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ABSTRACT

The problem of estimating and tracking the fundamental
frequency of a periodic signal is formulated in Bayesian
terms and a solution is proposed. For multichannel mea-
surements both simulated and experimental data show that
the estimate improves when more data channels are used for
the estimation. The method is tested on a multichannel vi-
bration measurement from the interior of a passenger car.
From the measurements the running speed of the engine is
successfully estimated during a run-up/down experiment.

1. INTRODUCTION

When analyzing the behaviour of rotating machines, e.g.
the vibrations casued by the engine in a passenger car, it
is important to know the running speed, or fundamental
frequency, of the engine. The fundamental frequency is
typically measured using dedicated sensors like proximity
probes or photosensors which require direct access to the ro-
tating part of the machine. Rotating parts are often not easy
accessible. It is therefore of interest to investigate the pos-
siblity of extracting the fundamental frequency from other
sources, e.g. the vibration signals being analyzed.

In section 2 Bayesian spectral estimation theory [1, 2] is
reviewed in the light of estimating the posterior probability
of the fundamental frequency,ωF , conditioned on the mea-
sured data, i.e.p(ωF |Di, Ik) whereIk symbolizes the prior
knowledge in the estimation model, andDi represent one or
more of the measured signals. Only a fixed model is consid-
ered here, but within the Bayesian framework it expandable
to multiple models.

By segmenting the source signals into overlapping time
records and introducing a prior onωF conditioned on the
previous two records, the estimator is extended to include
tracking, i.ep(ωF (n)|ωF (n−1), ωF (n−2)), wheren is the
number of the current record.
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The fundamental frequency estimator and tracker is first
tested on a simulated mechanical system with one degree
of freedom, desribed in section 3. Then the experimental
data described in section 4 are used for validation. The re-
sults from both simulated and experimental data are found
in section 5 and 6.

2. BAYESIAN ESTIMATION AND TRACKING

In the litterature [3, 4] the problem of detecting and tracking
periodic signals is often defined as estimating the amplitude
and phase of limited number of harmonic components, i.e

d(t) =
K∑

k=1

(ak cos(ωkt) + bk sin(ωkt)) + e(t) (1)

e(t) ∼ N (0, σ2) (2)

The frequencies in the harmonic sequence are defined as or-
dersαk of the fundamental frequency,ω0, i.e. ωk = αkω0.
In [4] the asymptotic Craḿer Rao Lower bound is derived
for this type of harmonic signal:

Var(ω̂F ) ≥ 12
SNRω2

eff N3
(3)

where SNR=
∑n

k=1 c2
k/(2σ2

N ), c2
k = a2

k + b2
k, andω2

eff =∑n
k=1 k2c2

k/
∑n

k=1 c2
k

Writing (1) in vectorized form, it is seen to be a linear
model

d = G · b + e (4)

whered is the observed data,G is a matrix containing basis
vectors as columns,b is the parameter vector ande is a
noise vector:

dN×1 = [d0, d1, . . . , dN−1]>

eN×1 = [e0, e1, . . . , eN−1]>

b2K×1 = [a1, b1, . . . , ak, bK ]>

GN×2K = [cos(Ω1), sin(Ω1), . . . , cos(ΩK), sin(ΩK)]
Ωi = [ωi0, ωi1, . . . , ωi(N − 1)]>

(5)
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The likelihood of the observed data given all parameters and
the characteristics of the noise is

p(d|b,G, IK)

= (2πσ2)−N/2 exp
{
− (d−G · b)> · (d−G · b)

2σ2

}
and the Maximum Likelihood estimate of the parameters,
b, is

b̂ = (G>G)−1G> · d

Since the likelihood expresses the probability of the data
given the parameters, Bayes Rule is used to express the
probability of the parameters,θ = [ω0, σ,b], given the data,
d, and the model,IK :

p(θ|d, IK) =
p(d|θ, IK)p(θ|IK)

p(d|IK)
(6)

Of the parameters inθ only ωF is of interest, therefore un-
informative prior distributions are assigned to thenuisance
parameters,σ andb:

p(b|IK) = kb p(σ|IK) =
kσ

σ
(7)

Integrating out the nuisance parameters, the posterior distri-
bution ofωF is [1]

p(ωF |d, IK) ∝
∫ ∞

0

∫
<2K

p(d|ω0, σ,b, IK)
1
σ

db dσ(8)

∝
(
d>d− f>f

)−(N−2K)
2√

det(G>G)
(9)

where,f is the estimated signal based on the maximum like-
lihood estimate, i.e.

f = G · b̂ (10)

The posterior is recognized as a student t-distribution.

2.1. Multichannel Measurements

When a measurement contains multiple data channels,
D1, D2, . . . , DN , then if the data channels are assumed to
be independent, i.e.p(D1, D2, . . . , DN ) =

∏N
i p(Di), the

measurements can be combined through the joint proba-
bility for the fundamental frequencyωF given all the data
channels, I.e.

p(ωF |D1, D2, . . . , DN ) ∝
N∏

i=1

p(ωF |Di) (11)

2.2. Tracking

The posteriori in (8) is valid for stationary signals only. In
order to trackωF the measurment data is segmented into
overlapping records of suitable lengths whereωF is close to
stationary.

