
Real-time Terrain Rendering using Smooth Hardware Optimized Level of
Detail

Bent Dalgaard Larsen Niels Jørgen Christensen

Technical University of Denmark

ABSTRACT

We present a method for real-time level of detail reduction that is able to display high-complexity polygonal
surface data. A compact and efficient regular grid representation is used. The method is optimized for
modern, low-end consumer 3D graphics cards. We avoid sudden changes of the geometry - also known as
’popping’, when reducing the geometry by exploiting the low-level hardware programmability in order to
maintain interactive framerates. Terrain models are repolygonized in order to minimizing the visible error.
Furthermore, the method minimizes CPU usage during rendering and requires minimal pre-processing. We
believe that this is the first time that a smooth level of detail has been implemented in commodity hardware.

Keywords: terrain, viewing algorithms, frame-to-frame coherence, multiresolution modelling, continuous
level of detail

1 Introduction

Height field terrain rendering and editing is an impor-
tant aspect of GIS, outdoor virtual reality applications
such as flight simulators and 3D-games. Such scenes
may contain thousands of polygons and although
modern graphics cards allow the display of many
thousands of polygons at real-time framerates, many
applications have models with geometric complexities
that, by far, exceed the real-time capabilities. In the
future, graphics cards will be able to display more and
more polygons per second, but on the other hand the
demand for using more complex models will also rise,
and this gap between the performance of graphics
cards and the desire for displaying more complex
models is not likely to disappear in the foreseeable
future.
In order to reduce the number of polygons to be
rendered and thus achieve real-time framerate many

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1, ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

research papers have dealt with different level of detail
(LOD) algorithms and aggressive frustum culling.
The main focus has been to minimize the total number
of polygons displayed on the screen at any point
in time. Famous methods for terrain rendering are
the ROAM method [Duchaineau97] and the level
of detail algorithm introduced by Lindstrom et al.
at SIGGRAPH ’96 [Lindstrom96]. This method
operates on a regularly spaced height-map and merges
triangles based on the visible error in screen-space.
The method cleverly avoids T-meshes and cracks
in the surface by propagating triangle splits and
merges in the height-map. In [Röttger98] the method
originally developed in [Lindstrom96] was extended
with a rapid geomorphing algorithm in order to avoid
vertex popping. Hoppe also applied geomorphing to
terrains in [Hoppe98]. This geomorphing method was
implemented in software only.
Another method called Geometrical MipMapping that
is highly optimized for modern graphics cards was
recently introduced by de Boor [deBoor2000] which
is very similar to [Lindstrom95]. This method divides
the height-map into smaller tiles and creates a number
of detail levels for each tile. Based on an approximated
screen-space error, a switch between the different
detail levels is made. When switching between detail
levels a sudden change in the height-map (vertex
popping) will occur, which will be noticeable to the
viewer. In this article we will propose an algorithm
for to solve this problem, as the geomorphing method

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13701021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Triangle Rendering method Triangles per second
Individual triangles 3.5 M
Connected (strips and fans) 10.5 M
Connected in display lists 24.5 M

Table 1:Million triangles rendered per second on a GeForce
2 using different rendering methods. (with light and texture
disabled)

proposed in [R̈ottger98] and [Hoppe98] does not
apply to Geometrical MipMapping.
Furthermore, we will address the problem of exploit-
ing the capabilities of 3D graphics cards. Because of
the architecture in modern graphics cards, it is not
always optimal to send as few polygons as possible
to the hardware in the graphics cards. A far better
approach is to create fixed chunks of homogeneous
geometry that are rarely modified [El-Sana2000] (see
Section 2.5 for a more in-depth explanation of what a
chunk is). Using this approach it is possible to render
as many as 7 times the number of triangles per second,
compared to rendering individual polygons (see Table
1). Another very important issue is that rendering
chunks of geometry is likely to be handled asyn-
chronously by the graphics hardware thus removing
the load from the CPU.

2 The Algorithm

A terrain can be defined in several ways. First of all
it can be defined as an ordinary mesh also known as
triangulated irregular networks (TINs). This method
does not put any restriction on the terrain, and has been
used by e.g. [Hoppe98] and [DeFloriani2000].
Another method is to define the terrain as a height
field, which is a grid that is equally spaced in thex
andz directions. They value is used as the height in-
formation. This method puts more restrictions on the
definition of the terrain. Nevertheless, it is often the
method of choice for several reasons. Some of these
properties are:

• Easy generation of height-maps with many al-
gorithms already developed.

