
Hierarchical Network Design

Using Simulated Annealing

Tommy Thomadsen∗ Jens Clausen†

Informatics and Mathematical Modelling

Technical University of Denmark

DK-2800 Kongens Lyngby, Denmark

September 4, 2002

Abstract

The hierarchical network problem is the problem of �nding the least cost net-

work, with nodes divided into groups, edges connecting nodes in each groups

and groups ordered in a hierarchy. The idea of hierarchical networks comes

from telecommunication networks where hierarchies exist. Hierarchical net-

works are described and a mathematical model is proposed for a two level

version of the hierarchical network problem. The problem is to determine

which edges should connect nodes, and how demand is routed in the net-

work. The problem is solved heuristically using simulated annealing which as

a sub-algorithm uses a construction algorithm to determine edges and route

the demand. Performance for di�erent versions of the algorithm are reported

in terms of runtime and quality of the solutions. The algorithm is able to �nd

solutions of reasonable quality in approximately 1 hour for networks with 100

nodes.

Keywords: Hierarchical Networks; Network Design.

1 Introduction

Telecommunication networks consist of cables (optical or electrical wires) and switch-

ing and multiplexing equipment located at telephone switches connecting subscribers

∗
Email: tt@imm.dtu.dk

†
Email: jc@imm.dtu.dk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13701004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and other switches. The networks are described in terms of graphs and extensive re-

search in the topic has taken place. In this paper we focus on the design of backbone

networks, speci�cally on choosing how switches are connected and on the capacities

of the cables.

Network design problems can (roughly) be divided into two categories (I) Access

network design and (II) Backbone network design [27]. Access network design as-

sumes a centralized tra�c demand and may involve hierarchical structures. These

problems are closely related to facility location problems and clustering problems.

Backbone network design, on the other hand, assumes a distributed (several sources

and destinations) tra�c demand and allows arbitrary topologies of the network to

be chosen.

The two categories require rather di�erent solution methods [27], however many

models and solution methods treat both network types or borrow elements from the

other category.

In backbone telecommunication networks, switches are arranged in groups and the

groups of switches are connected. Not much research have been done on hierarchical

backbone networks with a distributed demand pattern. Several reasons are imme-

diate, one being that dividing the network into groups limits the choice of solutions,

and hence low cost solutions may be overlooked. Additionally, routing the dis-

tributed demands while designing the topology of the network presents substantial

di�culties.

The contribution of the current paper is twofold. We present and de�ne a new

type of hierarchical networks and de�ne a minimization problem - the hierarchical

network problem - based on this. The problem is a backbone network design problem

with distributed demand pattern, but borrows many concepts from access network

design. Secondly the paper presents a solution algorithm and computational results

for this.

The remaining part of this section contains an introduction to telecommunication

networks (with special focus on hierarchies) and related work. The hierarchical

network problem is de�ned in section 2 and section 3 presents the solution strategy.

The hierarchical network problem is solved in two phases. The �rst phase consists of

a simulated annealing algorithm and is described in section 4, and section 5 describes

the greedy algorithm of the second phase. Section 6 contains computational results

and �nally section 7 gives conclusions and suggestions for further research.

1.1 Telecommunication Networks

In telecommunication networks, di�erent cable capacities are used in order to allow

cheap, low capacity connections where su�cient, while allowing higher capacity

cables to be used where required. The hierarchies contribute with an organizational

2

element, that is, the hierarchies divide the network into areas which more easily

can be handled by sta� who maintains and modi�es the network. Also, planning

hierarchically is easier than optimizing the network as a whole.

The network is usually divided into at least three levels - a national, regional and

local level. The national level connects regional areas and the regional levels connect

local areas. National, regional and local areas contain a number of local switches,

and subscribers are connected directly to a local switch. Regional switches are in

addition always local switches.

When a subscriber dials the number of another subscriber, this is located, and a

path is set up between the two subscribers. Which route to choose is programmed

into the switching equipment, and thus setting up a path merely consists of reserving

a fraction of the capacity for the call.

If two subscribers are connected to the same local switch or to local switches, which

can connect without using regional switches, such a connection is used, and re-

gional and national switches are not used. If the subscribers are connected to the

same regional switch or regional switches, which can connect without using national

switches, the call will only occupy connections to the regional switch and to the

subscriber (see �gure 1).

Cable

Cable used for call

National center

Local center

Regional center

Subscriber

Subsriber participating in call

Figure 1: Example of a regional call - some additional switches and connections are

shown

If subscribers are connected to di�erent national switches a call will have to go

through both local, regional and national switches (see �gure 2). Much of the

tra�c in the network is in fact data transmission, but the distinction between local,

regional and national transmission is still valid.

Cables and the equipment facilitating communication over the cables have di�erent

costs and capacities. The price of establishing a connection depends mainly on the

3

Cable

Cable used for call

National center

Local center

Regional center

Subscriber

Subsriber participating in call

Figure 2: Example of a national call - some additional switches and connections are

shown

cost of digging down a cable and the price of the equipment facilitating communi-

cation. The physical cable used for di�erent capacities are usually the same.

Usually higher-level switches (e.g. national switches) use connections with high ca-

pacities, but there is no direct dependency between switch level and connection type

used. Thus high capacity connections can be established between local switches, if

a customer has a need for a particularly high capacity connection between two loca-

tions. The mathematical model we propose does, however, only allow cables of one

capacity to be used at a given level.

Location of switches and cables, and capacity limits, are in practice historically

determined and has been determined and changed as the network evolved. The

network continuously evolves, new cables and switches are added to the network,

and replacement of existing equipment with higher capacity equipment is done fre-

quently.

If a network were to be built from scratch, it would probably be very di�erent from

the current network. This is so since the need for capacity has changed over time,

and thus an optimal location of switches and cables at some point in time may

currently not be optimal.

