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Abstract. The Succinct Solver of Nielson and Seidl is based on the
Alternation-free Least Fixed Point Logic and it is implemented in SML
using a combination of recursion, continuations, prefix trees and mem-
oisation. It is known that the actual formulation of the analysis has a
great impact on the execution time of the solver and the aim of this note
is to provide some insight into which formulations are better than oth-
ers. The experiments addresses three general issues: (i) the order of the
parameters of relations, (ii) the order of conjuncts in preconditions and
(iii) the use of memoisation. The experiments are performed for Control
Flow Analyses for Discretionary Ambients.

1 Introduction

Static analyses of programs are often constructed as a two-phase process. The
first phase extracts sets of constraints from programs and the second phase solves
sets of constraints. The benefit of this approach is that the insights and efforts in
solver technology may be shared among applications in a variety of programming
languages and that it opens up for the use of state-of-the-art tools constructed
by experts in their field. The potential disadvantage is that it may be hard to
find constraint formats that are sufficiently flexible to be of widespread interest.

As an example, the PAG [5] system (used in the EU-project Daedalus) is targeted
toward applications with a fairly static control structure and is not so easy
to apply to languages or calculi that have a very dynamic control or mobility
structure; however, it does provide means for influencing the performance in
the solver in allowing the user to choose between various iteration orders for the
iteration-based work-list algorithm around which the system is built and between
various data structures for representing abstract domains. A somewhat more
flexible tool is the BANE [1] system, originally developed around set constraints
but now extended with additional components, including one for type based
analyses; however, our experience with the set constraint part shows that there
are syntactic limitations to the constraints that can be expressed, and since
the actual system has developed beyond the original research papers, it is hard
for new users to determine whether these limitations are due to peculiarities of
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the system (and how to overcome them) or whether they are enforced by more
fundamental limitations preventing the formulation of analyses that cannot be
solved in polynomial time.

Based on recent insights by McAllester [6], and later pursued in collaboration
with Ganzinger, we have decided to concentrate on extended formats for Horn
clauses. On the one hand this seems to offer adequate flexibility for formulating a
number of interesting control flow analyses with applications to security. On the
other hand it removes the burden of dealing with a variety of abstract domains
— in essence all our abstract domains will be powersets. The actual solver used,
the Succinct Solver [8] of Nielson and Seidl, actually implements a rather rich
fragment of first-order predicate calculus known as Alternation-free Least Fixed
Point Logic; here universal and existential quantifiers as well as disjunctions and
stratified negation may be used in preconditions and conjuncts may be used in
conclusions.

The Succinct Solver [8] is written in Standard ML and has been coded using
a combination of recursion, continuations, prefix trees and memoisation. It in-
corporates most of the technology of differential worklist solvers and semi-naive
iteration developed by Fecht and Seidl and others [3, 4]. However, rather than
using an explicit worklist it is based on the top-down solver of Le Charlier and
van Hentenryck [2]. This gives a rather robust solver with good time and space
performance and whose overall manner of operation has withstood the need for
change. Some effort has been spent in “low level” improvements of the code
aiming at optimising tail-recursive call etc.

The experience with the Succinct Solver so far suggests that relatively minor
changes to the input clauses may affect constant factors rather dramatically
(two orders of magnitude) and even the exponent of the complexity polynomial.
Hence, the main mode of operation with respect to “optimising” the efficiency of
clauses to be solved is to rearrange the clauses before they are submitted to the
solver. Indeed, this holds not only for the Succinct Solver but for any off-the-shelf
state-of-the-art solver developed using expert insights. (It is thus orthogonal to
the approach of the INRIA partner of SecSafe.)

This document gives the preliminary results from our efforts to build up local ex-
pertise in operating the Succinct Solver and to perform such minor modifications
as are needed to obtain more informative timing measurements1 and to control
the application of the reordering transformation now built into the solver. The
main focus of these studies have been on three classes of transformations to the
clauses:

1 As an example, our fine tuning of timing measurements may result in measurements
like those of Figure 1 (shown using a linear scale rather than a logarithmic scale as
will be the case later); one may observe that the measurements do not fully follow
the dotted and predicted curve but seems to lie on line segments that start above the
curve and end below the curve; this phenomenon can be explained as duly reflecting
the dynamic reorganisation of data structures that takes place inside the Succinct
Solver at various points during the solution process.
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Measured execution times of running the Succinct Solver
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Fig. 1.

1. the order of the parameters of relations,
2. the order of conjuncts in preconditions and
3. the use of memoisation.

Ideally, the experiments should have been performed for the static analysis de-
veloped for Carmel but neither constraint generation nor example programs are
ready yet. We have therefore focused on a number of Control Flow Analyses for
Discretionary Ambients — in keeping with the analyses of Mobile Ambients and
the spi-calculus used by Nielson and Seidl when evaluating the performance of
the solver.

2 The Test Suite

Discretionary Ambients are presented in [9]. The syntax of processes P and
capabilities M are given by the following abstract syntax; here we use n to range
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over names and µ to range over group names.

P ::= (νµ)P | (νn : µ)P | 0 | P1 | P2 | !P | n[P ] | M.P

M ::= in n | out n | open n | inµ n | outµ n | openµ n

The construct (νµ)P introduces a new group µ and its scope P ; the construct
(νn : µ)P then introduces a new name n of the already existing group µ and its
scope P . The remaining constructs for processes are as for Mobile Ambients. In
addition to the well-known capabilities in n, out n and open n we also have the
co-capabilities inµ n, outµ n and openµ n that in addition to the name n of the
object granting the access right also mentions the group µ of the subject that is
allowed to perform the operation.

The experiments are carried out on four scalable Discretionary Ambient pro-
grams. The first three programs describe a single packet being routed through
a network of sites. In the first program s-m (for square), the packet is routed
through network of m×m sites named s1,1, s1,2, s2,1, . . . , sm,m and belonging to
different groups S1,1,S1,2,S2,1, . . . ,Sm,m. Each site si,j contains a router table
telling where the packet can move next. All router tables have the name r and
belong to the same group R. For the site si,j the router table will instruct the
packet to move to either si+1,j (when i < m) or si,j+1 (when j < m). Thus, the
network topology is as shown in Figure 2 where the arrows indicates the possible
movements of the packet.

s1,3s1,2 s1,m

sm,msm,1

s3,1

s2,1

s1,1

Fig. 2. Network topology of the scalable program s-m
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In textual form, the program s-2 is shown below

(νp : P)(νr : R)(νs1,1 : S1,1)(νs1,2 : S1,2)(νs2,1 : S2,1)(νs2,2 : S2,2)
p[in s1,1 | ! (inR p. open r)]

| s1,1[! inP s1,1. outP s1,1
| ! r[in p. openP r. out s1,1. in s2,1]
| ! r[in p. openP r. out s1,1. in s1,2]]

| s1,2[! inP s1,2. outP s1,2
| ! r[in p. openP r. out s1,2. in s2,2]]

| s2,1[! inP s2,1. outP s2,1
| ! r[in p. openP r. out s2,1. in s2,2]]

| s2,2[inP s2,2]

In the second program denoted lvg-m the packet is again routed through a
network of size m×m. Now, there are m router tables rj belonging to different
groups Rj ; the sites s1,j , · · · , sm,j all use the router table rj . The router table
rj of si,j will instruct the packet to move to any of the sites in the row below
i.e. one of the sites si+1,1, · · · , si+1,m (for i < m).

In the third program, called 1-m sites s1, . . . , sm of groups S1, . . .Sm are placed
on a line. Now, the router tables r, which are all of group R, instruct the packet
to move from the site si to the site si+1 (when i < m).

The final program called sph-m is meant to provoke worst-case behaviour from
the analyses. It consists of m ambients (or spheres) s1, . . . , sm composed in par-
allel. Each sphere can do everything and allow everything. That is, a sphere si

can move in, move out, and open any other sphere sj (including itself) and allows
any other sphere to enter, leave, or open it.

2.1 The Analyses

We have experimented with two control flow analyses – a 0-CFA and a 1-CFA.
The 0-CFA approximates the behaviour of a process by a single abstract config-
uration that describes all the possible derivatives that the process may have. It
amounts to systematically performing the following approximations:

– The analysis distinguishes between the various groups of ambients but not
between the individual ambients.

