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Abstract

We present a numerical method for the solution of sti� systems of

ODE's and index one DAE's. The type of method is a 4 stage Generalized
Linear Method that is reformulated in a special Semi Implicit Runge Kutta

Method of SDIRK type. Error estimation is by imbedding a method

of order 4 based on the same stages as the method and the coe�cients

are selected for ease of implementation. The method has 4 stages and

the stage order is 2. For purposes of generating dense output and for

initializing the iteration in the internal stages a continuous extension is

derived. The method is A-stable and we present the region of absolute

stability and the order star of the order 3 method that is used for delivering
the solution.

1 Introduction

The inspiration for the present study came from the results by Prothero and
Robinson (1974) [7] where they discovered the order reduction of implicit Runge
Kutta methods , when applied to sti� systems of di�erential equations. This
observation led to new concepts of stability and eventually to a better under-
standing of the importance of stage order in connection with the overall prop-
erties of one-step methods.
Experiences from work on SDIRK-methods [8]on a three stage method of second
order with stage order one, and following discussions with John C. Butcher, the
idea of designing a generalized Runge Kutta method with stage order higher
than one became interesting and this resulted in the method reported in this
paper.

2 Derivation of the Generalized Runge Kutta Method

In the classical reference on Runge-Kutta and General Linear methods [5] Butcher
introduces the generalized Runge Kutta Scheme.
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vn = Ãun + hB̃f(vn) (1)

un+1 = Aun + hBf(vn) (2)

The scheme is characterized by the choice of the coe�cient matrices and by
chosing these we can obtain methods with the properties we are looking for. In
schematic form our method can be expressed by the tableau

Ã B̃

A B

Schematic or matrix form of a general linear method.

Among the possible methods we chose one where the last function value from
the previous step is used and three stages where the last stage is at the right
endpoint of our step. This type of method is referred to as First Same As Last
or FSAL. The choice will lead to the following form.

γ 0 0 1 a21

a32 γ 0 1 a31

a42 a43 γ 1 a41

0 0 1 1 b1

0 0 0 0 0

General linear form of the method.

It is now possible to express the same scheme as a semi-implicit Runge Kutta
scheme with an explicit �rst stage. In this form the method can be written as
follows.

vn = un + hAf(vn) (3)

un+1 = un + hbf(vn) (4)

In this form each of the stages is a system of nonlinear equations that are solved
stage by stage. The Butcher scheme for this is the following.
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0 0

c2 a21 γ

c3 a31 a32 γ

1 b1 b2 b3 γ

yn+1 b1 b2 b3 γ

en+1 d1 d2 d3 d4

The last line in the scheme contains the coe�cients of the estimator for the local
error obtained from imbedding an order 4 method in the scheme and computing
the di�erence between the two solutions to obtain an estimate of the error for
the method of order three.

2.1 Order conditions, stage order.

We want to satisfy the conditions for order 3 and stage order 2. The order
conditions for the semi-implicit stages become:
Stage 2:

c2 = a21 + γ = 2γ ⇒ a21 = γ; (5)

Stage 3:

a32c2 + γc2 =
c2
3

2
; (6)

Stage 4:

b2c2 + b3c3 =
1
2
− γ; b2c

2
2 + b3c

2
3 =

1
3
− γ; (7)

2.2 Order conditions, method order.

The order condition for the imbedded error estimator, asking for the solution
based on all the stages to be a fourth order solution leads to the equation.

d2(
c3
2

3
− γc2

2) + d3(
c3
3

3
− a32c

2
2 − γc2

2) = 0 (8)
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This condition may be expressed by means of the errors from stages 2 and 3.

d2e2 + d3e3 = 0 (9)

where e2 is the error from stage 2 and e3 is the error from stage 3.

e2 = (
c3
2

3
− γc2

2) =
c3
2

3
− γ(c3

3 − c2
2). (10)

e3 = (
c3
3

3
− a32c

2
2 − γc2

2) = −4
3
γ3. (11)

3 Determination of the value γ

In order to de�ne the method we must �nd the value of γ. This may be done
by specifying the property that our method must be L-stable. This requires [2]
that the following condition is satis�ed:

[
c3(1 − 6γ + 12γ2) − 2γ(2 − 9γ + 12γ2)

]
(c3 − 2γ) = 0 (12)

The choice c3 = 2γ = c2 is not desirable and we are left with the other condition

c3(1 − 6γ + 12γ2) − 2γ(2 − 9γ + 12γ2) = 0 (13)

From which we �nd γ = 5
12 as a reasonable choice giving c3 = 10

21 .
We now use the conditions (4) to (8) and the method is de�ned and may present
the Butcher tableau:

0 0

5
6

5
12

5
12

10
21

95
588 − 5

49
5
12

1 59
600 − 31

75
539
600

5
12

yn+1
59
600 − 31

75
539
600

5
12

en+1
55
600

55
75

−245
600

−5
12

Coe�cients for the 4-stage GERK - method of order 3.
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4 Stability Properties

In order to obtain suitable properties for the solution of index1 DAE's we must
at least satisfy the conditions for A-stability. This can be found from considering
the test equation and the resulting rational approximation to the exponential
function. A straightforward calculation leads to the rational function.