The location of new switches, new cables and upgrade of switches to increase capacity

over cables is of major concern to the telecommunication companies. Determining

how an optimal solution would look like, if starting from scratch, would contain

valuable information. Also protection against failures in the network is of major

concern. This is however not treated in this paper. The model described is to be

considered as a �rst step towards the solution of the full problem.

4

1.2 Related Work

Early descriptions of hierarchical networks are [18] and [19]. The hierarchal networks

are described in the context of the Arpanet with the purpose of reducing the overhead

tra�c required to maintain routing tables.

[20, 36, 23, 31, 32] solve problems on locating concentrators or facilities in a network

with centralized demand pattern. Some ([36, 23]) denote the problems as multi-level

or hierarchical and in fact all problems involve some sort of hierarchies.

Other papers with a centralized demand structure and hierarchies are [13] which

solves an access network design problem and [24] which solves a network design

hierarchical star-star problem. The multi-level capacitated minimum spanning tree

problem [10] has a centralized demand structure, and a hierarchical structure em-

anates, because the edges have di�erent levels representing the capacities.

Another type of hierarchical network design problem is de�ned in [7]. The problem

is somewhat di�erent from others: Given two primary nodes and some secondary

nodes, the least cost network connecting the primary nodes with a primary path

and connecting secondary nodes not on the primary path to a node on the pri-

mary path via a secondary path is to be found. The problem is extended with

transshipment facilities in [6]. In [30] a new formulation is presented which is used

to obtain a Lagrangean relaxation based algorithm. The algorithm is modi�ed to

handle transshipment facilities in [5]. In [34] a dynamic programming based al-

gorithm is suggested and in [35] the problem is enhanced to allow multiple paths

and the dynamic programming algorithm is modi�ed to handle this. [14] presents a

arborescence formulation for the problem, with multiple primary nodes.

[3] solves a multi-level network problem with more destination nodes but only one

source node of the highest level. The destination nodes require service of di�erent

levels, and potential source nodes of lower levels require service of higher levels to

be able to supply the service.

Yet another way to use multi-level (or -layer) network design is to let each layer

represent a network protocol layer. This is the approach of [29]. The layers can

have di�erent properties; some layers may e.g. be able to recon�gure the routing of

tra�c to avoid cables which have failed. Thereby, robustness of the network can be

addressed.

For a survey of network design see [21, 11] and for a description of the subproblems

involved in the overall design of a network see [12, 2].

5

2 The Hierarchical Network Problem

The Hierarchical Network Problem (HNP) problem is described using a mathemati-

cal model in the following subsections, but initially the HNP is described in general

terms.

A hierarchical network (HN) consists of nodes and edges between any pair of nodes.

Edges and nodes have levels corresponding to the levels in telecommunication net-

works. In this initial description of the HN's, the edge level is determined by the

capacity of the edge. The following terms are needed to describe HN's.

Node Level Highest level of any edge incident to the node.

Level l Groups The set of connected components of the subgraph induced by level

l edges and nodes of level l or higher.

Concentrator Node Node which has higher level than the group it is in.

We note, that a group may contain only one node. Figure 3 shows a HN where

edges, nodes and groups are indicated, including the levels. All nodes of level 2 are

concentrators in a level 3 group and nodes of level 1 are concentrators in both a

level 2 group and a level 3 group.

Level 2 node

Level 3 node

Level 1 node

Level 2 edge

Level 1 edge

Level 3 edge

Level 2 group

Level 3 group

Figure 3: Example of nodes, groups and concentrator nodes

Given these concepts, a HN is a subset of edges, such that:

6

• There is at most one edge between any pair of nodes

• A group has exactly one concentrator node, except the highest level group

which has none

• The network is connected

The HNP is to �nd the least cost HN that satis�es a demand, given by an origin-

destination demand matrix for each pair of nodes. The cost of a solution is measured

by two terms, the setup-cost which is the sum of costs for establishing the edges

chosen, and the �ow-cost which depends on how much �ow (or tra�c) is sent through

the set of edges.

An alternative description of HN's is to de�ne these by the way they are constructed

given a set of nodes: Partition the network into disjoint sets. In each such set, select

a concentrator. The concentrators makes up the highest level group. Each disjoint

subset is again partitioned into disjoint subsets and concentrators selected to �nd

the next-highest level groups. This is continued until groups contain single nodes.

For each group of level l, nodes in the group are connected using level l edges. This
description corresponds closely to the way the HNP is solved (see section 3).

Deciding the number of groups of each level could be part of the problem. We have

chosen to request this to be speci�ed beforehand. Doing this reduces the solution-

space and gives a way of controlling the solution. It is our experience that allowing

for any number of groups, the solution will usually consist of few groups. This may

be due to the following: Since edges are not allowed to cross group boundaries,

dividing the network into groups limits the possible selection of edges. Hence some

solutions may not be feasible if groups are divided.

We will now return to the description of the mathematical model for the problem.

2.1 Index Sets

L Set of all levels.

V Set of all nodes.

E Set of potential edges.

Gl For l, l ∈ L, the set of groups of level l.

The sets are index-sets, i.e. the elements in a set are denoted by numbers between

1 and the cardinality of the set. For the set of levels, the lowest numbers describe

the highest levels (as for previous examples).

There is one group of level 1, i.e. G1 = {1} and Gl−1 < Gl for l ∈ {2, . . . , |L|}.

7

2.2 Data

csl
ij, i < j Cost of setting up a level l ∈ L edge between i ∈ V and

j ∈ V .

cf l
ij, i < j Cost per unit �ow of a level l ∈ L edge between i ∈ V and

j ∈ V .

capl
ij, i < j Capacity of level l ∈ L edge between nodes i ∈ V and j ∈ V .

dij, i < j Demand from i ∈ V to j ∈ V .

csl
ij is named the setup-cost and cf l

ij the �ow-cost. capl
ij is usually equal for all

edges in the same level.