– The analysis does not keep track of the exact order of the capabilities inside
an ambient nor of their multiplicities.

– The analysis represents the tree structure of the processes by a binary rela-
tion I modelling the father-son relationship.

Formally, we define the binary relation I as a mapping

I : Group → P(Group ∪Cap)
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where Group is the set of groups, and Cap is the set of group capabilities and
group co-capabilities (i.e. built from groups rather than ambient names). The
judgements of the analysis have the form

I |=?
Γ P

and express that I is a safe approximation of the configurations that P may
evolve into when ambient names are mapped to groups as specified by Γ and
when ? is the ambient group of the ambient enclosing the process P . For sim-
plicity, we shall assume that all ambient groups are introduced at the top-level
of the program. The analysis is specified in Appendix I.

The 1-CFA follows the same scheme but adds a context by additionally recording
information of grand fathers. Thus, the analysis represents the tree structure as
a ternary relation I expressing a grand father-father-(grand) son relationship.
This is expressed in the ternary relation I defining the mapping

I : Group → P(Group → P(Group ∪Cap))

and the judgements of the analysis now becomes

I |=?,>
Γ P

As before, ? denotes the group of the ambient enclosing P while, additionally,
> denotes the group of the ambient enclosing ?. The specification of the 1-
CFA is shown in Appendix IX. The 0-CFA and the 1-CFA have a very similar
structure so the effect of similar transformations on the two analyses can easily
be compared. The complexity of the 1-CFA is expected to be somewhat higher
than that of the 0-CFA.

Representation function and closure condition. In order to use the Suc-
cinct Solver, an analysis is split into a representation function and a closure
condition. The representation function is responsible for transforming the pro-
gram into a predicate PRG expressing (an abstraction of) the initial structure
of the program; the closure condition then expresses how the relation I can be
computed once PRG is known. The splitting of the initial specification into a
representation function and a closure condition is performed automatically. For
the 0-CFA, PRG is a binary predicate while it is ternary for the 1-CFA. The re-
sults of splitting the analyses can be seen in Appendix II and III, and Appendix
X and XI for the 0-CFA and the 1-CFA, respectively. The experiments reported
in this paper are concerned with different formulations of the closure conditions
for the two analyses.

The relation PRG is given to the solver as a conjunction of ground facts contained
in PRG. For the 0-CFA a part of this clause for the program s-2 looks as follows:

. . .
∧ PRG(P, in S1,1) ∧ PRG(P, inR P) ∧ PRG(P, open R)
∧ PRG(S1,1, inP S1,1) ∧ PRG(S1,1, outP S1,1)
∧ PRG(S1,1,R) ∧ . . .
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Names and sizes. The different formulations of the closure conditions of the
0-CFAs are named da0 x, where x is a token that uniquely identifies the analysis.
Similarly, the 1-CFAs are named da1 x.

In the table below the size of the relations PRG and I are displayed for the 0-
CFA and the 1-CFA. Note in particular that the size of the relation PRG i.e. the
size of the program, differs in the in the degree of their polynomial dependency
on m for the different programs. The solver works on a universe U of fixed size.
This size is also displayed in the table.

0-CFA 1-CFA

Size of Size of Size of Size of Size of Size of
U PRG I U PRG I

1-m 6m + 7 6m + 2 9m + 3 6m + 8 8m− 5 2m2 + 17m− 1

s-m 6m2 + 7 6m2 + 2 9m2 + 3 6m2 + 8 9m2 − 2m− 1 2m4 + 18m2 − 2m

lvg-m 6m2 + 5m 2m3 + 5m2 2m3 + 8m2 6m2 + 5m 5m3 + 3m2 2m4 + m3 + 12m2

+7 +5 +2m + 6 +8 −3m + 3 −2m + 6

sph-m 3m2 + 5m 6m2 + m 3m3 + 4m4 3m2 + 5m 6m2 + 1 3m4 + 7m3

+1 +m +2 +4m2 + m

Table 1.

2.2 Timing the Experiments

The time the solver uses to calculate the analysis result is measured as the CPU-
time used by the SML interpreter, which runs the solver. The execution time is
split into two contributions: the time for the initialisation phase and the time
for solving the constraints.

The first contribution includes the time it takes to load analysis clause files,
generate the representation relation from the Discretionary Ambient program
and initialise all the data structures in the solver. Additionally, in the initial-
isation time we include the time it takes to “solve” the clause giving by the
representation relation PRG. This clause consists only of ground facts so solving
it simply means that the content of PRG is inserted into the data structure that
the solver uses to represent relations. The second contribution of the measured
execution time comes from solving the closure condition. We measure all execu-
tion times both with and without the time used for garbage collection. Execution
times including time spent on garbage collection show great variation when the
same experiment is performed several times. Therefore, we will only comment
on execution times where the time spent on garbage collection is not included.
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Estimating Parameters in Execution Times. Having measured the exe-
cution time of the solver it is of interest to see how it relates to the size of
the program. Here, we are interested in the execution time spent on solving the
closure condition.

We know that execution time of the solver has a polynomial upper bound, but we
are hoping to give a more precise description of the measured times. Knowing the
solver algorithm, it should be possible to explain execution times from knowledge
of the size of the clause, the size of the universe, and the size of the computed
relations. For our examples, the last two sizes can be computed from the size m in
example programs (as shown in Table 1). The size of the clause for the closure
condition is small compared to this. Therefore, we assume that the measured
execution times t may be explained by the model

t = c1 ·mx + c0

for x ∈ R. In order to estimate c0, c1 and x, the measured times are fitted to
this model by a least-square fit for different values of x. The best fit is chosen as
the one where the 2-norm of the difference between the model and the measured
execution times are the smallest, i.e. where the error is smallest in a least-square
sense.

As we consider initialisation time separately the constant c0 is expected to be 0
since, when m = 0 no time is used. For all our experiments we have that c0 is
in the order of the accuracy of the measurement, so we will not comment on it
further.

This estimation method is somewhat unstable, which for some part may be
explained by the fact that the measured times are not entirely explained by the
proposed model. For example, there may be considerable contributions which are
explained by terms in the complexity polynomial of lower degrees. Therefore, the
estimation results should only be seen as a guideline for further analysis of the
measured data.

3 The Order of the Parameters of Relations

The Succinct Solver uses prefix trees as an internal representation of relations,
which together with an number of optimisations will give a faster algorithm. In
this section we will investigate the effect of specifying clauses to utilise these
optimisations.

The optimisations using prefix trees may be explained from what happens when
a k-ary relation R(x1, . . . , xk) is checked in a precondition. Whenever a pre-
condition is checked some of the variables x1, . . . , xn will a priori be bound to
certain values. These variable bindings are recorded in the environment η. The
prefix implementation utilise that some maximal prefix p = x1, . . . , xi for i ≤ k
of the variables may be bound in η. The optimisation happens at the following
two places when a relation R is checked in the precondition
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1. Unification is made between the environment η and all the elements already
in the relation R. However, if we know that a certain prefix p of variables
are bound in η then we also know that unification will fail for elements with
a prefix that is different from p. Therefore, unification only needs to be done
with elements in the relation that has a matching prefix, thus, saving work.

2. Whenever the relation R is checked in a precondition a consumer is regis-
tered. The consumer serves as a reminder of the check made in the precon-
dition. If a new element is added to R the consumer will be activated so
the check can be performed for this new element. Unification should only
be done for elements with prefixes that match the bound variables in the
precondition (see 1.), so consumers are stored with the knowledge of these
prefixes and only activated when prefix-matching elements are added.

The prefix optimisation result in higher efficiency the longer the prefix p is.
Taking advantage of this optimisation, therefore, amounts to specifying relations
in the preconditions in such a way that the prefixes of bound variables become
as long as possible.

For example, assume that the relation R(x1, x2) appears in a precondition where
x2 is always bound and x1 is always unbound. Then, the prefix of bound vari-
ables has length 0. Alternatively, one could query the inverse relation R′(x2, x1)
where the parameters are swapped. This gives a prefix of length 1 and is, thus,
preferable over querying R. Now, suppose that a specific clause only has queries
to the relation R so that R′ is the best choice2. Then R could be substituted
with R′ everywhere in the clause. Otherwise, it may be better to include both
R and R′ though this will double the space used to store the relation and add
extra work in order to keep the two relations consistent.