The posteriorip(ωF (n)|Dx(n), Ik) is estimated for each
data segment (denoted by the segment number,n) and the
problem of trackingωF is now solved by adding atracking
prior that conditionsωF (n) on e.g. the previous two record,
i.ep(ωF (n)|ωF (n−1), ωF (n−2)). Assuming the first order
derivative ofωF is constant, i.e.

ωF (n)− ωF (n− 1) =
ωF (n− 1)− ωF (n− 2) +N (0, σT

2) (12)

the tracking prior becomes

p(ωF (n)|ωF (n− 1), ωF (n− 2)) =
1√

2πσT
2
e−(ωF (n)−2ωF (n−1)+ωF (n−2))2/2σT

2
(13)

The combined estimation and tracking algorithm is listen in
table 2.

3. SIMULATION DATA

The vibration signals are here modelled as the forced re-
sponse of a mechanical system with a single degree of free-
dom (SDOF). The equation of motion is governed by

m ẍ(t) + c ẋ(t) + k x(t) = F (t) (14)

wherem is the mass,c is the damping,k is the spring forc-
ing andF is the external forcing on the mass.(˙) and(̈ ) in-
dicates single and double differentiation in time.x(t) is the
displacement of the mass. The frequency response for dis-
placement, velocity and acceleration of the system is shown
in figure 1 together with the system. The mechanical sys-
tem is simulated with a digital filter, which can be derived
from the Laplace transform of (14) using the bilinear trans-
for. The driving force is a harmonic signal composed of
the first three harmonics of the fundamental frequency (15).
The amplitude of the harmonic components are inversely
proportional to the order of the component.

x(t) = A
3∑

n=1

1
n

cos nΩ(t), Ω(t) =
∫ t

0

ωF (τ)dτ (15)

As is shown in figure 2 the relative amplitude of the orders
change asωF changes and the orders pass through the reso-
nance of the system. The top graph shows the profile of the
harmonic orders ofωF . The lower graph shows the RMS
acceleration amplitudes of the harmonic orders1.

1The units used have no physical interpretation.



White Gaussian noise with a constant variance,σN
2, is

added to the simulated response of the mechanical system.
The simulated response thus becomes with? denoting con-
volution andhr(t) being the impulse response of the system
modelled . The noise variance is determined from an overall
SNR level defined asSNRdb = 10 log(Var(y)/σ2

N ). where
y is the response. Since the effect ofy(t) varies over time,
so will the actual SNR level which is also observed in prac-
tice. In the simulations the three responses, acceleration,
velocity and displacement are used as independent source
signals.

4. EXPERIMENTAL DATA

The experimental data consists of three vibration channels
and one tacho channel for reference. The vibration signals
are measured with a tri-axial accelerometer placed on the
mounting bolt of the front seat in a passenger car. The sig-
nals are labeledDx, Dy andDz. The tacho channel was
connected to an photo-sensitive probe emitting one pulse
per revolution on the crankshaft, being equivalent to half
the fundamental frequency (it was a 4 stroke engine). All
data was recorded with a B&K Pulse multi-annalyzer and
the digitized data was processed using Matlab. For the pur-
pose of findingωF the exact scaling of the signals are not of
importance, therefore the digitized values of the conditioned
analog signals have been used unscaled.

During the measurement the car is in neutral and the
running speed is increased in steps; for the first 15 seconds
the engine is running approximately 1000 RPM, for the next
25 seconds approx. 2000 RPM, then for 10 seconds 3500
RPM whereafter it drops to idle for the remaining 10 sec-
onds. Figure 5 shows a typical spectrogram of one of the
vibration signals. The signal is seen to contain many higher
order harmonics of the RPM profile, but no specific order
stands-out clearly. In general the signal is very noisy. The
vibration signals were sampled at 1024 samples per second,
while the tacho signal was sampled at 65536 samples per
second and linear interpolation2 was used to improve the
accuracy of theωF reference.

5. SIMULATION RESULTS

100 Monte Carlo simulations are made of the simulated vi-
bration signals. Each signal is segmented into records of 1/4
second with 75% overlap. In each simulation, the posterior
distribution ofωF is computed for the harmonic sequence
K = [1, 2, 3].

The posteriors ofωF for each signal are computed, and
the joint posterior formed. The tracking prior is initialized

2Linear interpolation does not give the best accuracy, but sufficient for
these comparisons. Better precision is obtained by opsampling the tacho
signal and using higher order interpolation schemes [5].

with
p(ωF (0)) = N (10, 1), σT

2 = 1.0

for each posterior distribution. The results are summa-
rized in figure 4, where the standard deviation of theωF es-
timates are plotted with symbols; with lines are shown the
Craḿer Rao lower bounds. The simulated results are very
close to the CRLB which indicates that the Bayesian tracker
is optimal. The tracker was initialized with