We assume that the data are demand-connected (i.e. the graph with edges corre-

sponding to positive demands is connected). Thus to route the demand, the solution

must be connected as well.

Usually (e.g. for telecommunication networks), the setup-costs increase with increas-

ing level, i.e. for l < l′, csl
ij > csl′

ij. Also, it seems reasonable that the �ow-costs

decrease with increasing level, i.e. for l < l′, cf l
ij < cf l′

ij .

2.3 Decision Variables

xl
ij ∈ {0, 1}, i < j 1 if there is a level l edge between nodes i ∈ V

and j ∈ V , 0 otherwise.

pmn
i , m < n, i 6= m, i 6= n 1 if node i is on the path chosen to satisfy the

demand from m ∈ V to n ∈ V , otherwise 0.

fmnl
ij ≥ 0, i 6= j, m < n Amount of �ow on the edge from i ∈ V to

j ∈ V originating in demand from m ∈ V to

n ∈ V on level l ∈ L edge.

glh
i ∈ {0, 1}, l ∈ L 1 if node i ∈ V is in level l group h ∈ Gl, 0

otherwise.

tlhi ∈ {0, 1}, l ∈ {2, . . . , |L|} 1 if node i ∈ V is concentrator for level l
group h ∈ Gl, 0 otherwise.

Note that �ows and demands are directed.

2.4 Objective Function

The cost for a given network is the total cost of setting up edges, and the sum of all

�ow through edges:

8

min
∑

i,j∈V,i<j,l∈L

csl
ij · xl

ij +
∑

i,j,m,n∈V,m<n,l∈L

cf l
ij · fmnl

ij

(1)

2.5 Flow conservation constraints

For all demands dmn, the net �ow out of nodes m and n must be dmn and −dmn

respectively.

∀m, n ∈ V, m < n :
∑

i∈V \{m},l∈L

fmnl
mi − fmnl

im = dmn (2)

∑

i∈V \{n},l∈L

fmnl
ni − fmnl

in = −dmn (3)

For all demands dmn, the net �ow in/out of all nodes i, i 6= m, i 6= n must be 0. I.e.
no �ow should �pile up� anywhere.

∀m, n ∈ V, m < n, i ∈ V \{m, n} :
∑

j∈V \{i},l∈L

fmnl
ij − fmnl

ji = 0 (4)

Using these constraints only will allow �ows to split, i.e. a demand may be satis�ed

using multiple paths. By adding constraints which for all demands dmn, and all

nodes i ∈ V \{m, n} require that, either the entire demand passes through i or the
demand does not pass through the node, it is ensured that the �ow cannot split.

This is ensured by the following constraints.

∀m, n ∈ V, m < n, i ∈ V \{m, n} :
∑

j∈V \{i},l∈L

fmnl
ij + fmnl

ji = 2 · dmn · pmn
i (5)

Using these constraints, constraints of type (4) are redundant.

2.6 Capacity Constraints

Capacity constraints ensure, that no edge has more �ow than its capacity allows.

9

∀i ∈ V, j ∈ V \{i}, l ∈ L :
∑

m∈V,n∈V,m<n

fmnl
ij + fmnl

ji ≤ capl
ij · xl

ij (6)

The capacity constraints additionally ensures, that an edge of level l is only used

(fmnl
ij >0) if it is set up (xl

ij = 1).

Recall that we assume that demands are demand-connected. Since the �ow con-

straints ensure that demands are ful�lled and the capacity constraints ensure that

edges are only used if they are set up, connectivity of the resulting network is also

ensured.

2.7 Constraints Relating to Hierarchies

Between two nodes there can be one edge only:

∀i, j ∈ V, i < j :
∑

l∈L

xl
ij ≤ 1 (7)

A node is in at most one group at each level:

∀i ∈ V, l ∈ L :
∑

h∈Gl

glh
i ≤ 1 (8)

Each group has exactly one concentrator node (except the highest level group which

has none):

∀l ∈ {2, . . . , |L|}, h ∈ Gl :
∑

i∈V

tlhi = 1 (9)

A node can only be concentrator in one group:

∀i ∈ V, l ∈ {2, . . . , |L|} :
∑

h∈Gl

tlhi ≤ 1 (10)

If there is an edge of level l < |L| between nodes i and j (xl
ij = 1), then node i

and j are concentrator nodes for a group of level l + 1 (
∑

h∈Gl+1
t
(l+1)h
i = 1 and

∑
h∈Gl+1

t
(l+1)h
j = 1).

∀i, j ∈ V, i < j, l ∈ {1, . . . , |L| − 1} :

xl
ij ≤

∑

h∈Gl+1

t
(l+1)h
i (11)

xl
ij ≤

∑

h∈Gl+1

t
(l+1)h
j (12)

10

If i is concentrator node of a level l +1 group (
∑

h∈Gl+1
t
(l+1)h
i = 1), then there is an

edge of level l incident to i (
∑

j xl
ij ≥ 1).

∀i ∈ V, l ∈ {1, . . . , L − 1} :
∑

h∈Gl+1

t
(l+1)h
i ≤

∑

j∈V,i<j

xl
ij +

∑

j∈V,j<i

xl
ij (13)

If a node is concentrator in group h of level l, then it is in the group as well.

∀i ∈ V, l ∈ L, h ∈ Gl : tlhi ≤ glh
i (14)

If a node i can be reached from j via a link of level l then i and j are in the same

level l group. This is expressed using the following two sets of constraints:

∀i, j ∈ V, i < j, l ∈ L, h ∈ Gl : xl
ij + glh

i ≤ glh
j + 1 (15)

∀i, j ∈ V, i < j, l ∈ L, h ∈ Gl : xl
ij + glh

j ≤ glh
i + 1 (16)

If a node i is in a group of level l then it must be concentrator in a level l +1 group.