R(z) =
P (z)
Q(z)

(14)

The rational fraction that has been obtained by the GERK-method is given by

R(z) =
1 − 1

4z + 11
48z2 − 17

1728z3

(1 − 5
12z)3

(15)

This rational function is a third order approximation to exp(z) and the stability
properties of the GERK method is closely related to the acceptability of this
approximation.

4.1 Stability region

The region of absolute stability is shown in the �gure below.
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Figure 1: Stability region for Gerk(4)

4.2 Order Star

Following the analysis of [4] we apply the theory of order stars to verify the
A-stability property of the GERK-scheme. The veri�cation is equivalent to ob-
serving that no branch of the order star crosses the imaginary axis. For the
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purpose of presenting the overall picture of the properties of the rational ap-
proximation we present the order star of type 1 in the �gure below.
By inspecting the order star we see that no ��nger� crosses the imaginary axis
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Figure 2: Order star for Gerk(4)

and the method is indeed A-stable.

5 Continuous Extension

In the GERK-method every stage except the �rst involves the solution of a
system of nonlinear equations. For this system some kind of iterative solver
is applied and in order to get the iterations started we need a starting guess.
For that purpose and also to generate dense output of the solution we supply a
continuous extension or interpolation formula of the form

u(tn + θh) = un + h

r∑
s=1

ds(θ)f(vs) (16)

The derivation of this formula for the interpolation follows the same theory
as was developed in [13] where the methods were all explicit. The basic ideas
however are very similar and have been used in [11], here we give the resulting
coe�cient matrix.

ds(θ) = ds,1θ + ds,2θ
2 + ds,3θ

3 (17)

here the coe�cients are given in the form of three vectors.



ODE/DAE METHODS, ALGORITHMS AND SOFTWARE 7

d1
29
244

−1620
671

145
44

d2
−141
244

5832
671

−357
44

d3
216
244

−3888
671

216
44

Polynomial coe�cients ds(θ) for the continuous extension.

6 Implementation

For testing the GERK method we have developed an Object-Oriented C++ pro-
gram package SDIRK [10] that is intended for solution of sti� ODE's. In this
section we describe how to use this implementation and some of the strategies
that have been used for stepsize and convergence control. The basic ideas are
similar to those in Gustavsson [6] and have been developed in the GODESS-
project [3]. This implementation is still a research code mainly for use in research
and has proven helpful also in teaching. The basic ideas in the Object Oriented
software development that are applied has been helpful to illustrate the basic
ideas in ODE-solvers.
A third implementation in Matlab has been used for comparing control strate-
gies. This code includes facilities for switching between di�erent methods and
stepsize control strategies and is made available to be copied from my homepage,
www.imm.dtu.dk/�pgt/GERK. The code is mainly intended for testing but may
be used for the solution of sti� ODE's in general since it is indeed very e�cient
and �exible. A documentation is found at the same website.

6.1 PI-control of stepsize.

In order to optimize the stepsize-control strategy a Matlab implementation of
the method has been implemented under the name gerk.m. As a special feature
the gerk code has the possibility to choose from a number of stepsize-control
strategies. These have all been forged in the same template that is derived from
the PI-controllers that have been developed by Søderlind [9]. The basic formula
for estimating the stepsize for the current step from data gathered in previous
steps is the following.

hn+1 = hn(
τ

en
)β1(

τ

en−1
)β2(

hn

hn−1
)−α2 (18)

For the purpose of relating this control to the traditional step-control strategy
and others from the litterature we give a couple of examples on typical choices
of parameters.

• ordinary step control
α2 = 0, β1 = 1/3, β2 = 0.
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• Watts step control
α2 = 0, β1 = 1/3, β2 = 1/3.

• Choice used by Gustavsson
α2 = 1, β1 = 0.3/3, β2 = 0.4/3.

• Second order PI-control
α2 = 1/2, β1 = 1/6, β2 = 1/6.

For further discussion on the properties of the PI-control strategies we refer
to [9]. Results from testing the four strategies is found in the example-section
below.

6.2 The structure of the SDIRK code

A general ODE-solver has been implemented i C++, named SDIRK. The Object
Oriented implementation makes use of the high degree of structuring that is
o�ered by the C++ environment.
For details we refer the reader to the users manual of SDIRK [10] The structure
of the program and the connectivity is shown in the �gures below.