We have conducted experiments using a variation of the analysis da0 2 on the
program s-m. This analysis is called da0 6 and contains the two relations PRG
and I 3. We have made a number of experiments using different combinations
of the order of the parameters of these two relations. In order to do that, the
automatic reordering of parameters, which is implemented in the solver, has been
disabled. First, we have made experiments using only a single copy of each of
the relations by manually restating the analysis with parameters of one or more
relations swapped:

da0 6fifi: I in the order (father, id). PRG in the order (father, id).
da0 6fiif: I in the order (father, id). PRG in the order (id, father).
da0 6iffi: I in the order (id, father). PRG in the order (father, id).

2 The relation R′ is the optimal choice if it is queried when either x2, both x1 and x2,
or none of the variables are bound.

3 The clause describing the analysis da0 2 uses terms, which internally in the solver
are translated to auxiliary relations before the clause is solved. Thus, the clause
contains 7 auxiliary relations when it is solved. In da0 6 we have formulated the
analysis so there is no gain from reordering parameters in these relations. Thus, we
disregard effects from reordering parameters in the auxiliary relations.
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da0 6ifif: I in the order (id, father). PRG in the order (id, father).

An example of these closure conditions are shown in Appendix VII. Second,
we have conducted an experiment allowing multiple copies of the same relation
using the automatic reordering implemented in the solver.
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Fig. 3.

In Figure 3, the measured execution times of running the analysis da0 6 with
parameters of the relations in different orders are shown in relation to m; the
size of the network. The plot is made using logarithmic scales on both axes.
Thus, a polynomial dependency will result in a straight line. Higher degrees of
the polynomial will appear as a steeper gradient. Hence, two polynomials with
the same degree will appear as parallel lines. The polynomial with the smallest
coefficient will appear as the lowest of the two lines.

We see from Figure 3 that reordering parameters in I or PRG give improvements,
which are a constant factor better than the original order fifi. Using the order
(id, father) of the relation PRG gives significant improvements, while changing
the order of the parameters of I is less significant. However, when we use multiple
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copies of the relations the degree of the complexity polynomial drops by 2 and,
thus, gives a significant improvement.

Along the lines of the experiments with the 0-CFA we have conducted experi-
ments with the 1-CFA. Again, we have defined an analysis da1 6, which this time
is based on the analysis da1 2 with an example given in Appendix XIV. Here, g
in the suffix of an analysis name stands for grand father. This time, there are 36
(3! · 3!) permutations of the order of the parameters in the two ternary relations
I and PRG. To reduce the amount of data we have fixed the order of parameter
in PRG to (id, grand father, father) and varied the order of parameters in I.
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The results of these experiments are shown in Figure 4. Again we see that chang-
ing the order of parameters may change the complexity – even by a degree in
the complexity polynomial. The last analysis, da1 6, contains two copies of the
relation I generated by the reordering strategy implemented in the solver. One
copy of the relation has the parameters in the order (father, grand father, id)
while the other copy has the order (father, grand father, id). However, this anal-
ysis is only as good as the analysis that contains only a single copy of I with
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parameters in the order (father, grand father, id). Thus, in this case, there is
effectively no improvement gained from copying the relation, though it yields
longer prefixes of bound variables. Moreover, copying the relation will require
additional space to store the relations.

To summarise, we have given evidence that the strategy for reordering param-
eters, which is implemented in the Succinct Solver will increase efficiency. The
increase is often by degrees of the complexity polynomial! However, we have also
given an example where the reordering did not increase efficiency even though
the solver used two copies of the same relation. We conclude that the reordering
strategy implemented in the Succinct Solver, in general, is highly recommend-
able but there are cases where the same speed can be achieved without copying
the relations. With care, this may be used when fine tuning clauses for space
consumption. The experiments done in the remainder of this paper have been
performed using the reordering strategy implemented in the Succinct Solver.

4 The Order of Conjuncts in Preconditions

Preconditions are evaluated from left to right and in the context of an environ-
ment η. When checking a query to a relation R the evaluation of the remainder
of the precondition is performed for all the new environments η′, which are made
by unifying η with an element currently in R. The unification will fail when the
binding of the variables in η does not coincide with the element of R. In this
case, no further work is done. Thus, we may expect to gain efficiency by making
the unification fail as early as possible in the evaluation of a precondition. This
is the objective of the experiments made in this section.

Now, the question is how to make unification fail early and consequently prop-
agate as few environments as possible. As an example, consider the clause

∀x [R(x, a) ∧R(b, x) ⇒ Q(x)]

where a and b are constants. Initially, the query R(x, a) is evaluated and unifi-
cation is performed with every element in R. Since x is unbound, the unification
succeeds for the elements in R, which have a as the second component. For each
of these environments R(b, x) is evaluated.

Now, suppose we have a priori knowledge that the relation R will contain few
elements with b as the first component but many elements with a as the second
component. In this case, swapping the conjuncts in the precondition, i.e. the
clause

∀x [R(b, x) ∧R(x, a) ⇒ Q(x)]

will be more efficient as fewer environments are propagated from the first query
to R. This observation leads to the general optimisation strategy that putting
queries, which restrict the variable binding most, at the front of preconditions
will increase efficiency. Note that this strategy may require a priory knowledge
of the content of the relations and this knowledge may not always be available.
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For our analyses, we do in fact have some a priori information on how the
relations are built. Consider for example the clause for checking capabilities
in µ in the analysis da0 1:

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µa, µp, t2 :




I〈µa, t1〉 ∧
I〈µp, µa〉 ∧
I〈µp, µ〉 ∧
in〈µa, µ〉 = t2 ∧
I〈µ, t2〉



⇒ I〈µ, µa〉




Here, the inner precondition (I〈µa, t1〉 ∧ I〈µp, µa〉 ∧ . . .) consists of queries to I
and the explicit binding of a term to t2. The first query, binds the father µa of
the capability, the second and the third query finds a path to the sibling, while
the last two queries find co-capabilities. Each of these queries will give rise to
a different number of environments to be propagated as a result of successful
unification. For example, we may expect that there are only a few co-capabilities
matching the µ in the capability – compared to the number of sibling ambients of
a given ambient. Therefore, it will be a good idea to move the query concerning
co-capabilities to the front of the precondition.

We have specified three analyses (da0 1, da0 2 and da0 3) using different orders
of conjuncts in the inner preconditions for all three capabilities in, out, and open.
Additionally, we have specified a fourth analysis, where the variables t1 and t2
used to match terms are bound before the explicit unification of the term such
as in〈µa, µ〉 = t2.

In summary the analyses are:

da0 1: first recognise a capability, then the path to the root of the redex and
finally the matching co-capability (see Appendix III).

da0 2: first recognise a co-capability, then the path to the root of the redex and
finally the matching capability (see Appendix IV).

da0 3: first recognise a co-capability, then the matching capability and finally
the path to the root of the redex (see Appendix V).

da0 7: as da0 2 but explicit unification of terms are done after the binding of
the term variable (see Appendix VIII).

Figure 5 shows the result of running the solver using the four analyses. We see
that da0 3 is a constant factor better than da0 1. For da0 2 the polynomial de-
gree of the complexity is changed and, thus, yields a significantly better analysis.
da0 7 is only a constant factor worse than da0 2.

We have manually calculated the number of environments which will be gener-
ated for the three analyses and confirmed the empirical results. However, these
calculations rely heavily on the structure of the program s-m. Therefore, the
improvements we observe may only apply for precisely these programs and need
not be valid in general. Hence, the experiments have been repeated for the pro-

13



10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

Effects of ordering conjuncts in preconditions    0−CFA on program s−m

m

S
ol

ve
r 

tim
e 

ex
cl

. g
ar

ba
ge

 c
ol

le
ct

io
n

da0_1    O(m4.0)
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da0_3    O(m3.8)
da0_7    O(m2.2)

Fig. 5.

grams 1-m, lvg-m and sph-m. The results can be found in Appendix XXIV. For
1-m we see a pattern identical to the one found for s-m. For lvg-m we also ob-
serve something similar, though the change of degree is not as significant. Thus,
we conclude that the effect of reordering the conjuncts in the preconditions is
advantageous regardless of the network topology, which differs in the three pro-
grams 1-m, s-m, and lvg-m. However, our argument for putting co-capabilities
at the front was that there was only a few of these which would match a given µ.
This is not true in general. One example where it does not hold is the programs
sph-m. Consequently, this reordering of the conjunct should have no effect, which
is also confirmed experimentally as shown in Appendix XXIV. We conclude that
the programming style in this case influence the effect that our proposed trans-
formation has on efficiency of solving our analyses.