∀i ∈ V, l ∈ {1, . . . , |L| − 1}, h ∈ Gl : glh
i ≤

∑

h′∈Gl+1

t
(l+1)h′
i (17)

If a node i is concentrator for a level l + 1 group, then it must be in a group of level

l.

∀i ∈ V, l ∈ {1, . . . , |L| − 1}, h ∈ Gl+1 : t
(l+1)h
i ≤

∑

h′∈Gl

glh′
i (18)

These constraints correspond to the description of hierarchical networks given pre-

viously. The description does not limit the number of levels. In the sequel, however,

we will for simplicities work with 2 levels only - a primary and a secondary level.

The set of secondary groups is abbreviated by G corresponding to G2 - note that

there is only one primary group.

3 Solution Strategy

A branch-and-bound based solution algorithm has been implemented which is able to

�nd optimal solutions to networks of up to 15 nodes. However, a network consisting

of 15 nodes is small compared with real world telecommunication networks, which

have hundreds, maybe thousands of nodes. Hence, a simulated annealing algorithm

has been designed, which in approximately 1 hour �nds reasonable solutions for the

HNP with 100 nodes.

11

The branch and bound algorithm has provided ideas for the simulated annealing

algorithm, and the solution strategy used (as described in this section) is the same

for both algorithms.

The strategy is based on a division of the solution process into two phases, allowing

us to solve the problem using two separate algorithms. The phases are:

1. Divide the network into groups and choose concentrator nodes.

2. Optimize each group in turn wrt. communication.

The �rst phase provides the division into groups and selects concentrators (thereby

creating the primary group). The di�erent group divisions and concentrator selec-

tions are traversed using a simulated annealing algorithm (described in section 4).

During the second phase each group is optimized in turn, using a construction al-

gorithm (described in section 5).

The phase division is exempli�ed in �gure 4 and �gure 5. Both �gures shows the

same example network. Distances are assumed to be Euclidean, whereas the demand

between pairs of nodes and the capacity of edges is unspeci�ed, but assumed to be

appropriate, i.e. a solution exists and the suggested selection of edges allows routing

the demand in the network.

Figure 4 shows the network divided into groups and for each secondary group a

concentrator is indicated as well. This is the output of phase one.

Figure 5 shows a selection of edges, which together with the groups and concentrators

make up a HN. The output of phase two is the selection of edges and a speci�cation

of how the demands are routed using these edges.

3.1 Optimizing a Group

Dividing the solution process into phases eases the optimization process carried out

by phase two. The key point is that during phase two, each group can be optimized in

turn without taking into account how other groups are optimized. This is described

thoroughly in the following.

For a two level HN, �ow between two nodes consists of up to three paths which can

be determined independently. To illustrate this consider the example in �gure 6,

which shows a path for demand ad.

Let c(a) denote the concentrator of the group containing node a. If two nodes a and

d are in di�erent groups, the �ow will have to go through the primary group (cf.

�gure 6). In fact, since there is only one concentrator in each group, the �ow path

12

Secondary nod

Primary/Concentrator node Primary group

Secondary group

Figure 4: Example network. Groups de�ned and concentrators selected at the left

Secondary nod

Primary/Concentrator node Primary group

Secondary group Secondary edge

Primary edge

Figure 5: Example network. Groups de�ned, concentrators and edges selected

consists of three sub-paths: One from a to c(a), one from c(a) to c(d) and one from

c(d) to d. These sub-paths can be determined independently.

For a demand dij, one or more sub-paths may be empty if either i or j is concentrator

13

Secondary nod

Primary/Concentrator node Primary group

Secondary group

Example path

c(d)

a

b
d

c(b)
c(a)

Figure 6: Example path

in a group, as e.g. the demand and corresponding path between c(a) and d in �gure 6.
If i and j are in the same group as e.g. a and b in �gure 6, the path is determined

within the group.

We note that the sub-paths determined belongs to one group each, i.e. both end-

points of all edges in a sub-path are in the same group. Hence, since for all demands,

the path can be divided into sub-paths which can be determined independently, each

group including the primary group can be optimized independently of the other

groups.

Each such sub-path corresponds to a sub-demand. Some sub-demands start and

end in the same group. These are bundled, i.e. they are handled as if they were one

demand in order to decrease runtime. Bundling demands may as a result reduce

the solution space. A group which may have a feasible solution if bundling was not

done may be infeasible if bundling is done. Demands are not allowed to split, and

bundling demands prevents demands in the bundle from splitting. If this turns out

to be a major problem, all demands can simply be routed without bundling.

When solving groups, concentrators participate in two groups - the primary group

and the secondary group in which they are the concentrator. The solution to the

original problem is determined by summing up costs for the groups and aggregating

sub-paths.

14

4 Phase One: Simulated Annealing Algorithm

Our simulated annealing algorithm is described in the following. The solution space

consists of all possible divisions of groups and in conjunction with that, all possible

selections of concentrator nodes. The algorithm is outlined in �gure 7.

Find initial solution

Initialize temperature

do

Pick neighbour-solution at random

if neighbour-solution is feasible then

if neighbour-solution is better than current then

Update current

else

Update current with a probability that depends on

solution value di�erence and temperature

Update temperature

until stopping criteria is met

Figure 7: The Simulated Annealing algorithm

A current solution is maintained. The solution space is traversed by selecting a

neighbour picked at random. If the solution value is better than the current solution

value, the current solution is replaced. If on the other hand the solution is worse

than the current solution it may be accepted. The idea is that while the temperature

is decreased, fewer of the worse solutions are accepted and the current solution

converges to a local optimum. In the following subsections the initial solution,

neighbourhood, temperature update scheme, accepting criteria and stopping criteria

is speci�ed.

4.1 Initial Solution

The selection of a good initial solution has a positive e�ect on the solution quality

and/or runtime compared with selecting a completely random initial solution. The

idea is to divide the network into |G| groups of equal size where nodes in the groups

are close. The distance is measured as the primary setup-cost, but in the test

instances this makes no di�erence, since costs are all proportional to the Euclidean

distances.