6.3 The implementation in GODESS.

Until recently, the testing of ODE/DAE solvers has been limited to comparing
software. The complex process of developing software from a mathematically
speci�ed method entails constructing control structures and objectives, select-
ing termination criteria for iterative methods, choosing norms and many more
decisions. Most software constructors have taken a heuristic approach to these
design choices, and as a consequence two di�erent implementations of the same
method may show signi�cant di�erences in performance. Yet it is common to
try to deduce from software comparisons that onemethod is better than another.
Such conclusions are not warranted, however, unless the testing is carried out un-
der true ceteris paribus conditions. Moreover, testing is an empirical science and
as such requires a formal test protocol ; without it conclusions are questionable,
invalid or even false. We argue that ODE/DAE software can be constructed
and analyzed by proven, �standard� scienti�c techniques instead of heuristics,
and that each solver should have a complete speci�cation of its algorithmic con-
tent. Further, we indicate that a test protocol can be devised such that �rm
conclusions may be drawn from careful testing. The goal is reproducibility as
well as improved software quality.

6.3.1 Results from testing in GODESS

The implementation that uses Krylov subspace techniques for the solution of the
linear subproblems that arise is developed with the intention to obtain knowl-
edge about the performance of di�erent iterative algorithms and di�erent types
of preconditioning. Godess proved to be an e�cient platform for making such
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comparisons. Details can be found in [12] here we bring a comparison of the
GERK-method and seven other methods for sti� systems.
The testproblem is a 2D model of the production of Ozone in the stratosphere
[1]. The model consists of two coupled PDE's

∂ci

∂t
= Kh

∂2ci

∂x2
+

∂

∂z

(
Kv(z)

∂ci

∂z

)

+V
∂ci

∂x
+ Ri(c1, c2, t) (i = 1, 2) (19)

Kh = 4 ∗ 10−6, Kv(z) = 10−8ez/5, V = 0.01
R1(c1, c2, t) = −k1c

1 − k2c
1c2 + k3(t) ∗ 7.4 ∗ 1016 + k4(t)c2

R2(c1, c2, t) = k1c
2 − K2c

1c2 − k4(t)c2

k1 = 6.031, k2 = 4.66 ∗ 10−16

k3 =
{

exp(−22.62/sin(πt/43200)) , t < 43200
0 , otherwise

k4 =
{

exp(−7.601/sin(πt/43200)) , t < 43200
0 , otherwise

Here the concentrations of oxygen c1 and Ozone c2 are the variables and the
equations represent reaction-transport with horizontal di�usion and advection.
The boundaries are 0 ≤ x ≤ 20 , 30 ≤ z ≤ 50 , 0 ≤ t ≤ 86400. The Jacobian
has a banded structure re�ecting the discretization used for the derivatives on
a uniform rectangular grid.The system is sti� and the spectrum of the Jacobian
matrix can be found in [1]. The absolute tolerance is 10−3 and the relative
tolerance is 10−5. For the Krylov method we have selected an Arnoldi type type
of INcomplete Orthogonalization in order to compare with the results from [1].
The preconditioning is a simple diagonal preconditioning for this test. Other
preconditionings are available in the GODESS implementation. From the results

Method Steps GKD GNI AMV ALA

ESDIRK23a 1052 2.56 2.04 16505 55.7
ESDIRK23b 865 2.75 2.10 15015 54.5
ESDIRK45a 257 3.62 2.53 11731 57.0
ESDIRK45b 239 3.62 2.74 11800 57.7
Hairwann 1430 2.49 2.77 34500 123.2
sd34var 414 3.02 2.66 14800 57.7
GERK 515 3.16 2.55 12466 51.1
BDF 610 2.61 2.18 3476 10.5

Table 1: Comparison of di�erent methods and the dimension of the Krylov subspace

used in the iterations. Number of time steps (Steps), Average Dimension of subspace

(GKD) ,Average Number of Iterations (GNI), Number of Matrix-vector Operations

(AMV) , Other Linear algebra operations (ALA) in millions.
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we see, that the GERK method is the most e�cient of the one-step methods
while the BDF-method is the overall winner since it does less work pr. step
although it takes more steps than GERK. The general impression is that the
dimension of the subspace is indeed very small compared to the size of the
system on a 10x10 grid this is 100 and the dimension of the Krylov subspace
is near 3. This shows that in general for this type of systems the Krylov type
of linear solver is very e�cient, it needs very few iterations to converge to the
level of accuracy that is prescribed.

6.4 Using the SDIRK - solver

We will illustrate the general usage of the SDIRK package by applying the code
on the Van Der Pol equation. Two tests have been carried out in order to check
the performance for di�erent types of problems.

