND TRACKING

From the measurements the running speed of the engine is ) ) )
successfully estimated during a run-up/down experiment. N the litterature [3, 4] the problem of detecting and tracking
periodic signals is often defined as estimating the amplitude

and phase of limited number of harmonic components, i.e
1. INTRODUCTION

K
When analyzing the behaviour of rotating machines, e.g. (1) = Z (ak cos(wrt) + by sin(wit)) +e(t) (1)
the vibrations casued by the engine in a passenger car, it k=1 )
is important to know the running speed, or fundamental ~ e(t) ~ N(0,0%) 2

frequency, of the engine. The fundamental frequency is the frequencies in the harmonic sequence are defined as or-
typically measured using dedicated sensors like proximity gers., of the fundamental frequencyy, i.e. wy, = awo.

probes or photosensors which require direct access to the roy, [4] the asymptotic Crakr Rao Lower bound is derived
tating part of the machine. Rotating parts are often not easysq tnis type of harmonic signal:

accessible. It is therefore of interest to investigate the pos-
siblity of extracting the fundamental frequency from other Var(wr) > 1733
sources, e.g. the vibration signals being analyzed. SNRweg N
In section 2 Bayesian spectral estimation theory [1, 2] is n o 2y 2 2, 12 2
. X . N . 1™ where SNR= >, _ 20%/): €y = b7, and =
reviewed in the light of estimating the posterior probability __,, 1202 En:k—lfk/( oN ) ¢k = ai + by Weff
of the fundamental frequencyg, conditioned on the mea- k=1" _Ck/ Z’_le e o .
sured data, i.ep(wr| Ds, I)) wherel, symbolizes the prior Writing (1) in vectorized form, it is seen to be a linear
knowledge in the estimation model, ahg represent one or model d—G.b A
more of the measured signals. Only a fixed model is consid- =G-bre )
ered here, but within the Bayesian framework it expandable whered is the observed daté& is a matrix containing basis
to multiple models. vectors as columnsh is the parameter vector ardis a
By segmenting the source signals into overlapping time noise vector:
records and introducing a prior ar- conditioned on the dy..

®3)

previous two records, the estimator is extended to include ¢ , =

|
tracking, i.ep(wr (n)|wr(n— 1), wr(n—2)), wheren is the b ; [a1, b1, ..., a5 bx]T
[
[

number of the current record. G, cos(€),sin(y), . .., cos(Qg ), sin(Qx )|

T
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The likelihood of the observed data given all parameters and2.2. Tracking

the characteristics of the noise is I . . . .
The posteriori in (8) is valid for stationary signals only. In

order to trackwr the measurment data is segmented into
p(db, G, Ik) - - -
- overlapping records of suitable lengths whegeis close to
= (210%)M2exp {— (d=G'b) -(d-G-b) } stationary.
202 The posteriorp(wr(n)| D, (n), I1) is estimated for each
) o ) data segment (denoted by the segment numbesind the
angl the Maximum Likelihood estimate of the parameters, problem of trackings is now solved by adding acking
b, is prior that conditionssr(n) on e.g. the previous two record,
b=(G'G)"'G"-d i.e p(wr(n)|wr(n—1),wp(n—2)). Assuming the first order
derivative ofwr is constant, i.e.

Since the likelihood expresses the probability of the data

given the parameters, Bayes Rule is used to express the wr(n) —wrp(n—1) =

probability of the parameter8,= [wo, o, b], given the data, wr(n —1) —wp(n — 2) + N(0,002)  (12)
d, and the modell:

the tracking prior becomes
p(d|0, Ix)p(0|1r)

e ETT7%) ©) Pl (n) | (n — 1), wp (n — 2) =
] . . 1 e—(wp(n)—2oup(n—1)+wF(n—2))2/2a'T2 (13)
Of the parameters ifi only wg is of interest, therefore un- V2rop?
informative prior distributions are assigned to thésance . L . , L .
parametersy andb: The combined estimation and tracking algorithm is listen in
table 2.
bl =k ploll) =" @
PIDIE) = F PRV =75 3. SIMULATION DATA

Integrating out the nuisance parameters, the posterior distri-The vibration signals are here modelled as the forced re-
bution ofwr is [1] sponse of a mechanical system with a single degree of free-
dom (SDOF). The equation of motion is governed by

& 1
prld. 1) [ [ p(dlen.obi i) dbdefe)
0 R2K ag

—(N—2K)

mi(t) + ci(t) + ka(t) = F(t) (14)

(d'd—f£'f) 9 wherem is the massg is the dampingk is the spring forc-
x det(GTG) ©) ing andF is the external forcing on the mags) and(") in-
dicates single and double differentiation in timet) is the

where f is the estimated signal based on the maximum like- displacement of the mass. The frequency response for dis-

lihood estimate, i.e. placement, velocity and acceleration of the system is shown
in figure 1 together with the system. The mechanical sys-

f=G-b (10) tem is simulated with a digital filter, which can be derived

from the Laplace transform of (14) using the bilinear trans-

The posterior is recognized as a student t-distribution. for. The driving force is a harmonic signal composed of

the first three harmonics of the fundamental frequency (15).
_ The amplitude of the harmonic components are inversely
2.1. Multichannel Measurements proportional to the order of the component.