At �rst the two nodes which de�nes the diameter of the network (i.e. are farthest

from each other) are selected. Then the node with the highest average distance

to the already selected nodes are selected. This is continued until |G| nodes have

15

been selected. Each selected node de�nes a group. Remaining nodes are assigned

to groups such that each group contains at most d|V |/|G|e nodes. This is done by
solving an assignment problem using the distances as the costs.

Finally the concentrators are selected by �rst selecting the two nodes which are

closest but are in di�erent groups. The next concentrator selected is the concentrator

which has the lowest average distance to already selected concentrators and is in a

group where no concentrator is selected. This is continued until all |G| groups have
a concentrator.

The edges and �ow is determined as described in the following section. If an infeasi-

ble solution is found at �rst, alternative group divisions are tried. The test instances

have been generated such that this problem does not occur. If �nding a feasible so-

lution is a problem, the algorithm can be modi�ed to accept infeasible solutions,

but with a high penalty on the objective value if a solution is infeasible. Hereby,

the simulated annealing algorithm can be used to search for a feasible solution.

4.2 Neighbourhood

The neighbourhood consist of two kinds of neighbour solutions:

• Group-neighbour

• Concentrator-neighbour

A group-neighbour is constructed by moving one non-concentrator node to another

group. A concentrator-neighbour is constructed by selecting a new concentrator in

one group. This is exempli�ed in the following �gures 8, 9 and 10 which shows an

example network, a group-neighbour and a concentrator-neighbour respectively.

In �gure 9, node a is moved from one group to another. In �gure 10, node b is

selected as concentrator instead of node a.

4.2.1 Limiting the Neighbourhood

The number of neighbour-solutions is large. Let |G| be the number of groups in

the network and |V | the number of nodes. The number of group-neighbours is

(|V | − |G|) · (|G| − 1), since each non-concentrator node can be moved to any of

the other groups. The number of concentrator-neighbours is |V | − |G|, since this

is the number of non-concentrator nodes. The total number of neighbours is hence

substantial, and there are many more group-neighbours than there are concentrator-

neighbours.

16

Secondary nod

Primary/Concentrator node

Primary group

Secondary group

b

c

a

d

Figure 8: Example network

Secondary nod

Primary/Concentrator node

Primary group

Secondary group

b

c

a

d

Figure 9: Example on a group-neighbour

Problems arising from networks in the real world usually have the property that

they consist of points in a plane. In this case many potential group-divisions are

not interesting, since usually good solutions do not contain groups with members

scattered in the plane.

Thus neighbour-solutions which are constructed by moving a node to a distant

group (measured in an appropriate way) from the other nodes in the group are not

bene�cial. Such an example is shown in �gure 11 where node d is moved to a group

which is not �close� to the node.

17

Secondary nod

Primary/Concentrator node

Primary group

Secondary group

b

c

a

d

Figure 10: Example on a concentrator-neighbour

Secondary nod

Primary/Concentrator node

Primary group

Secondary group

b

c

a

d

Figure 11: Example on a group-neighbour solution which is probably not bene�cial

For these reasons, the number of group-solutions is reduced as follows. For a given

group the nodes to move to the group is limited to be only the d|V |/|G|e nodes,

which are closest to the concentrator node of the group, i.e. has the lowest setup-

cost to the concentrator. Since there are |G| groups this amount result in approxi-

mately |V |/G · |G| = |V | group-neighbours, which is roughly as many as there are

concentrator-neigbours. Thus when selecting neighbours randomly, each of the types

are considered equally often and in total there are approximately 2|V | neighbours.

18

4.3 Temperature, Accepting Criteria and Stopping Criteria

The temperature used for iteration i + 1 is found by multiplying the temperature of

iteration i with a positive factor less than one.

Neighbour solutions are accepted if they are better than the current solution. If they

are worse they are accepted with probability e−v/t
, where v is the increase in solution

value expressed in percentages and t is the temperature. Thus the probability of

acceptance increases with decreasing v and decreases with decreasing t.

The stopping criteria used is a sliding window criteria, i.e. the improvement is mea-

sured for the last k iterations, and if no change has occurred within these iterations,

the algorithm is stopped. The number of iterations is adjusted in order to ensure

that the algorithm converges to a local minimum. 200 iterations are carried out

without any changes before the algorithm stops.

4.4 Tuning Parameters

In order to make simulated annealing perform well parameters have to be tuned

properly. Given the above selections, the only parameters to be tuned are the initial

temperature and the factor used to update the temperature.

Some e�ort has been made to make the choice of temperatures independent of

costs (setup and �ow). Therefore, in the following the increase in solution value

used for the accepting criteria (v) is expressed in percentages. Also the choice of

initial temperature and update factor depend critically on the number of nodes in

the network. Schemes have been set up, which given the number of nodes in the

network give default values which have been observed to perform well. If it is critical

to obtain high quality solutions, the parameters should be tuned manually. This can

of course only be done if few examples are optimized. The results reported for tests

use default settings.

These default settings have been found by considering test runs for problems with a

varying number of nodes. In particular it has been useful to record and depict the

current solution value as a function of the iteration number.

5 Phase Two: Group Solution Algorithm

Given the division into groups and the selection of concentrators found in phase

one, |G| + 1 groups are created and optimized in turn. This is done using a greedy

construction heuristic and a steepest descent local search algorithm. The algorithm

is outlined in �gure 12.

19

Find a minimum spanning tree solutionwith respect to the setup-cost

while solution is infeasible do

Add an edge which relieves an overloaded edge

Find demand paths

end while

Run local search

Figure 12: Heuristic solution algorithm for groups

Recall that �ow is not allowed to split. Also, if we assume that for a group (and hence

in general for a level), capl
ij is the same for all edges, we can check that a feasible

solution exists as follows: If there exists two nodes i and j such that dij > capl
ij

where l is the level of the group we are optimizing, no feasible solution exists, since

�ow cannot split. If this is not the case, a feasible solution can be constructed by

selecting all edges and for all demands dij use the path consisting of edge ij only.