• Easy collision detection because the intersection
between a ray and a height-map can be done in
O(1).

• Fast and easy view-frustum culling because the
height-map is suited for generating a quad-tree
structure that is relatively simple to cull using a
view-frustum.

Figure 1: A terrain of 9x9 height values (left) and the 3D
representation(right)

Thus, we will define our terrain as a uniformly grid-
ded height field and use a quad-tree structure. Many
others have used that approach, e.g. [Lindstrom96],
[Duchaineau97] and [R̈ottger98].
The initial height field is a surface that consists ofN
by M regularly spaced grid points. Each of these grid
points has a height assigned to it. First we define a
level of subdivision which describes how many ele-
ments the height field should be divided into. Each
of these elements we hereafter refer to as a tile. The
tiles are located as leaves in the quad-tree data struc-
ture. This structure is built as a preprocess. This ap-
proach is also used by [Reddy99], [Lindstrom96] and
[Röttger98]. The tiles must be regularly distributed
over the entire height field and must contain2w +1 by
2w + 1 vertices. The tiles have to share vertices with
neighbouring tiles in all directions in order to avoid
gaps in the terrain. A height field of 9 by 9 will thus
produce 4 tiles if the tile size is chosen to be 5 by 5 (see
Figure 1). For optimal performance these tiles could
be inserted into a quad tree for fast culling and spatial
queries. In Figure 2 triangles have been created from
the height field both in the initial resolution and a lower
resolution tile which is one level higher. The differ-
ence in the number of polygons between two levels is
a factor of 4. We define the level with the highest level
of detail to be level 0 and the next level with 4 times
fewer polygons to be level 1. The number of polygons
in a level consequently sums up to22(w−l)+1 where
the tile size is2w + 1 by 2w + 1, andl is the level.
The basic idea for the reduction of the complexity of

Figure 2:Level 0 (left) and Level 1(right)

the height field is to display all tiles at an appropriate
level. Calculating the visible difference between the
current level of the tile and a lower resolution tile gen-
erates a screen space error. If this error is smaller than
a certain threshold, then the algorithm will render the
scene with the lower resolution.
This is the basic idea but there are certain problems
that need to be addressed when using this approach.
The problems are:

• Choosing the level of detail. The level of detail
has to be chosen in an appropriate way in order
to minimize the visible error introduced by ren-
dering the tile at a lower resolution. The visible
error as seen on the screen should be calculated.

• Avoiding T-vertices and cracks. If two different
levels are rendered next to each other, T-vertices
and cracks in the polygonal mesh will occur.

• Making a smooth transition between different
levels of detail. When switching directly from
one level to another an artefact known as ’pop-
ping’ will occur. This has to be avoided.

Solutions to each of these problems will be described
in the following sections.
A height field made up of evenly distributed grid points
can be triangulated in several ways. The reason for
this is that a quad can be triangulated in two ways.
Our triangulation scheme uses the binary right-angled
triangle method, sometimes referred to as RTIN,
bintree, or longest edge bisection [Lindstrom2001]
[Duchaineau97].
It is noted that our triangulation is different from the
method proposed in [deBoor2000]. We have chosen to
triangulate the surface differently because we want to
avoid long and thin triangles when connecting tiles of
different levels. Furthermore the proposed structure in
[deBoor2000] also needs modification when more than
one out of four neighbouring tiles are rendered using a
different resolution. An issue that is not described in
the paper.

2.1 Choosing the level of detail

Perspective projection causes distant polygons to be
rendered smaller than polygons close to the viewer.
As the distance becomes greater the difference in pix-
els when rendering the tile at two successive levels be-
comes one pixel. Therefore it will be safe to switch to
a higher level when a certain distance is reached. Al-
though unsafe, it is desirable to switch to higher levels
of detail, even when the difference in pixels is larger
than one in order to minimize the number of polygons

Level Reduction percentage (%)
0 0.00 %
1 75.00 %
2 93.75 %
3 98.44 %
4 99.61 %

Table 2: Reduction in number of polygons rendered
calculated for different level of details.