Similar experiments have been conducted for the 1-CFA by testing the analyses
da1 1, da1 2, da1 3, and da1 7 which may be found in Appendix XI through
XV. The result of the experiments on the program 1-m is shown in Figure 6 while
experiments with the programs s-m, lvg-m, and sph-m are shown in Appendix
XXV. Figure 6 shows the general pattern of these experiments. The complexity
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da1_2   O(m2.0)
da1_3   O(m2.0)
da1_7   O(m2.8)

Fig. 6.

of solving the analyses da1 1, da1 2, da1 3 differs only by a constant factor.
The analysis da1 7, on the other hand, is worse by degrees of the complexity
polynomial.

In summary, we have shown that the order of conjuncts in preconditions has a
significant effect and that the effect may be explained by the number of environ-
ments propagated through the preconditions. Almost everywhere we have been
able to modify the order of conjuncts so the degree of the complexity polyno-
mial changes. However, we have no clear indication that there is particular type
of rewriting, which will always change the degree of the solving time complex-
ity. Yet, a particular analysis may be beneficial for programs using a specific
programming style.

5 The Use of Memoisation

Extra work arising from needless propagation of environments in the precondi-
tions may also arise because the precondition uses variables not relevant for the
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conclusion. Suppose we have a clause as

∀x, y1, y2, y3 [P (x, y1) ∧Q(y1, y2, y3) ⇒ R(y1, y2, y3)] (1)

All the environments built when checking P (x, y1) will contain x. These envi-
ronments are propagated although x is not used in neither Q(y1, y2, y3) nor in
R(y1, y2, y3). If there are two of these environments where x is different but y1

has the same value, the evaluation of Q(y1, y2, y3) and R(y1, y2, y3) will be done
twice, although the result will be the same. In this section we investigate and
compare two approaches, which target this problem.

5.1 The Virtues of Tiling

Tiling is a systematic transformation on Horn Clauses proposed in [7]. The
transformation may improve worst-case complexity of solving Horn Clauses by
reducing quantifier nesting depth if there exists queries in a precondition with
variables that are not used in the conclusion. Hereby, it also targets the problem
described above.

As an example of tiling, we take the clause (1) from above. Applying the tiling
transformation of the variable x results in the new clause

∀x, y1 [P (x, y1)] ⇒ S(y1) ∧
∀y1, y2, y3 [S(y1) ∧Q(y1, y2, y3)] ⇒ R(y1, y2, y3)

thus, introducing an auxiliary relation S, which allows the second clause to
“ignore” the different values of x. In general, tiling gathers all queries involving
the candidate variable and builds an auxiliary relation containing the values of
the remaining variables, which have a common candidate variable. Furthermore,
all the queries involving the candidate variable (above only P (x, y1)) is removed
from the original clause and a query to the auxiliary relation is inserted (S(y1)
in the example).

The tiling transformation disposes of the unnecessary propagation of environ-
ments, which only differs in the candidate variable. Thus, the benefits of tiling
will (at best) be proportional to the number of such environments. However, by
applying the tiling transformation there is a risk of building very large auxiliary
relations! These relations will both take up memory and require time to com-
pute, thus, with the danger of nullifying the gain or even worsening the overall
performance.

Horn Clauses and sharing. Tiling is a transformation that works on Horn
Clauses, which is a subset of Alternation-free Least Fixed Point Logic; the clause
format of the Succinct Solver. However, transforming an Alternation-free Least
Fixed Point Logic formula into a Horn Clause may alter the complexity of solv-
ing the clause. For our analyses, the only change in complexity is that we lose

16



the positive effects of sharing preconditions between multiple conjuncts in the
conclusion as illustrated by the transformation of a) into b) below

a) pre ⇒ con1 ∧ con2 b)
pre ⇒ con1 ∧
pre ⇒ con2

This transformations will, in theory, only make the clause b) a constant factor
worse than the clause a) and the size of the constant will depend on the size of
the precondition pre. For small preconditions this effect does, however, not show
up in empirical data (see e.g. the difference of running da0 2 and da0 t1 on
Figure 7). For larger preconditions, such as the ones that may be found in the 1-
CFA in the inner precondition of “capability clauses”, the effects are measurable
(compare e.g. da1 2 and da1 t1 on the figures in Appendix XXVIII).

Experiments with tiling. We have transformed the 0-CFA analysis da0 2 into
Horn Clause and performed tiling of different candidate variables. The resulting
analyses, of which examples are shown in Appendix XVI through Appendix XIX,
are summarised below

da0 t1: Horn Clause form of the analysis da0 2
da0 t2: ? tiled from da0 t1
da0 t3: t1 tiled from da0 t2 (i.e. ? then t1 are tiled – in that order)
da0 t4: t2 tiled from da0 t3 (i.e. ?, t1 then t2 are tiled – in that order)
da0 t5: t1 tiled from da0 t1
da0 t6: t2 tiled from da0 t1
da0 t7: µ or µp tiled from da0 t1

Figure 7 shows the result of the different tiling transformations. Tiling improves
the degree of the complexity polynomial for the transformations da0 t2, da0 t3,
da0 t4 i.e. the transformations where the variable ? is the first one that is tiled.

Tiling of t2 (da0 t6) has no effect. The variable t2 is used to bind co-capabilities.
However, for the programs lvg-m every instance of a co-capability will only ap-
pear inside one parent ambient. Thus, queries, which are on the form I(µ, t2),
will only result in propagation of one environment for each t2 so the tiling will
have no benefits. Additionally, the auxiliary predicate generated by tiling does
not cause substantial amounts of additional work.

The two analyses da0 t5 and da0 t7 are examples of tiling transformations that
increase the work of solving the clause. Here, the auxiliary relations introduced
by tiling become so large that the work of calculating these relations overshadows
the work of solving the rest of the clause. When da0 t5 is run on the program
s-m, as shown in Appendix XXVI, the analysis is, however, as good as the
original analysis. This is because there are no single capability that occurs more
than once in the program s-m. Thus, the auxiliary relation (HasIn), which is
introduced by tiling, does not explode in size for this program. Consequently,
the analysis is no more expensive to solve than the original one.
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Fig. 7.

Similar arguments can be given when testing the analyses on the remaining test
programs as shown in Appendix XXVI. Some of the tilings have, additionally,
been applied to the 1-CFA as shown in Appendix XXVIII and this give similar
results.

5.2 Memoisation

The Succinct Solver includes a build-in facility that avoids propagation of identi-
cal environments by applying memoisation techniques. Propagation of completely
identical environments can only occur at disjunctions and at existential quan-
tifications in a precondition so memoisation is only applied for these constructs.

However, a similar phenomenon can occur at other places. Consider e.g. the
clause (1) on page 16. Here, several environments that differ only in the value of
x may be propagated. These are essentially identical but since neither existen-
tial quantification nor disjunction is used we cannot (directly) benefit from the
memoisation techniques implemented in the solver.
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Instead of solving the clause (1) we may transform it into the logically equivalent
clause

∀y1, y2, y3 [[∃x [P (x, y1)] ∧Q(y1, y2, y3)] ⇒ R(y1, y2, y3)] (2)

Here, the universal quantification of x has been transformed into an existential
quantification in the precondition. The basic solving algorithm of the Succinct
Solver will solve the two clauses (1) and (2) in the same way 4. However, for the
clause (2) the memoisation scheme ensures that no identical environments are
propagated.

The replacement of universal quantification by existential quantification in pre-
conditions can be applied as a general transformation whenever the quantified
variable does not occur in the conclusion. Basically this addresses the same prob-
lem as the tiling transformation. Therefore, we may expect a similar behaviour
when solving the result of the two transformations.