This way each edge will carry exactly one demand, and since no demand is larger

than the capacity, the solution is feasible.

The construction algorithm �nds a minimum spanning tree with respect to the

setup-cost. This is only a good idea, if the setup-costs are higher than �ow-costs. If

this is not the case, an alternative algorithm, which takes into account the �ow-cost,

should be used.

Secondly, edges are added such that overloaded edges are relieved until the solution

is feasible. This is in close connection with �nding paths for the �ow. The paths

are assigned by �rst assigning demands dij for which an edge eij exists to the path

consisting of edge ij only. These demands can all be routed, since initially we have

checked that no demand exists, which exceeds the capacity of edges. Remaining

demands are assigned to paths by considering demands in decreasing order along

the shortest path. If some demand cannot be ful�lled, the edge which does not

allow the demand to be routed is recorded for later use and temporarily removed.

An alternative shortest path is found again. This is continued until either a feasible

path is found or no path exists.

If a demand cannot be routed in the network, the recorded edge should be relieved.

An edge which relieves the recorded edge is guaranteed to exists as can be seen from

the following: Assume dij is the demand which cannot be routed. The recorded

edge is on the shortest path between i and j, hence creating an alternative path for

demand dij will relieve the edge. One such alternative path is the path consisting

of edge ij only. Edge ij is not in the network since recall that all demands dij were

edge ij was in the network were routed �rst and did not exceed the capacity. Hence

edge ij is a relieving edge for the recorded edge. The particular edge selected is the

shortest relieving edge.

20

Finally a local search which removes or adds a single edge at a time is run. Two

versions have been tried. An iterative improvement algorithm and a steepest descent

algorithm. The iterative improvement algorithm modi�es the solution whenever it

�nds an improvement. The steepest descent algorithm on the other hand consid-

ers all possible adds or removes of a single edge and selects the best improving

modi�cation. The algorithms perform comparably as we shall see in subsection 6.2.

Recently we realized that Minoux in [21] suggests an alternative construction algo-

rithm similar to the one we have suggested. This construction algorithm starts out

by buying all edges and assigns demands to the shortest path. Iteratively, the edge

which decrease the solution cost the most is removed until no edge can be removed.

A preliminary implementation showed that using Minoux's algorithm for phase 2 in

most cases resulted in inferior solutions and the algorithm ran slower. It is, however,

expected that the runtime can be decreased substantially, since the algorithm were

implemented in the framework of the original algorithm. Since the solutions were

inferior, this was not pursued any further.

5.1 Reusing Solution Value for Groups

Since a neighbour solution only modi�es one or two of the secondary groups of the

current solution, it is possible to reuse solution values calculated for unmodi�ed

secondary groups. One strategy is to save group solutions for the current solution

only, such that neighbour solutions can bene�t from this. Since the algorithm may

return to the same or similar solutions, we can in fact do better and save the solution

values for more than a single step. The amount of memory required to do this is

relatively small, since in general less than 10000 iterations are carried out, thus at

most 20000 groups will have to be saved. The group solutions are saved using an

open hashing scheme.

6 Computational Results

A number of tests have been carried out to measure the runtime and estimate the

quality of the solutions. All tests have been carried out on a SUN Fire 3800 with

8 750MHz Sparc III CPUs and 8GB RAM, running Solaris 8. The implementation

does, however, only use one CPU at a time.

6.1 Test Instances

The test-instances have between 10 and 100 nodes and approximately

√|V | groups.
Capacity on edges are the same for edges at each level, and primary edges can carry

4 times as much �ow as secondary edges.

21

Each node is randomly located in the Euclidean plane. The setup- and �ow-costs for

both primary and secondary edges are found by multiplying the Euclidean distance

with a constant. The constants are selected such that the primary setup-cost is the

double of the secondary setup-cost. Also the secondary �ow-cost is the double of

the primary �ow-cost.

For each edge, the maximum �ow-cost is the capacity times �ow-cost. The ratio

between the primary and secondary costs are chosen, such that the maximum �ow-

cost equals the setup-cost in both the primary and secondary case. The values

chosen are shown in table 1.

Parameter Value

Primary edge capacity 400

Secondary edge capacity 100

Primary setup-cost for unit distance 400

Secondary setup-cost for unit distance 200

Primary �ow-cost for unit distance 1

Secondary �ow-cost for unit distance 2

Table 1: Parameters for the data set

The demand is generated for all pairs of nodes. For each node a weight is generated

(uniformly distributed). Demand dij is then the sum of the weight of nodes i and
j. To obtain proper test instances, the total amount of demand in the network

should be such that a feasible solution exists, but also should not be too low. If

the demand is too low, good solutions are tree-like, in which case routing the �ow

is easy. Routing the �ow is handled by the phase two algorithm, and hence the

in�uence of this algorithm will not be re�ected if routing is to easy.

The total amount of demand is controlled by multiplying each demand by a factor.

Determining a suitable total amount of demand is done by running pre-tests with

varying total amount of demand. The solutions are analysed and on the basis of

this, the total amount of demand for the systematic testing is chosen.

6.2 Performance Test

The solution quality is hard to measure, since the optimal solution value is not

known. As an alternative, we have compared the solutions with solutions found

where the phase one algorithm is replaced by an iterative improvement algorithm.

This is accomplished by modifying the simulated annealing algorithm, such that it

does not accept any worse solution. In both cases an initial solution is determined

as described in subsection 4.1.

22

The phase two algorithm which solves the groups is implemented in two versions, a

steepest descent version and an iterative improvement version (see section 5).

Tests are run on networks generated as described above. The solution quality is

estimated by recording the solution value in all cases and calculating the deviation

from the best in percent.