rendered. Several options for measuring the visual dif-
ference between two levels are natural choices. Two
obvious choices would be either a certain number of
pixels or a fixed percentage of the screen size.
[Lindstrom95] explains that their experience is that a
threshold of up to 4 pixels can be used without signif-
icant loss of image quality. In [deBoor2000] a thresh-
old value of 6 pixels is suggested. These values are
not directly comparable to our solution since we are
morphing smoothly between successive levels of de-
tail and it is therefore likely that we can use a larger
threshold value without loosing significant image qual-
ity because the visually disturbing artefact known as
popping is avoided.
Both [Lindstrom95] and [deBoor2000] describe meth-
ods for selecting level of details given a certain error
bound. The error bounds are based on a maximum
height difference between two successive level of de-
tails as shown in Figure 3.
We have chosen to implement the method described
in [deBoor2000] and we will not describe that method
further in this paper. We have chosen that method for
ease of implementation. The number of polygons ren-

Figure 3: Error introduced when switching to a higher
level of detail

dered is reduced by a factor of 4 between two levels.
The reduction at each level is therefore easily calcu-
lated (see Table 2). An important property to note is
that by far the greatest reduction in the number of ren-
dered polygons is archived between levels 0,1 and 2.

2.2 Avoiding T-vertices and cracks

When two elements meet each other, the polygon
edge length of the adjacent lower resolution tile will
be a factor of2p higher than the polygons of the

Figure 4: A tile that has a neighbouring tile of a lower
resolution to the right. The difference in level is one
(left) and two (right)

higher resolution, wherep is the level difference
between adjacent tiles. This will cause both cracks
and T-vertices, that is a source of visual artefacts even
when the polygons are aligned. This would occur if
the two tiles in Figure 2 were joined together. In order
to avoid this, it is necessary to modify the geometry
of one of two adjacent tiles slightly when these are
rendered next to each other at a different level of
detail. We have chosen to always modify the tile
with the lower resolution of two neighbouring tiles of
uneven level of detail. This modification is illustrated
in Figure 4 (left). The method works by doubling the
size of the triangles that are adjacent to the larger tile.
It is necessary to extend the quad-tree with pointers
to adjacent quad-tree nodes in order to create the
right triangulations of the tiles. When this method is
used, it is always possible to connect two elements of
different resolutions and at the same time avoid cracks
and T-vertices. We have chosen only to allow the level
of detail resolution to differ by a value of one between
neighbouring tiles although, as indicated in Figure 4
(right), our method does not demand this restriction.

2.3 Morphing between detail levels

We will now describe our method for removing pop-
ping artifacts when switching between detail levels.
One solution for making the switch between two suc-
cessive levels of detail negligible, is to set the maxi-
mum screen space error to one. But this will have the
effect that most of the tiles will be rendered using a
very high resolution and thus almost no polygon re-
duction will take place. Choosing a higher maximum
screen space error will reduce the number of polygons
much more but on the other hand a sudden change will
happen when a tile is switched from one level to an-
other. In the following, we will describe a method for
making a smooth morph between two different levels.
We will use a tile size of 3 x 3 for illustration purposes,
but for any practical purposes it is advised to use a tile

Morph calculations
A = a

B = v (a+c)
2

+ (1− v)b
C = c

D = v (a+g)
2

+ (1− v)d

E = v (a+i)
2

+ (1− v)e

F = v (c+i)
2

+ (1− v)f
G = g

H = v (g+i)
2

+ (1− v)h
I = i

Table 3: Morph calculations wherev is the morphing
variable in the interval [0;1]

size of at least 9 x 9, 17 x 17 or 33 x 33 (see Section
2.5 for comments on this issue).
When morphing from a higher resolution to a lower

a b c

d e f

g h i

A B C

D E F

G H I

Figure 5: Before and after a morph

resolution the valuesb, d, e, f , h are linearly inter-
polated between their original position and the values
B, D, E, F , H respectively. The calculation of the
values in Figure 5 is shown in Table 3. When the
linear interpolation is complete, the higher resolution
tile will look exactly like the lower resolution tile and
the simplified lower resolution tile may now replace
the geometry. Morphing from a lower resolution to a
higher resolution is similar but the procedure must be
inverted. The very first thing that happens is that the
tile is rendered at the higher resolution, but geometri-
cally it is identical to the lower resolution tile. This is
achieved by setting the morph variablev in the equa-
tions in Table 3 to be 1.

When morphing between two levels of detail it is
not enough to morph one tile at a time since any tile
can share a number of edges with the neighbouring
tiles. Therefore, the border areas must be modified if
the neighbouring tiles are rendered at a different level.
When the level of a tile is changed, all neighbouring
tiles are examined, as they may have to be modified
in order to avoid T-vertices and cracks. In our current
implementation, we have restricted neighbouring tiles
to differ by at most one level. In the following, we
will explain the algorithm we have developed in order
to avoid T-vertices and cracks between two tiles.