Experiments with memoisation. Again, we have transformed the analysis
into Horn Clauses. From this analysis we have applied the transformations, which
inserts existential quantifiers. The analyses using memoisation are tailored to
resemble the analyses used to test the tiling transformation. Examples of the
analysis are shown in Appendix XX through XXIII. In summary they are

da0 t1: Horn Clause form of the analysis da0 2
da0 m2: ? existentially quantified from da0 t1
da0 m3: ? and t1 existentially quantified from da0 t1
da0 m4: ?, t1, and t2 existentially quantified from da0 t1
da0 m5: t1 existentially quantified from da0 t1
da0 m6: t2 existentially quantified from da0 t1
da0 m7: µ or µp existentially quantified from da0 t1
da0 m9: all possible variables existentially quantified from da0 t1 (see the next

section)

Figure 8 shows the result of running these analyses on lvg-m and resembles
Figure 7 where similar analyses where made by tiling. Actually, several of the
analyses, such as da0 t2 and da0 m2, and da0 t6 and da0 m6, respectively, have
run times that are identical within the accuracy of measurement. For some of the
other analyses, the use of memoisation is superior to the tiling transformation.
This happens e.g. with the variable t1 where the analysis using existential quan-
tification (da0 m5) is a constant factor better than the corresponding analysis
using tiling (da0 t5).

4 The variable x is only included in the environments within the scope of the quantifier.
For the clause (2), the scope ends right after the query P (x, y1) while it extends to
the end of the entire clause in (1). Thus, the environments which contain x will be
propagated further in (1) that in (2). Still, the exact same number of environments
would be propagated in two clauses if the Succinct Solver did not have memoisation
at existential quantification.
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da0_m9    O(m2.8)

Fig. 8.

Even better is the analysis da0 m7 over the analysis da0 t7. Here the improve-
ment of memoisation over tiling is by a degree in the complexity polynomial. In
the analysis da0 t7 tiling of e.g. the variable µp generates a sibling relation. This
relation becomes very large and the high complexity of this analysis is due to
the calculation of this relation. On the other hand, when using memoisation as
in da0 m7 this relation is not build explicitly. Instead it is evaluated only when
needed, i.e. in a “lazy” fashion, thereby saving the work of generating the entire
relation, which also contains unused elements. Thus, memoisation can be more
efficient than the corresponding tiling transformation.

The above results are similar, for almost5 all the test programs as shown in
Appendix XXVII.

5 The analysis da0 m7 is only a constant factor better than the analysis da0 m7 for the
program sph-m. The reason is the analysis itself has a complexity, which is as bad as
the calculation of the sibling relation. Thus, we cannot expect to improve the overall
complexity by “optimising the calculation of the sibling relation”.
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5.3 Greedy Memoisation

The experiments presented in the previous section seem to show that using ex-
istential quantifiers is always a good idea. We have tested this hypothesis by
applying a greedy transformation which replaces universal quantifier in clauses
with existential quantifiers in the precondition whenever it is possible. The re-
sulting analyses are da0 m9 for 0-CFA (see Appendix XXIII) and da1 m9 for
1-CFA.

Experiments on the various test programs are displayed on Figure 8 and Ap-
pendix XXVII for 0-CFA and in Appendix XXVIII for the 1-CFA. They show
that this greedy approach is a good idea. In many of the experiments, the two
analyses da0 m9 and da1 m9 are the best of all the analysis we have presented
in the paper. At times, however, this is not the case but in these cases the two
analyses are only small constant factors worse than the best of the analyses we
have found.

This greedy approach of replacing universal quantifiers with existential quan-
tifiers, seem to have similar performance characteristics as the transformation,
which reorders parameters in relations. Since, the greedy transformation is a
purely syntactic transformation it, too, can be fully automated. However, as was
the case for the reordering transformation also this transformation trades mem-
ory in return for the chance of a great increase of the solving time. There is, how-
ever, cases where the transformation does not yield a more time efficient clause;
so, instead, memory is wasted. Additionally, the greedy memoisation scheme,
so far, works only for Horn Clause, therefore, cannot be applied to arbitrary
Alternation-free Least Fixed Point formulae.

6 Tuning Clauses

We summarise our results in this section by stating a number of recommenda-
tions on how to tune clauses to be efficiently solvable. For an explanation of
the rational behind our recommendations the reader is directed to the previous
sections.

Ordering parameters in relations. The order in which parameters appear
in relations as queries and conclusions is not a concern when writing clauses.
The Succinct Solver automatically reorders the parameters in an “optimal” way
before solving and this does not require user interaction. It may, however, some-
times be possible to optimise a clause for space consumption by close inspection
and manual reordering of the parameters as described in section 3.

Ordering conjuncts in preconditions. Preconditions are evaluated from
left to right by propagating environments. Thus, the fewer environments that
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are propagated, the more efficient it is to evaluate the precondition. Queries that
bind a variable to few possible values should, therefore, appear further to the
left in a precondition than queries that bind the variable to many values. This
transformation must be performed manually.

Existential quantification in preconditions. Whenever possible, existential
quantification in preconditions should be used instead of universal quantification
of the entire clause. Thus, a clause on the form a) is preferred over a clause on
the form b) below

a) ∀y1, . . . , yn[ ∃x [ prex ] ∧ prey ] ⇒ con
b) ∀x, y1, . . . , yn [ prex ∧ prey ] ⇒ con

where x is a variable that is not free in prey or con.

Sharing preconditions. Sharing a precondition between multiple conclusions,
i.e. the use of conjunct in a conclusion, will improve efficiency by at most a
constant factor. Thus below, a clause on the form a) will, generally, be more
efficient that b).

a) pre ⇒ con1 ∧ con2 b) pre ⇒ con1 ∧
pre ⇒ con2

However, if the precondition pre is small (e.g. it only contains one or two con-
juncts) the use of sharing will have no measurable effect and may be disregarded.

7 Conclusion

Through a series of experiments involving 0-CFA and 1-CFA analyses for Discre-
tionary Ambients we have studied how systematic transformations on the input
clauses to the Succinct Solver effect solving time. We have commented on the
experiments, thus, explaining the coherence between the solving algorithm and
empirical observations. Finally, we have suggested a number of transformation
the will make clauses more efficiently solvable. The main next step is to use these
insights for tuning the analysis developed for Carmel (see SECSAFE-IMM-001).
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I 0-CFA – The Initial Specification

I |=?
Γ (νn : µ)P iff I |=?

Γ [n7→µ] P

I |=?
Γ (νµ)P iff I |=?

Γ P

I |=?
Γ 0

I |=?
Γ P1 | P2 iff I |=?

Γ P1 ∧ I |=?
Γ P2

I |=?
Γ !P iff I |=?

Γ P

I |=?
Γ n[P ] iff µ ∈ I(?) ∧ I |=µ

Γ P where µ = Γ (n)

I |=?
Γ M.P iff I |=?

Γ M ∧ I |=?
Γ,L P

I |=?
Γ in n iff




in(µ) ∈ I(?) ∧

∀µa, µp :




in(µ) ∈ I(µa) ∧
µa ∈ I(µp) ∧
µ ∈ I(µp) ∧
in〈µa, µ〉 ∈ I(µ)


 ⇒ µa ∈ I(µ)




where µ = Γ (n)

I |=?
Γ out n iff




out(µ) ∈ I(?) ∧

∀µa, µg :




out(µ) ∈ I(µa) ∧
µa ∈ I(µ) ∧
µ ∈ I(µg) ∧
out〈µa, µ〉 ∈ I(µ)


 ⇒ µa ∈ I(µg)




where µ = Γ (n)

I |=?
Γ open n iff




open(µ) ∈ I(?) ∧

∀µp :



open(µ) ∈ I(µp) ∧
µ ∈ I(µp) ∧
open〈µp, µ〉 ∈ I(µ)


 ⇒ I(µ) ⊆ I(µp)




where µ = Γ (n)

I |=?
Γ inµ n iff in〈µ, µ′〉 ∈ I(?) where µ′ = Γ (n)

I |=?
Γ outµ n iff out〈µ, µ′〉 ∈ I(?) where µ′ = Γ (n)

I |=?
Γ openµ n iff open〈µ, µ′〉 ∈ I(?) where µ′ = Γ (n)
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II 0-CFA – Representation Function

I |=?
Γ (νn : µ)P iff prg〈?, new〈n, µ〉〉 ∧ I |=?