The solution deviation from the best solution for each test instance is shown in

table 2. In the table, simulated annealing is abbreviated SA, iterative Improvement

is abbreviated II and steepest descent is abbreviated SD.

Phase one: SA SA Greedy Greedy

Phase two: II SD II SD

Number of nodes Solution value deviation

5 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00

7 0.00 4.64 7.16 7.16

8 0.00 0.00 0.00 0.00

9 3.31 0.00 5.95 5.75

10 1.91 0.00 1.91 0.00

11 0.00 1.47 2.17 3.88

12 0.00 7.06 6.97 9.24

13 2.55 0.00 11.05 5.42

14 0.00 0.00 10.72 8.70

15 1.61 0.00 9.22 3.82

20 0.06 0.00 0.06 0.00

25 2.21 0.00 2.44 3.07

30 0.64 0.00 4.87 2.34

35 0.00 0.93 7.47 4.51

40 3.31 0.00 1.73 2.45

45 0.00 1.00 4.74 2.95

50 3.28 0.00 7.47 3.33

60 0.00 2.06 8.05 7.51

70 0.00 1.09 4.48 6.41

80 4.96 0.00 4.21 8.45

90 0.00 2.91 8.10 10.30

100 4.98 3.55 0.00 3.76

Table 2: Solution value deviation from best solution

The table shows that the simulated annealing algorithm �nds better solutions than

the greedy variant. For the phase 2 algorithm, it does not seem to matter much

whether a steepest descent algorithm or an iterative improvement algorithm is used.

In some cases one is the best in other cases the other one is.

23

Table 3 shows the runtime for both algorithms. As expected the simulated annealing

algorithm requires considerably more time to run. The runtime using either iterative

improvement or steepest descent in phase 2 performs similar for the greedy algorithm

and the simulated annealing algorithm, respectively.

Phase one: SA SA Greedy Greedy

Phase two: II SD II SD

Number of nodes Runtime in seconds

5 0.16 0.16 0.01 0.05

6 0.06 0.04 0.05 0.04

7 0.29 0.13 0.05 0.06

8 0.27 0.24 0.07 0.08

9 0.84 1.82 0.1 0.09

10 0.47 0.37 0.10 0.10

11 1.03 1.54 0.23 0.07

12 1.26 1.28 0.15 0.13

13 1.45 1.02 0.12 0.15

14 3.33 3.83 0.29 0.27

15 2.41 1.97 0.19 0.32

20 7.11 4.32 0.74 0.68

25 38.01 39.09 1.40 3.62

30 52.80 40.55 5.51 2.29

35 87.74 99.78 4.83 7.45

40 261.38 115.33 6.79 4.23

45 229.08 284.03 10.92 15.38

50 315.99 160.95 10.14 27.46

60 441.47 495.60 32.63 14.77

70 555.33 614.50 65.26 38.14

80 927.01 671.97 93.41 59.93

90 1093.97 591.71 82.73 60.30

100 1100.43 728.09 277.93 121.24

Table 3: Runtime

6.3 An example network

In �gure 13 a solution to a HNP is shown. The HNP and solution is one of the

instances used in the test described above.

The dotted lines indicate primary connections and the solid lines indicate the sec-

ondary connections. The thickness of the lines indicate how much of the capacity is

used.

24

Figure 13: Example network with 100 nodes in total and 9 concentrators.

The primary connections between concentrators is a non-tree, whereas in most cases

the groups are tree-like and in some cases even star-like with the concentrator as

the root. The solutions for the HNP's in general appears to be like this.

In order to explain this, recall that between any pair of nodes there is a demand.

Since the number of nodes in a group is usually much lower than the number of

nodes outside the group, the demand to the concentrator is on average substantially

higher than the demand between non-concentrator nodes in the group. Thus in

order to ensure capacities and minimize the �ow-cost, a tree- or star-like solution is

usually a good choice.

25

7 Conclusion

In this paper we have presented and de�ned HN's and the HNP. This is to some

extent based on, but not limited to, how telecommunication networks are organized

and how these can be designed.

The HNP is solved heuristically using a simulated annealing algorithm and construc-

tion algorithms for optimizing groups. The algorithm is capable of �nding reasonable

solutions for the HNP where networks have up to 100 nodes. The running time is

approximately one hour.

Topics for further investigation are to allow �ows to split and to allow more than two

levels. Also robustness of the network (e.g. ensuring that 2 disjoint paths exists for

all demands) is of major interest. It would also be interesting to apply the method

to a real world telecommunication network or to take the exact opposite direction

and simplify the model (e.g. by ignoring capacities and �ow-cost) and to solve the

problem to optimality.

For the suggested solution method, it would be interesting to apply alternative meta-

heuristics as e.g. GRASP and alternative construction algorithms for phase two. One

possibility is to use Minoux's construction algorithm [21]. This way, solution quality

and runtime might be improved, maybe combined with limiting the number of edges

considered to be only the shortest ones.

References

[1] Anataram Balakrishnan, Thomas L. Magnanti, and Prakash Mirchandani. De-

signing hierarchical survivable networks. Operations Research vol. 46, Issue 1,

1998.

[2] R.R. Boorstyn and H. Frank. Large-scale network topological optimization.

IEEE Transactions on Communications, COM-25(1):29�47, 1977.

[3] F.R.B. Cruz, J. MacGregor Smith, and G.R. Mateus. Algorithms for a multi-

level network optimization problem. European Journal of Operational Research,

118(1):164�180, 1999.

[4] F.R.B. Cruz, J.M. Smith, and G.R. Mateus. Solving to optimality the unca-

pacitated �xed-charge network �ow problem. Computers Operations Research,

25(1):67�81, 1998.

[5] J. Current and H. Pirkul. The hierarchical network design problem with trans-

shipment facilities. European Journal of Operational Research, 51(3):338�47,

1991.