Tile Y

a

b

c

d

Tile X Tile Y

a

b

c

d

Tile X

Figure 6:Initially : Both tile X and tile Y are rendered
at the same level.After: Tile Y is rendered one level
higher. Border morph description: The point b is lin-
early interpolated between its original value and(a+c)

2 .
When the morph is completed, tile X is modified by re-
moving the triangles4dab and4dbc and adding the
triangle4dac. The shaded area is the area affected by
the morphing.

Level X morph direction Should Y morph?
X = Y up yes
X = Y down no
X > Y down yes
X < Y up no

Table 4: Rules to determine whether the neighbouring
region of Y should morph when X is morphing

In Figure 6 it is shown that under some circumstances
the neighbouring tile is affected, and in Figure 7 it is
shown that under other circumstances the neighbour is
not affected:

All tiles have four neighbours, except when the tile is
located on the edge of the height field, in which case
it has two or three neighbours. All neighbours have to
be examined individually in order to find out whether
their border region should be modified and morphed
along with the tile that is changing level. In Figure 8
two tiles are shown. The regions that can be affected
by a neighbour are marked by the numbers0− 3. The
modified region of a neighbouring tile is easily shown
to be(q + 2)mod4, whereq is the label of the region.
The rules that determine whether the region should be
morphed are listed in Table 4.

Tile Ya

b

c

a

b

c

Tile X Tile Y

Tile X

Figure 7:Initially : Both tile X and tile Y are rendered
at the same level.After: Tile Y is rendered one level
lower. Border morph description: The morphing in tile
Y will take place without affecting Tile X. The shaded
area is the area affected by the morphing.

X0 Y2

X1

X2

X3

X YY0

Y1

Y3

Figure 8: Morph affected regions

All tiles are created using geometry chunks, as de-
scribed earlier, which implies that the geometry data
may be cached on the graphics card. As seen in Table
1 this is much faster than rendering individual poly-
gons. The actual calculation of the morph can there-
fore be calculated on the graphics card. For that pur-
pose a vertex-program is used. A vertex-program is a
low level program which can be executed directly in
the graphics hardware. Vertex programs were intro-
duced by Lindholm et al. [Lindholm2001]. A vertex-
program has many uses, but here we exploit its capa-
bilities for modifying the position of a vertex. This
vertex modification could just as well be made in soft-
ware, but the advantage of using the hardware in the
graphics card for this purpose is that it is optimized
for the 3D math. Furthermore, a vertex program does
not put any load on the CPU because it strictly runs

Variables:
v[OPOS] = vertex1 position
v[NRML] = vertex2 position
v[WGHT] = weight
#
The function:
R0 = weight*vertex1 + (1-weight)*vertex2
#
The actual code:
ADD R0.x, c[4].x, v[WGHT].x;
MUL R1, v[WGHT].x, v[OPOS];
MAD R0, R1, R0.x, v[NRML];

Table 5:OpenGL Vertex Program

on the graphics card (on newer graphics cards such as
GeForce3, ATI Radeon 8500 or better). Another ad-
vantage is that a vertex program can modify the geom-
etry located in the memory of the graphics card, which
in our case is very important, as we want to have all
geometry located on the graphics card. Thus, software
morphing will not be possible, and vertex programs are
essential for being able to morph the geometry.
The program used in our implementation is rather sim-
ple since the only functionality of the program is to
interpolate between two vertex coordinates. The code
for interpolating between two vertices is shown in Ta-
ble 5. When calculating the lighting it is also necessary
to use the normals and these have to be interpolated in
a similar way. But when interpolating normals it may
be necessary to normalize after the interpolation, as a
linear interpolation between two vectors does not pre-
serve the length. A normalization on current hardware
requires 3 instructions and therefore 3 clock cycles as
all instructions are currently implemented so as to only
require one clock cycle. It is very likely that a normal-
ization will be implemented as a single instruction on
the graphics cards in the future.

As previously described the morphing is triggered
either when the screen error becomes too large and a
higher resolution needs to be rendered, or when it is
safe to switch to a lower resolution. The morph is ba-
sically an animation and there are several methods for
controlling the timing of the animation. The options
we have considered are:

• Time controlled. The animation is purely con-
trolled by timing and the duration of the anima-
tion is set to a certain number of milliseconds.

• Framerate controlled. The animation is set to
last a ceratin number of frames.

• User speed controlled. The speed of the anima-
tion is set to be a function of the movement of
the user.