Γ [n7→µ] P

I |=?
Γ (νµ)P iff prg〈?, group(µ)〉 ∧ I |=?

Γ [µ7→`] P

I |=?
Γ 0

I |=?
Γ P1 | P2 iff I |=?

Γ P1 ∧ I |=?
Γ P2

I |=?
Γ !P iff I |=?

Γ P

I |=?
Γ n[P ] iff prg〈?, amb(µ)〉 ∧ I |=µ

Γ P where µ = Γ (n)

I |=?
Γ M.P iff I |=?

Γ M ∧ I |=?
Γ P

I |=?
Γ in n iff prg〈?, in(µ)〉 where µ = Γ (n)

I |=?
Γ out n iff prg〈?, out(µ)〉 where µ = Γ (n)

I |=?
Γ open n iff prg〈?, open(µ)〉 where µ = Γ (n)

I |=?
Γ inµ n iff prg〈?, in〈µ, µ′〉〉 where µ′ = Γ (n)

I |=?
Γ outµ n iff prg〈?, out〈µ, µ′〉〉 where µ′ = Γ (n)

I |=?
Γ openµ n iff prg〈?, open〈µ, µ′〉〉 where µ′ = Γ (n)
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III Closure Condition: da0 1

∀ ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µa, µp, t2 :




I〈µa, t1〉 ∧
I〈µp, µa〉 ∧
I〈µp, µ〉 ∧
in〈µa, µ〉 = t2 ∧
I〈µ, t2〉



⇒ I〈µ, µa〉




∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µa, µg, t2 :




I〈µa, t1〉 ∧
I〈µ, µa〉 ∧
I〈µg, µ〉 ∧
out〈µa, µ〉 = t2 ∧
I〈µ, t2〉



⇒ I〈µg, µa〉




∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µp, t2 :




I〈µp, t1〉 ∧
I〈µp, µ〉 ∧
open〈µp, µ〉 = t2 ∧
I〈µ, t2〉


 ⇒ ∀u1 :I〈µ, u1〉 ⇒ I〈µp, u1〉




∀ ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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IV Closure Condition: da0 2

∀ ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µa, µp, t2 :




in〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
I〈µa, t1〉 ∧
I〈µp, µa〉



⇒ I〈µ, µa〉




∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µa, µg, t2 :




out〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µg, µ〉 ∧
I〈µa, t1〉 ∧
I〈µ, µa〉



⇒ I〈µg, µa〉




∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µp, t2 :




open〈µp, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
I〈µp, t1〉


 ⇒ ∀u1 :I〈µ, u1〉 ⇒ I〈µp, u1〉




∀ ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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V Closure Condition: da0 3

∀ ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µa, µp, t2 :




in〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µa, t1〉 ∧
I〈µp, µa〉 ∧
I〈µp, µ〉



⇒ I〈µ, µa〉




∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µa, µg, t2 :




out〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µa, t1〉 ∧
I〈µ, µa〉 ∧
I〈µg, µ〉



⇒ I〈µg, µa〉




∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µp, t2 :




open〈µp, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, t1〉 ∧
I〈µp, µ〉


 ⇒ ∀u1 :I〈µ, u1〉 ⇒ I〈µp, u1〉




∀ ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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VI Closure Condition: da0 4

∀ ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒

[I〈?, t1〉 ∧
HasIn〈µ, t1〉

]

∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒

[I〈?, t1〉 ∧
HasOut〈µ, t1〉

]

∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒

[I〈?, t1〉 ∧
HasOpen〈µ, t1〉

]

∀ ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µp, µ :Sp〈µ, µp〉 ⇒ ∀u1 :I〈µ, u1〉 ⇒ I〈µp, u1〉

∀ t2, t1, µ
p, µ, µa :




HasIn〈µ, t1〉 ∧
in〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
I〈µa, t1〉 ∧
I〈µp, µa〉



⇒ I〈µ, µa〉

∀ t2, t1, µ, µg, µa :




HasOut〈µ, t1〉 ∧
out〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µg, µ〉 ∧
I〈µa, t1〉 ∧
I〈µ, µa〉



⇒ I〈µg, µa〉

∀ t2, t1, µ, µp :




HasOpen〈µ, t1〉 ∧
open〈µp, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
I〈µp, t1〉



⇒ Sp〈µ, µp〉
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VII Closure Condition: da0 6fifi

∀ ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µa, µp, t2 :




I〈µ, t2〉 ∧
in〈µ, µa〉 = t2 ∧
I〈µp, µ〉 ∧
I〈µa, t1〉 ∧
I〈µp, µa〉



⇒ I〈µ, µa〉




∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µa, µg, t2 :




I〈µ, t2〉 ∧
out〈µ, µa〉 = t2 ∧
I〈µg, µ〉 ∧
I〈µa, t1〉 ∧
I〈µ, µa〉



⇒ I〈µg, µa〉




∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒




I〈?, t1〉 ∧

∀µp, t2 :




I〈µ, t2〉 ∧
open〈µ, µp〉 = t2 ∧
I〈µp, µ〉 ∧
I〈µp, t1〉


 ⇒ ∀u1 :I〈µ, u1〉 ⇒ I〈µp, u1〉




∀ ?, µ, µ′, t1 :
[
in〈µ′, µ〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
out〈µ′, µ〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ′, µ〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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VIII Closure Condition: da0 7

∀ ?, µ, t1 :
[
prg〈t1, ?〉 ∧
amb(µ) = t1

]
⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
prg〈t1, ?〉 ∧
in(µ) = t1

]
⇒




I〈?, t1〉 ∧

∀µa, µp, t2 :




I〈µ, t2〉 ∧
in〈µ, µa〉 = t2 ∧
I〈µp, µ〉 ∧
I〈µa, t1〉 ∧
I〈µp, µa〉



⇒ I〈µ, µa〉




∀ ?, µ, t1 :
[
prg〈t1, ?〉 ∧
out(µ) = t1

]
⇒




I〈?, t1〉 ∧

∀µa, µg, t2 :




I〈µ, t2〉 ∧
out〈µ, µa〉 = t2 ∧
I〈µg, µ〉 ∧
I〈µa, t1〉 ∧
I〈µ, µa〉



⇒ I〈µg, µa〉




∀ ?, µ, t1 :
[
prg〈t1, ?〉 ∧
open(µ) = t1

]
⇒




I〈?, t1〉 ∧

∀µp, t2 :




I〈µ, t2〉 ∧
open〈µ, µp〉 = t2 ∧
I〈µp, µ〉 ∧
I〈µp, t1〉


 ⇒ ∀u1 :I〈µ, u1〉 ⇒ I〈µp, u1〉




∀ ?, µ, µ′, t1 :
[
prg〈t1, ?〉 ∧
in〈µ′, µ〉 = t1

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
prg〈t1, ?〉 ∧
out〈µ′, µ〉 = t1

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
prg〈t1, ?〉 ∧
open〈µ′, µ〉 = t1

]
⇒ I〈?, t1〉
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IX 1-CFA – The Initial Specification

I |=〈>,?〉
Γ (νn : µ)P iff I |=〈>,?〉

Γ [n7→µ] P

iff I |=〈>,?〉
Γ (νµ)P`

I |=〈>,?〉
Γ [µ7→`] P I |=〈>,?〉

Γ 0

I |=〈>,?〉
Γ P1 | P2 iff

[
I |=〈>,?〉

Γ P1 ∧
I |=〈>,?〉

Γ P2

]

I |=〈>,?〉
Γ !P iff I |=〈>,?〉

Γ P

I |=〈>,?〉
Γ n[P ] iff

[
µ ∈ I〈>, ?〉 ∧
I |=〈?,µ〉

Γ P

]

where µ = Γ (n)

I |=〈>,?〉
Γ M.P iff

[
I |=〈>,?〉

Γ M ∧
I |=〈>,?〉

Γ P

]