When a measurement contains multiple data channels, 3.1 t

D1, D»,..., Dy, then if the data channels are assumed to ~ z(t) = A Z — cos nQ(t), Qt) = /wF(T)dT (15)

be independent, i.ea(D1, Ds, ..., Dy) = Hf’p(Di), the n=1 0

measurements can be combined through the joint proba-ag js shown in figure 2 the relative amplitude of the orders

bility for the fundamental frequencyr given all the data change asi- changes and the orders pass through the reso-

channels, l.e. nance of the system. The top graph shows the profile of the

N harmonic orders ofor. The lower graph shows the RMS

p(wr|D1, Do, ..., Dy) x HP(WF|D1') (11) acceleration amplitudes of the harmonic orders

i=1 1The units used have no physical interpretation.



White Gaussian noise with a constant variance?, is with
added to the simulated response of the mechanical system. p(wr(0)) = N(10,1), o7?=1.0
The simulated response thus becomes witkenoting con-
volution andh,.(t) being the impulse response of the system
modelled . The noise variance is determined from an overall
SNR level defined aSN Ry, = 101og(Var(y)/o%). where

for each posterior distribution. The results are summa-
rized in figure 4, where the standard deviation ofthees-
timates are plotted with symbols; with lines are shown the
Cranér Rao lower bounds. The simulated results are very

y is the response. Since the effectydf) varies over time, o :
so will the actual SNR level which is also observed in prac- .close.to the CRLB which |nd.|c5a.te's that the Bayesian tracker
is optimal. The tracker was initialized with

tice. In the simulations the three responses, acceleration,
velocity and displacement are used as independent source
signals. 6. EXPERIMENTAL RESULTS

Each of vibration signals),., D,,, D, were segmented into
records of 1/4 second, overlapping 75%. For each seg-

. . . . ment the posterior obr was computed for the harmonic

The experimental data consists of three vibration channels .
o : sequencel = [1,2,2.5]. The three posteriors were then
and one tacho channel for reference. The vibration signals ; e
. oo combined. The initial value for the tracker was set to

are measured with a tri-axial accelerometer placed on the
mounting bolt of the front seat in a passenger car. The sig plwr(0)) = N(12,3),
nals are labeled,, D, andD,. The tacho channel was

connected to an photo-sensitive probe emitting one pulserigure 7 shows the result of tracking on the individual pos-
per revolution on the crankshaft, being equivalent to half terior distributiongy(wr|D.), p(wp|Dy), p(wr| D) and the
the fundamental frequency (it was a 4 stroke engine). All joint posteriorp(wr|D.., D, D.). Itis seen that each of the
data was recorded with a B&K Pulse multi-annalyzer and jndividual tracks fail at different timesb, fails initially to
the digitized data was processed using Matlab. For the pur-tack at 1000 RPM the first 10 second; cannot keep up
pose of findingur the exact scaling of the signals are not of yjth the jump from 2000 to 3500 RPM and looses trabk;
importance, therefore the dlgltlZEd values of the conditioned looses track de_acce|erating from 3500 RPM and does not
analog signals have been used unscaled. return to idle. The tracking error is defined as the difference
During the measurement the car is in neutral and the petween the obtained track and the measured tacho refer-
running speed is increased in steps; for the first 15 secondsnce. Table 1 summarizes the result of tracking on all pos-
the engine is running approximately 1000 RPM, for the next terior combinations of the source signals. The table shows
25 seconds approx. 2000 RPM, then for 10 seconds 350Ghe mean error in column 2, the standard deviation col-
RPM whereafter it drops to idle for the remaining 10 sec- ymn 3 and the maximum absolute error in column 4. The

onds. Figure 5 shows a typical spectrogram of one of theaple shows convincingly that the estimate improves as the
vibration signals. The signal is seen to contain many higher signals are combined.

order harmonics of the RPM profile, but no specific order
stands-out clearly. In general the signal is very noisy. The
vibration signals were sampled at 1024 samples per second,
while the tacho signal was sampled at 65536 samples pe
second and linear interpolatibavas used to improve the
accuracy of thesr reference.