In [Hoppe98] the geomorphs are scheduled to last one
second.
We have chosen to make our morph animationuser
speed controlled. The advantage of using this ap-
proach is that the terrain does not animate when the
user is not moving, and when the user moves quickly
it seems more natural to let the terrain change more
quickly. Furthermore, the triggering of a switch be-
tween different levels of detail only occurs as the user
moves a certain distance.

2.4 Tile Considerations

As mentioned earlier, the tile must be of size2w + 1
by 2w + 1. The question is how to choosew in order
to get the optimal performance. Some arguments for
using a large value forw are:

• The larger the tiles, the fewer calls to the API
are necessary.

• Using larger tiles makes the quad-tree smaller
and thus faster to traverse.

Some of the arguments for using a smaller value forw
are:

• Tiles can be rendered at a higher level when us-
ing a smaller tile size. Especially if the terrain is
very rough.

• It is faster to regenerate the triangulation of a
smaller tile, and the framerate will therefore not
differ much from frame to frame.

• Visually it is more pleasing that only a smaller
area of the terrain is morphing.

It is therefore clear that the choice of tile size depends
on both the structure of the terrain and the capabilities
of the CPU and graphics hardware. It is suggested by
[Corpes2001] that all mutations of the detail levels are
precalculated. We have tested how much memory we
could use in display lists before we experienced a per-
formance drop. As seen in Table 6, a performance drop
occurs when using between 3 and 4 Megabyte of dis-
play lists (the number of vertex lists was shown to be
irrelevant). This suggests that it is not appropriate to
precalculate all mutations and pre-load these onto the
memory of the graphics card when visualizing large
terrains.
We consider a tile to be made of a collection of ge-
ometry - a chunk. This chunk can be either a display-
list or a vertex-array in OpenGL. In DirectX a chunk
would instead be created using a locked Vertex Buffer.

One disadvantage of using display lists is that it is not
possible to modify the geometry after the list has been
created. This is possible using vertex-arrays, but dis-
play lists are currently faster. Our method requires that
a neighbouring tile may have to be slightly modified
during a morph. We have therefore chosen to divide
our tile into several display lists in order to avoid a
complete regeneration during a morph. In this way we
achieve the fastest polygon rendering with only mini-
mal regeneration of display lists.

Figure 9: A terrain rendered in wireframe seen from
above. The viewer is located at the center of the ter-
rain.

Figure 10: A simple terrain with a background (left)
and rendered using wireframe

3 Results

We have implemented our terrain-rendering algorithm
using the OpenGL API. Since vertex programs cur-
rently only exist as a vendor specific extension to
OpenGL we used the NVidia API. We have tested the
system on a Windows PC P3 800 Mhz with an NVidia

Figure 11: A 1025 by 1025 terrain rendered using a
tile size of 17.

Memory used Triangles displayed
0.5 MB 24.5 M
1.0 MB 24.5 M
3.0 MB 24.5 M
4.0 MB 20.6 M
6.0 MB 16.0 M

12.0 MB 13.7 M

Table 6: Timings for memory used for display lists
compared to number of triangles displayed per second
measured in millions.

GeForce 3 graphics card. We have chosen to create a
predefined path and to use this path for flying through
the landscape while recording the framerates. Some
results can be seen in Table 7. It is noted that there is
no significant difference in the framerates with or with-
out morphing which indicates that the morphing fea-
ture does not cause a performance penalty when ver-
tex programs are implemented in hardware. The same
mesh was used in different resolutions meaning that
the small height-map was very rough and the large one
fairly smooth. It is noted that when using the rough
height-map it is beneficial to use a small tile size, while
the opposite is true when using a smooth height-map.
One of the more costly operations is the creation of the
geometry chunks. This can be a problem if by coinci-
dence many geometry chunks have to be regenerated in
the same frame. Our solution was to make a queue, and
only allow onegeometry chunk to be resubmitted per
frame. This is actually not very restrictive since the ex-
pected number of initiated morphs per second is very
low when the observer moves with a moderate speed.
This is more an insurance in order to avoid worst case

Terrain size Tile size With morph No morph
513x513 17x17 66.25 fps. 67.07 fps.
513x513 33x33 39.49 fps. 38.17 fps.

1025x1025 17x17 28.31 fps. 28.51 fps.
1025x1025 33x33 39.71 fps. 38.12 fps.
2049x2049 17x17 8.65 fps. 7.66 fps.
2049x2049 33x33 18.59 fps. 18.05 fps.

Table 7: Timings for terrain rendered.

behaviour, where by coincidence a very large number
of tiles initiate a morph at exactly the same frame.