I |=〈>,?〉
Γ in n iff




in(µ) ∈ I〈>, ?〉 ∧

∀µa, µp, µq :




in(µ) ∈ I〈µp, µa〉 ∧
µa ∈ I〈µq, µp〉 ∧
µ ∈ I〈µq, µp〉 ∧
in〈µa, µ〉 ∈ I〈µp, µ〉


 ⇒

[
µa ∈ I〈µp, µ〉 ∧
I〈µp, µa〉 ⊆ I〈µ, µa〉

]




where µ = Γ (n)

I |=〈>,?〉
Γ out n iff




out(µ) ∈ I〈>, ?〉 ∧

∀µa, µg, µq :




out(µ) ∈ I〈µ, µa〉 ∧
µa ∈ I〈µg, µ〉 ∧
µ ∈ I〈µq, µg〉 ∧
out〈µa, µ〉 ∈ I〈µg, µ〉


 ⇒

[
µa ∈ I〈µq, µg〉 ∧
I〈µ, µa〉 ⊆ I〈µg, µa〉

]




where µ = Γ (n)

I |=〈>,?〉
Γ open n iff




open(µ) ∈ I〈>, ?〉 ∧

∀µp, µq :



open(µ) ∈ I〈µq, µp〉 ∧
µ ∈ I〈µq, µp〉 ∧
open〈µp, µ〉 ∈ I〈µp, µ〉


 ⇒ [I〈µp, µ〉 ⊆ I〈µq, µp〉]




where µ = Γ (n)

I |=〈>,?〉
Γ inµ n iff in〈µ, µ′〉 ∈ I〈>, ?〉

where µ′ = Γ (n)
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I |=〈>,?〉
Γ outµ n iff out〈µ, µ′〉 ∈ I〈>, ?〉

where µ′ = Γ (n)

I |=〈>,?〉
Γ openµ n iff open〈µ, µ′〉 ∈ I〈>, ?〉

where µ′ = Γ (n)
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X 1-CFA – Representation Function

I |=〈>,?〉
Γ (νn : µ)P iff

[
prg〈〈>, ?〉, new〈n, µ〉〉 ∧
I |=〈>,?〉

Γ [n 7→µ] P

]

I |=〈>,?〉
Γ (νµ)P` iff

[
prg〈〈>, ?〉, group〈µ, `〉〉 ∧
I |=〈>,?〉

Γ [µ 7→`] P

]

I |=〈>,?〉
Γ 0

I |=〈>,?〉
Γ P1 | P2 iff

[
I |=〈>,?〉

Γ P1 ∧
I |=〈>,?〉

Γ P2

]

I |=〈>,?〉
Γ !P iff I |=〈>,?〉

Γ P

I |=〈>,?〉
Γ n[P ] iff

[
prg〈〈>, ?〉, amb(µ)〉 ∧
I |=〈?,µ〉

Γ P

]

where µ = Γ (n)

I |=〈>,?〉
Γ M.P iff

[
I |=〈>,?〉

Γ M ∧
I |=〈>,?〉

Γ P

]

I |=〈>,?〉
Γ in n iff prg〈〈>, ?〉, in(µ)〉

where µ = Γ (n)

I |=〈>,?〉
Γ out n iff prg〈〈>, ?〉, out(µ)〉

where µ = Γ (n)

I |=〈>,?〉
Γ open n iff prg〈〈>, ?〉, open(µ)〉

where µ = Γ (n)

I |=〈>,?〉
Γ inµ n iff prg〈〈>, ?〉, in〈µ, µ′〉〉

where µ′ = Γ (n)

I |=〈>,?〉
Γ outµ n iff prg〈〈>, ?〉, out〈µ, µ′〉〉

where µ′ = Γ (n)

I |=〈>,?〉
Γ openµ n iff prg〈〈>, ?〉, open〈µ, µ′〉〉

where µ′ = Γ (n)
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XI Closure Condition: da1 1

∀>, ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, µ〉

∀>, ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒




I〈>, ?, t1〉 ∧

∀µa, µp, µq, t2 :




I〈µp, µa, t1〉 ∧
I〈µq, µp, µa〉 ∧
I〈µq, µp, µ〉 ∧
in〈µa, µ〉 = t2 ∧
I〈µp, µ, t2〉



⇒

[I〈µp, µ, µa〉 ∧
∀u1 :I〈µp, µa, u1〉 ⇒ I〈µ, µa, u1〉

]




∀>, ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒




I〈>, ?, t1〉 ∧

∀µa, µg, µq, t2 :




I〈µ, µa, t1〉 ∧
I〈µg, µ, µa〉 ∧
I〈µq, µg, µ〉 ∧
out〈µa, µ〉 = t2 ∧
I〈µg, µ, t2〉



⇒

[I〈µq, µg, µa〉 ∧
∀u1 :I〈µ, µa, u1〉 ⇒ I〈µg, µa, u1〉

]




∀>, ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒




I〈>, ?, t1〉 ∧

∀µp, µq, t2 :




I〈µq, µp, t1〉 ∧
I〈µq, µp, µ〉 ∧
open〈µp, µ〉 = t2 ∧
I〈µp, µ, t2〉


 ⇒

∀u1 :I〈µp, µ, u1〉 ⇒ I〈µq, µp, u1〉




∀>, ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, t1〉

∀>, ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, t1〉

∀>, ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, t1〉
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XII Closure Condition: da1 2

∀>, ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, µ〉

∀>, ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒




I〈>, ?, t1〉 ∧

∀µa, µp, µq, t2 :




in〈µa, µ〉 = t2 ∧
I〈µp, µ, t2〉 ∧
I〈µq, µp, µ〉 ∧
I〈µp, µa, t1〉 ∧
I〈µq, µp, µa〉



⇒

[I〈µp, µ, µa〉 ∧
∀u1 :I〈µp, µa, u1〉 ⇒ I〈µ, µa, u1〉

]




∀>, ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒




I〈>, ?, t1〉 ∧

∀µa, µg, µq, t2 :




out〈µa, µ〉 = t2 ∧
I〈µg, µ, t2〉 ∧
I〈µq, µg, µ〉 ∧
I〈µ, µa, t1〉 ∧
I〈µg, µ, µa〉



⇒

[I〈µq, µg, µa〉 ∧
∀u1 :I〈µ, µa, u1〉 ⇒ I〈µg, µa, u1〉

]




∀>, ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒




I〈>, ?, t1〉 ∧

∀µp, µq, t2 :




open〈µp, µ〉 = t2 ∧
I〈µp, µ, t2〉 ∧
I〈µq, µp, µ〉 ∧
I〈µq, µp, t1〉


 ⇒

∀u1 :I〈µp, µ, u1〉 ⇒ I〈µq, µp, u1〉




∀>, ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, t1〉

∀>, ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, t1〉

∀>, ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, t1〉
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XIII Closure Condition: da1 3

∀>, ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, µ〉

∀>, ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒




I〈>, ?, t1〉 ∧

∀µa, µp, µq, t2 :




in〈µa, µ〉 = t2 ∧
I〈µp, µ, t2〉 ∧
I〈µp, µa, t1〉 ∧
I〈µq, µp, µa〉 ∧
I〈µq, µp, µ〉



⇒

[I〈µp, µ, µa〉 ∧
∀u1 :I〈µp, µa, u1〉 ⇒ I〈µ, µa, u1〉

]




∀>, ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒




I〈>, ?, t1〉 ∧

∀µa, µg, µq, t2 :




out〈µa, µ〉 = t2 ∧
I〈µg, µ, t2〉 ∧
I〈µ, µa, t1〉 ∧
I〈µg, µ, µa〉 ∧
I〈µq, µg, µ〉



⇒

[I〈µq, µg, µa〉 ∧
∀u1 :I〈µ, µa, u1〉 ⇒ I〈µg, µa, u1〉

]




∀>, ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒




I〈>, ?, t1〉 ∧

∀µp, µq, t2 :




open〈µp, µ〉 = t2 ∧
I〈µp, µ, t2〉 ∧
I〈µq, µp, t1〉 ∧
I〈µq, µp, µ〉


 ⇒

∀u1 :I〈µp, µ, u1〉 ⇒ I〈µq, µp, u1〉




∀>, ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, t1〉

∀>, ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, t1〉

∀>, ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈〈>, ?〉, t1〉

]
⇒ I〈>, ?, t1〉
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XIV Closure Condition: da1 6gfiigf