26

[6] J.R. Current. The design of a hierarchical transportation network with trans-

shipment facilities. Transportation Science, 22(4):270�7, 1988.

[7] J.R. Current, C.S. ReVelle, and J.L. Cohon. The hierarchical network design

problem. European Journal of Operational Research, 27(1):57�66, 1986.

[8] L.R. Esau and K.C. Williams. A method for approximating the optimal net-

work. IBM System Journal, 5(3):142�147, 1966.

[9] V. Gabrel, A. Knippel, and M. Minoux. Exact solution of multicommodity

network optimization problems with general step cost functions. Operations

Research Letters, 25(1):15�23, 1999.

[10] Ioannis Gamvros, Bruce Golden, and S. Raghavan. An evolution-

ary approach to the multi-level capacitated minimum spanning tree

problem. Sixth INFORMS Telecommunications Conference, 2002.

http://www.isr.umd.edu/TechReports/ISR/2002/TR_2002-18/TR_2002-

18.phtml.

[11] B. Gavish. Topological design of telecommunication networks-local access de-

sign methods. Annals of Operations Research, 33(1-4):17�71, 1991.

[12] B. Gavish. Topological design of computer communication networks-the overall

design problem. European Journal of Operational Research, 58(2):149�72, 1992.

[13] Andre Girard, Brunilde Sanso, and Linda Dadjo. A tabu search algorithm for

access network design. Annals of Operations Research, 106(1-4):229�262, 2001.

[14] Luis Gouveia and Joao Telhada. An augmented arborescence formulation for

the two-level network design problem. Annals of Operations Research, 106(1-

4):47�61, 2001.

[15] K. Holmberg and D. Yuan. A lagrangian heuristic based branch-and-bound

approach for the capacitated network design problem. Operations Research,

48(3):461�81, 2000.

[16] A. Kamath, O. Palmon, and S. Plotkin. Fast approximation algorithm for

minimum cost multicommodity �ow. Proceedings of the Sixth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 493�501, 1995.

[17] J.L. Kennington and J.E. Whitler. An e�cient decomposition algorithm to

optimize spare capacity in a telecommunications network. INFORMS Journal

on Computing, 11(2):149�60, 1999.

[18] L. Kleinrock and F. Kamoun. Hierarchical routing for large networks-

performance evaluation and optimization. Computer Networks, 1(3):155�74,

1977.

[19] L. Kleinrock and F. Kamoun. Optimal clustering structures for hierarchical

topological design of large computer networks. Networks, 10(3):221�48, 1980.

27

[20] P.V. McGregor and D. Shen. Network design: algorithm for the access facility

location problem. IEEE Transactions on Communications, COM-25(1):61�73,

1977.

[21] M. Minoux. Network synthesis and optimum network design problems: models,

solution methods and applications. Networks, 19(3):313�60, 1989.

[22] Michel Minoux. Discrete cost multicommodity network optimization problems

and exact solution methods. Annals of Operations Research, 106(1-4):19�46,

2001.

[23] S. Narasimhan and H. Pirkul. Hierarchical concentrator location problem. Com-

puter Communications, 15(3):185�91, 1992.

[24] J. Petrek and V. Siedt. A large hierarchical network star-star topology design

algorithm. European Transactions on Telecommunications, 12(6):511�22, 2001.

[25] J. Petrek and A. Speetzen. Assignment modi�cation in the design of multipoint

communication networks. Journal of Electrical Engineering, 52(5-6):158�61,

2001.

[26] M. Pioro and P. Gajowniczek. Simulated allocation: a suboptimal solution to

the multicommodity �ow problem. Teletra�c Symposium, 11th. Performance

Engineering in Telecommunications Networks. IEE Eleventh UK, page 31/1,

1994.

[27] M. Pioro, A. Jutner, J. Harmatos, Szentesi. A, P. Gajowniczek,

and Myslek A. Topological design of telecommunication networks

- nodes and links localization under demand constraints. submit-

ted to 17th International Teletra�c Congress, Salvador de Bahia, 2001.

"http://www.tele.pw.edu.pl/�amyslek/papers/itc2001.pdf".

[28] M. Pioro, A. Myslek, A. Juttner, J. Harmatos, and A. Szentesi. Topolog-

ical design of mpls networks. Global Telecommunications Conference, 2001.

GLOBECOM '01. IEEE, 1:12�16.

[29] M. Pióro and T. Szyma«ski. Basic recon�guration options in multi-layer ro-

bust telecommunication networks - design and performance issues. Teletra�c

Engineering in the Internet Era, pages 271�284, 2001.

[30] H. Pirkul, J. Current, and V. Nagarajan. The hierarchical network design

problem: a new formulation and solution procedures. Transportation Science,

25(3):175�82, 1991.

[31] H. Pirkul and V. Nagarajan. Locating concentrators in centralized computer

networks. Annals of Operations Research, 36(1-4):247�61, 1992.

[32] Hasan Pirkul and Rakesh Gupta. Topological design of centralized computer

networks. International Transactions in Operational Research, 4(1):75�83,

1997.

28

[33] D Saha and A Mukherjee. Design of hierarchical communication networks under

node/link failure constraints. Computer Communications, 18(5):378�383, 1995.

[34] N.G.F. Sancho. A suboptimal solution to a hierarchial network design prob-

lem using dynamic programming. European Journal of Operational Research,

83(1):237�244, 1995.

[35] N.G.F. Sancho. The hierarchical network design problem with multiple primary

paths. European Journal of Operational Research, 96(2):323�328, 1997.

[36] G.M. Schneider and M.N. Zastrow. An algorithm for the design of multilevel

concentrator networks. Computer Networks, 6(1):1�11, 1982.

[37] Tommy Thomadsen. Methods for hiearchical network desing.

Master's thesis, Technical University of Denmark, 2002.

http://www.imm.dtu.dk/pubdb/views/publication_details.php?id=431.

29