6.4.1 Example: the Van Der Pol equation

The Van Der Pol problem is a well known testexample that may be used to
illustrate the performance of a piece of code for solving sti� and non-sti� ODE's.
The Van Der Pol system describes a model of an electronic oscillator with a
nonlinear element and has one parameter µ that may be varied or even made
dependent on the integration time.

y′′ − µ(1 − y2)y′ + y = 0 (20)

This is a second order ODE but may be transformed into two coupled �rst
order ODE's which then becomes partly sti� when the parameter µ is large.
In the �rst graph is shown how the total amount of work depends on the error
tolerances that are prescribed. Tolerances are varied between 0.1 and 10−10

the results show that the work is roughly proportional to the required accuracy.
The parameter µ = 200 has been chosen to make the problem moderately sti�.
In the second test the parameter µ in the Van Der Pol equation is varied over
the values 0 < µ < 10000 the work is measured as the number of steps needed
for the solution over a �xed interval [0, 1000] , this will in all cases include the
initial transient. The relative error tolerance is 10−6 while the absolute tolerance
is 10−8 this is a quite severe test ranging over non-sti� to very sti�.
We see that the number of steps varies a lot with the µ-value and since the
sti�ness of the problem is roughly equivalent to the size of µ it is obvious that
the method is coping very well with sti�ness but at the same time will be
relatively expensive for non-sti� problems. This is due to the fact that the
order of the method is relatively low.
A third test is performed for the Van Der Pol equation with µ = µoexp(t − to)
This gives a severe test for the solver since the problem gradually becomes more
and more sti� and harder to solve when time increases. The solution may be
pictured in the Phase-plane and is shown below as it was generated by the
solver. The value of µ where the solver gave up was close to 35000 ( this was



ODE/DAE METHODS, ALGORITHMS AND SOFTWARE 11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
2

10
3

10
4

10
5

STEPS AS FUNCTION OF TOLERANCE

error tolerance

nu
m

be
r 

of
 s

te
ps

Figure 3: Steps versus tolerance test, log-log plot.

enforced when the stepsize became smaller than 10−8 ).

Figure 4: Van Der Pol solutions for variable µ.

6.4.2 Testing the GERK - solver

Using the above test example we can illustrate the performance of di�erent
choices of stepsize strategies. The table shows the number of accepted steps
(steps), the number of failed steps (FSTP) and the percentage of failed steps
(PFSTP) for the four di�erent control strategies and for two di�erent values of
the relative error tolerance.
We see from these results that the number of failed steps are very important
for the performance of the strategies and the assymptotic is best in both the
sti� and the non-sti� case when the tolerance is moderate (reps= 10−4) while
the second order control is better for tighter tolerance (reps = 10−6). However
an inspection of the stepsize sequence gives a di�erent picture altogether since
the Gustavsson and second order strategies lead to a much smoother stepsize
sequence than the assymptotic and this in most cases is what is wanted to make
the stepsize control robust.
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Method Steps FSTP PFSTP Steps FSTP PFST

µ = 20, nonsti� 10−4 10−6

assymptotic 880 146 14.23 2634 267 9.20
Watts 1077 280 20.63 3525 936 20.98

Gustavsson 1052 221 17.36 2985 372 11.08
Second order 919 167 15.38 2752 413 13.05

µ = 200, sti� 10−4 10−6

assymptotic 1615 286 15.04 4982 673 11.91
Watts 2011 535 21.01 6646 1877 22.02

Gustavsson 1818 397 17.92 5125 716 12.26
Second order 1626 336 17.13 4779 534 10.05

Table 2: Comparison of stepsize-strategies on the VanDerPol equation

When integrating large systems of ODEs or DAEs where Jacobian matrices
are expensive to calculate and decompose the reduction in the number of needed
Jacobian matrices will translate into a reduction of the CPU-time needed to
perform the integration. This e�ect is not tested in the example from table 2.
but included in the data in �gure3.

7 Conclusion

The present work introduces a Generalised Runge Kutta solver for ODE's and
DAE's of third order with four stages and stage order two. The method has
been implemented and tested in two di�erent implementations. The GODESS
package is a test-environment for ODE-solvers and the properties of the GERK-
method are demonstrated to be very promising especially for sti� systems. Qual-
itatively the tolerance proportionality in the implementation turns out to be
very good.
The second implementation SDIRK is a general purpose ODE-solver where dif-
ferent stepsize strategies are available and the tests have shown that PI-control
strategies are marginally better that the traditional stepsize control based purely
on the assymptotic error behaviour. This is demonstrated on several tests on
the VanDerPol equation.
Some comparisons using a Matlab implementation have led to the conclusion
that a second order PI-control is a very good choice for a general ODE-solver
that may be used for sti� as well as nonsti� problems for reasonably strict error
tolerances.
The use of the GERK method in connection with retarded ODE's is presented
in [11]. The use of the GERK method for general DAE's is referred to a later
paper.
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