6. EXPERIMENTAL RESULTS

Each of vibration signals,Dx, Dy, Dz were segmented into
records of 1/4 second, overlapping 75%. For each seg-
ment the posterior ofωF was computed for the harmonic
sequenceK = [1, 2, 2.5]. The three posteriors were then
combined. The initial value for the tracker was set to

p(ωF (0)) = N (12, 3), σT
2 = 0.8

Figure 7 shows the result of tracking on the individual pos-
terior distributionsp(ωF |Dx), p(ωF |Dy), p(ωF |Dz) and the
joint posterior,p(ωF |Dx, Dy, Dz). It is seen that each of the
individual tracks fail at different times:Dx fails initially to
track at 1000 RPM the first 10 seconds;Dy cannot keep up
with the jump from 2000 to 3500 RPM and looses track;Dz

looses track de-accelerating from 3500 RPM and does not
return to idle. The tracking error is defined as the difference
between the obtained track and the measured tacho refer-
ence. Table 1 summarizes the result of tracking on all pos-
terior combinations of the source signals. The table shows
the mean error in column 2, the standard deviationσ in col-
umn 3 and the maximum absolute error in column 4. The
table shows convincingly that the estimate improves as the
signals are combined.

7. CONCLUSION

Here the Bayesian paradigm has proven succesful in de-
vising a method to estimate and track the fundamental fre-
quency of a rotating machine from a multichannel vibration
measurement.

Starting with the conditioned posterior distribution of
ωF given measured data, the model was first extended from
a single channel estimation to multichannel estimation via
the formulation of the joint probability of the data. Then by
introduction of prior distribution forωF (t) given previous
estimates, tracking was readily at hand.

The method was tested on simulated and experimental
data with great success. Simulations showed that the esti-
mate meets the Craḿer Rao lower bound, and the experi-
mental data showed the methods usefulnes in solving the
practical problem of determining the running speed of the
engine in a passenger car. Not only was the method capable



of providing accurate estimates, but also able to track rapid
speed changes.

For the method to be of practical use however, there as
some issues to be addressed. Choosing the right tracking
variance can be difficult, perhaps this could be solved using
the Baum-Welch algorithm. Choosing the most appropriate
harmonic sequence for the spectrum estimator is important,
the Bayesian paradigm allows the method e.g. to be ex-
panded to operate with multiple harmonic sequences. Fur-
thermore reversible jump MCMC procedures [6] could be
investigated for selecting the best harmonic model.
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Fig. 1. Frequency responses for the second order filter sim-
ulating the mechanical system with a single degree of free-
dom (insert): Acc - acceleration respones; Vel - velocity
response and Disp - displacement response.

Data Mean Error σ Max. Error
Dx −1.3 3.1 9.1
Dy 3.3 18 64
Dz 0.33 1.7 9.9
Dxy 0.057 0.6 5.1
Dxz 0.17 1.6 9.9
Dyz 0.099 0.77 5.8
Dxyz 0.059 0.57 5.1

Table 1. Tracking Results. From the three source signals a
total of 7 posterior distributions can be formed. The result of
tracking on each of the combinations are summarized here.
For each track the mean tracking error, its standard devi-
ation (σ) and the maximum absolute error is shown. Sig-
nificant improvements are observed when the sources are
combined.

For each data segmentn do:

• Computep(ωF |Di, Ik) for all channelsi = 1 . . . N

• Compute joint posterior,p(ωF |D1, . . . , DN , Ik)

• ω̂F (n) = maxωF

p(ωF |D1, . . . , DN , Ik)p(ωF |ω̂F (n− 1), ω̂F (n− 2))

End

Table 2. Tracking Algorithm

Fig. 2. Harmonic Orders of periodic signal.Top graph:
the three curves show frequency profile of the threee har-
monic components in the driving force of the mechanical
system. The harmonic orders decrease 3dB per octave.Bot-
tom graph: RMS amplitudes of the acceleration response
of the driving force. It shows that the relative amplitude
of the harmonic components changes with the fundamental
frequency; its start at the low frequency with the 3rd order
dominating, then as the frequency increases first the 2nd or-
der and then the 1st order dominates.

Fig. 3. Variation in SNR. This figure shows the non-
stationary behaviour of the signal to noise ratio when the
fundamental frequency and harmonic orders changes as
shown in figure 2. The noise variance is set for each of
the three responses , such that an overall SNR of 10 dB is
achieved.



Fig. 4. Craḿer Rao Lower Bounds. The estimated standard
deviation,σ, of 100 Monte Carlo simulations of tracking
fundamental frequency in the three different response sig-
nals are plotted here using symbols. With lines are shown
the theoretical limits computed according to [4]. There
is strong agreement between simulations and theory. It is
noted that tracking on the joined posterior improves the es-
timate significantly.

Fig. 5. Experimental Data. The spectrogram of the mea-
sured vibrations in the x direction is shown here. In the two
other directions the spectrograms look similar (no shown).

Fig. 6. Posterior distribtution of combined signals. For each
of the measured signals the posterior distribution forωF is
computed. Combining the three distribution results in the
joined posterior distribution shown here conditioned on all
three signals.

Fig. 7. Tracking Result. The four tracks shown here corre-
sponds to tracking on the posterior conditioned on each of
the source signals. The fourth track is from the combined
posterior shown in figure 6. The deviations from the true
track are summarized in table 1.