4. EXPERIMENTAL DATA

or? =0.8

7. CONCLUSION

Here the Bayesian paradigm has proven succesful in de-
vising a method to estimate and track the fundamental fre-
quency of a rotating machine from a multichannel vibration
measurement.
5. SIMULATION RESULTS Starting with the conditioned posterior distribution of
wr given measured data, the model was first extended from
100 Monte Carlo simulations are made of the simulated vi- 3 single channel estimation to multichannel estimation via
bration signals. Each signal is segmented into records of 1/4the formulation of the joint probability of the data. Then by
second with 75% overlap. In each simulation, the posterior introduction of prior distribution forur(¢) given previous
distribution ofwy is computed for the harmonic sequence estimates, tracking was readily at hand.
K =[1,2,3]. The method was tested on simulated and experimental
The posteriors ofr for each signal are computed, and data with great success. Simulations showed that the esti-
the joint posterior formed. The tracking prior is initialized mate meets the Cra&n Rao lower bound, and the experi-
2 . , . - mental data showed the methods usefulnes in solving the
inear interpolation does not give the best accuracy, but sufficient for

these comparisons. Better precision is obtained by opsampling the tachoo""7‘(.:“03.-I problem of determining the running speed of the
signal and using higher order interpolation schemes [5]. engine in a passenger car. Not only was the method capable




of providing accurate estimates, but also able to track rapid
speed changes.

For the method to be of practical use however, there as
some issues to be addressed. Choosing the right tracking
variance can be difficult, perhaps this could be solved using
the Baum-Welch algorithm. Choosing the most appropriate
harmonic sequence for the spectrum estimator is important,
the Bayesian paradigm allows the method e.g. to be ex-
panded to operate with multiple harmonic sequences. Fur-
thermore reversible jump MCMC procedures [6] could be
investigated for selecting the best harmonic model.
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SDOF Frequency Response
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Fig. 1. Frequency responses for the second order filter sim-
ulating the mechanical system with a single degree of free-
dom (insert): Acc - acceleration respones; Vel - velocity
response and Disp - displacement response.

Data Mean Error o Max. Error
D, —-1.3 3.1 9.1

D, 3.3 18 64

D, 0.33 1.7 9.9
Dyy 0.057 0.6 5.1
D,. 0.17 1.6 9.9
D,. 0.099 0.77 5.8
Dy 0.059 0.57 5.1

Table 1. Tracking Results. From the three source signals a
total of 7 posterior distributions can be formed. The result of
tracking on each of the combinations are summarized here

For each track the mean tracking error, its standard devi-

ation () and the maximum absolute error is shown. Sig-

nificant improvements are observed when the sources arez

combined.

For each data segmentdo:
e Computep(wr|D;, Ii,) for allchannels =1... N
e Compute joint posteriop(wr|D1, ..., Dn, Ix)

e Wr(n) = maxy,,
p(wr|D1, ..., Dy, I)p(wr|dr (n — 1), Wr(n — 2))

End

Table 2. Tracking Algorithm
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Fig. 2. Harmonic Orders of periodic signalTop graph

the three curves show frequency profile of the threee har-
monic components in the driving force of the mechanical
system. The harmonic orders decrease 3dB per ocBnte.
tom graph RMS amplitudes of the acceleration response
of the driving force. It shows that the relative amplitude
of the harmonic components changes with the fundamental
frequency; its start at the low frequency with tH& Brder
dominating, then as the frequency increases first BiSkoe-

der and then theSt order dominates.
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Fig. 3. Variation in SNR. This figure shows the non-
stationary behaviour of the signal to noise ratio when the
fundamental frequency and harmonic orders changes as
shown in figure 2. The noise variance is set for each of
the three responses , such that an overall SNR of 10 dB is
achieved.
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Fig. 4. Cranér Rao Lower Bounds. The estimated standard Fig. 6. Posterior dis_tribtution of coml_)ineql si_gna_ls. For_each
deviation, o, of 100 Monte Carlo simulations of tracking of the measured s_|g_nals the poster_|or_d|s'Fr|but|onufp ns
fundamental frequency in the three different response sig_pqmputed. C_O”‘?'””_‘g t_he three distribution r(_esults in the
nals are plotted here using symbols. With lines are ShOWn10|ned posterior distribution shown here conditioned on all
the theoretical limits computed according to [4]. There three signals.

is strong agreement between simulations and theory. It is

noted that tracking on the joined posterior improves the es-

timate significantly.

Tracking Results
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Fig. 7. Tracking Result. The four tracks shown here corre-
sponds to tracking on the posterior conditioned on each of
Fig. 5. Experimental Data. The spectrogram of the mea- the source signals. The fourth track is from the combined
sured vibrations in the x direction is shown here. In the two posterior shown in figure 6. The deviations from the true
other directions the spectrograms look similar (no shown). track are summarized in table 1.