4 Conclusion and Future Work

Though we find the approach very promising there is
space for improvements in the future. The error met-
ric is not so critical in our algorithm as in other algo-
rithms, but so far we have used a very crude one from
the literature and therefore the error metric should
probably be re-evaluated. Furthermore, as the viewer
changes position, the number of polygons rendered
per frame may fluctuate significantly. The number of
polygons is determined by the structure of the height
field and it is thus not possible to predict the number
of polygons to render. In real-time applications it is
often very important to have a fixed framerate which
the application is not allowed to drop below. This ap-
proach has been implemented in many other terrain
algorithms e.g. [Duchaineau97] and [Röttger98]. In
order to achieve this, it is necessary to modify the al-
gorithm for choosing the level of detail so that the al-
lowed pixel error is dependent on the current number
of rendered polygons. Although graphics hardware is
not very sensitive to rendering a few thousand triangles
more or less.

5 Acknowledgement

A special thank goes to Martin Reddy for his invalu-
able input and corrections to the paper. The authors
would also like to thank Kasper Høy Nielsen, Andreas
Bærentzen and Michael Arneborg Eriksen for helpful
comments and for proof-reading. This work was sup-
ported in part by the STVF project DMM and the Nor-
dunit2 project NETGL.

REFERENCES

[deBoor2000]de Boer, W. H.Fast Terrain Rendering
Using Geometrical MipMapping, unpublished
and only available at http://www.flipcode.com/
tutorials/geomipmaps.pdf

[Lindstrom2001] Lindstrom, P. and Pascucci, V.Visu-
alization of Large Terrains Made Easy, Proceed-
ings of Visualization 2001. pp. 363-370.

[Lindstrom96] Lindstrom, P. and Koller D. and Rib-
arsky, W. and Hodges, L. F. and Faust, N. and
Turner, G. A. Real-Time, Continuous Level of
Detail Rendering of Height Fields, Proceedings
of ACM SIGGRAPH 96, August 1996, pp. 109-
118.

[Lindstrom95] Lindstrom, P. and Koller, D. and
Hodges, L. F. and Ribarsky, W. and Faust, N. and
Turner, G.Level-of-Detail Management for Real-
time Rendering of Phototextured Terrain, Techni-
cal report GIT-GVU-95-06, January 1995.

[Lindholm2001] Lindholm, E and Kilgard, M. and
Turner, H. M.A User-Programmable Vertex En-
gine, Proceedings of ACM SIGGRAPH 2001,
August 2001, pp. 149-158.

[Röttger98] Röttger, S. and Heidrich, W. and
Slusallek, P. and Seidel, H. P.Real-Time Gener-
ation of Continuous Levels of Detail for Height
Fields, V. Skala, editor, Proceedings of WSCG
’98, pages 315-322, 1998

[Corpes2001]Corpes, G.,Procedural Landscapes,
presentation at GDC 2001

[El-Sana2000]El-Sana, J. and Evans, F. and Kalaiah,
A. and Varshney, A. and Skiena, S. and Azanli,
E. Efficiently Computing and Updating Trian-
gle Strips for Real-Time Rendering, Computer-
Aided Design Vol. 32, No. 13, Nov 2000, pp 753-
772.

[Hoppe98] Hoppe, H.Smooth view-dependent level-
of-detail control and its application to terrain
rendering. IEEE Visualization 1998, October
1998, pages 35-42.

[Reddy99] Reddy, M. and Leclerc, Y. G. and Iver-
son, L. and Bletter, N.TerraVision II: Visualiz-
ing Massive Terrain Databases in VRML.IEEE
Computer Graphics and Applications. vol. 19(2).
1999. pp. 30-38.

[Leclerc94] Leclerc, Y. G. and Lau, S. Q.TerraVision:
A Terrain Visualization System.Technical Report
Technical Report 540. SRI International. Menlo
Park, CA. April 1994.

[Duchaineau97]Duchaineau, M. and Wolinsky, M.
and Sigeti, D. E. and Miller, M. C. and Aldrich,
C. and Mineev-Weinstein, M. B.ROAMing Ter-
rain: Real-time Optimally Adapting Meshes.
Proceedings of Visualization 1997. pp. 81-88.

[DeFloriani2000] DeFloriani, L. and Magillo, P. and
Puppo, E.VARIANT: A System for Terrain Mod-
eling at Variable Resolution.GeoInformatica.
vol. 4(3). 2000. pp. 287-315.