∀>, ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈t1, 〈>, ?〉〉

]
⇒ Iifg〈µ, ?,>〉

∀>, ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈t1, 〈>, ?〉〉

]
⇒




Iifg〈t1, ?,>〉 ∧

∀µa, µp, µq, t2 :




Iifg〈t2, µ, µp〉 ∧
in〈µ, µa〉 = t2 ∧
Iifg〈µ, µp, µq〉 ∧
Iifg〈t1, µa, µp〉 ∧
Iifg〈µa, µp, µq〉



⇒

[
Iifg〈µa, µ, µp〉 ∧
∀u1 :Iifg〈u1, µ

a, µp〉 ⇒ Iifg〈u1, µ
a, µ〉

]




∀>, ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈t1, 〈>, ?〉〉

]
⇒




Iifg〈t1, ?,>〉 ∧

∀µa, µg, µq, t2 :




Iifg〈t2, µ, µg〉 ∧
out〈µ, µa〉 = t2 ∧
Iifg〈µ, µg, µq〉 ∧
Iifg〈t1, µa, µ〉 ∧
Iifg〈µa, µ, µg〉



⇒

[
Iifg〈µa, µg, µq〉 ∧
∀u1 :Iifg〈u1, µ

a, µ〉 ⇒ Iifg〈u1, µ
a, µg〉

]




∀>, ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈t1, 〈>, ?〉〉

]
⇒




Iifg〈t1, ?,>〉 ∧

∀µp, µq, t2 :




Iifg〈t2, µ, µp〉 ∧
open〈µ, µp〉 = t2 ∧
Iifg〈µ, µp, µq〉 ∧
Iifg〈t1, µp, µq〉


 ⇒

∀u1 :Iifg〈u1, µ, µp〉 ⇒ Iifg〈u1, µ
p, µq〉




∀>, ?, µ, µ′, t1 :
[
in〈µ′, µ〉 = t1 ∧
prg〈t1, 〈>, ?〉〉

]
⇒ Iifg〈t1, ?,>〉

∀>, ?, µ, µ′, t1 :
[
out〈µ′, µ〉 = t1 ∧
prg〈t1, 〈>, ?〉〉

]
⇒ Iifg〈t1, ?,>〉

∀>, ?, µ, µ′, t1 :
[
open〈µ′, µ〉 = t1 ∧
prg〈t1, 〈>, ?〉〉

]
⇒ Iifg〈t1, ?,>〉
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XV Closure Condition: da1 7

∀>, ?, µ, t1 :
[
prg〈〈>, ?〉, t1〉 ∧
amb(µ) = t1

]
⇒ I〈>, ?, µ〉

∀>, ?, µ, t1 :
[
prg〈〈>, ?〉, t1〉 ∧
in(µ) = t1

]
⇒




I〈>, ?, t1〉 ∧

∀µa, µp, µq, t2 :




I〈µp, µ, t2〉 ∧
in〈µa, µ〉 = t2 ∧
I〈µq, µp, µ〉 ∧
I〈µp, µa, t1〉 ∧
I〈µq, µp, µa〉



⇒

[I〈µp, µ, µa〉 ∧
∀u1 :I〈µp, µa, u1〉 ⇒ I〈µ, µa, u1〉

]




∀>, ?, µ, t1 :
[
prg〈〈>, ?〉, t1〉 ∧
out(µ) = t1

]
⇒




I〈>, ?, t1〉 ∧

∀µa, µg, µq, t2 :




I〈µg, µ, t2〉 ∧
out〈µa, µ〉 = t2 ∧
I〈µq, µg, µ〉 ∧
I〈µ, µa, t1〉 ∧
I〈µg, µ, µa〉



⇒

[I〈µq, µg, µa〉 ∧
∀u1 :I〈µ, µa, u1〉 ⇒ I〈µg, µa, u1〉

]




∀>, ?, µ, t1 :
[
prg〈〈>, ?〉, t1〉 ∧
open(µ) = t1

]
⇒




I〈>, ?, t1〉 ∧

∀µp, µq, t2 :




I〈µp, µ, t2〉 ∧
open〈µp, µ〉 = t2 ∧
I〈µq, µp, µ〉 ∧
I〈µq, µp, t1〉


 ⇒

∀u1 :I〈µp, µ, u1〉 ⇒ I〈µq, µp, u1〉




∀>, ?, µ, µ′, t1 :
[
prg〈〈>, ?〉, t1〉 ∧
in〈µ, µ′〉 = t1

]
⇒ I〈>, ?, t1〉

∀>, ?, µ, µ′, t1 :
[
prg〈〈>, ?〉, t1〉 ∧
out〈µ, µ′〉 = t1

]
⇒ I〈>, ?, t1〉

∀>, ?, µ, µ′, t1 :
[
prg〈〈>, ?〉, t1〉 ∧
open〈µ, µ′〉 = t1

]
⇒ I〈>, ?, t1〉
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XVI Closure Condition: da0 t1

Horn Clause form of the analysis da0 2 (see Appendix IV).

∀ ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, t1, µ
a, µp, t2 :




in(µ) = t1 ∧
prg〈?, t1〉 ∧
in〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
I〈µa, t1〉 ∧
I〈µp, µa〉




⇒ I〈µ, µa〉

∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, t1, µ
a, µg, t2 :




out(µ) = t1 ∧
prg〈?, t1〉 ∧
out〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µg, µ〉 ∧
I〈µa, t1〉 ∧
I〈µ, µa〉




⇒ I〈µg, µa〉

∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, t1, µ
p, t2, u1 :




open(µ) = t1 ∧
prg〈?, t1〉 ∧
open〈µp, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
I〈µp, t1〉 ∧
I〈µ, u1〉




⇒ I〈µp, u1〉

∀ ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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∀ ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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XVII Closure Condition: da0 t3

? then t1 tiled from da0 t1.

∀ ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µ, µa, µp, t2 :




in〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
HasIn〈µ, µa〉 ∧
I〈µp, µa〉



⇒ I〈µ, µa〉

∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µ, µa, µg, t2 :




out〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µg, µ〉 ∧
HasOut〈µ, µa〉 ∧
I〈µ, µa〉



⇒ I〈µg, µa〉

∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µ, µp, t2, u1 :




open〈µp, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
HasOpen〈µ, µp〉 ∧
I〈µ, u1〉



⇒ I〈µp, u1〉

∀ ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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∀ ?, t :prg〈?, t〉 ⇒ Has(t)

∀ t1, µ, µa :



in(µ) = t1 ∧
Has(t1) ∧
I〈µa, t1〉


 ⇒ HasIn〈µ, µa〉

∀ t1, µ, µa :



out(µ) = t1 ∧
Has(t1) ∧
I〈µa, t1〉


 ⇒ HasOut〈µ, µa〉

∀ t1, µ, µa :



open(µ) = t1 ∧
Has(t1) ∧
I〈µa, t1〉


 ⇒ HasOpen〈µ, µa〉
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XVIII Closure Condition: da0 t5

t1 tiled from da0 t1.

∀ ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µa, µp, t2 :




in〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
HasIn〈?, µ, µa〉 ∧
I〈µp, µa〉



⇒ I〈µ, µa〉

∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µa, µg, t2 :




out〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µg, µ〉 ∧
HasOut〈?, µ, µa〉 ∧
I〈µ, µa〉



⇒ I〈µg, µa〉

∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µp, t2, u1 :




open〈µp, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
HasOpen〈?, µ, µp〉 ∧
I〈µ, u1〉



⇒ I〈µp, u1〉

∀ ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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∀ t1, ?, µ, µa :



in(µ) = t1 ∧
prg〈?, t1〉 ∧
I〈µa, t1〉


 ⇒ HasIn〈?, µ, µa〉

∀ t1, ?, µ, µa :



out(µ) = t1 ∧
prg〈?, t1〉 ∧
I〈µa, t1〉


 ⇒ HasOut〈?, µ, µa〉

∀ t1, ?, µ, µa :



open(µ) = t1 ∧
prg〈?, t1〉 ∧
I〈µa, t1〉


 ⇒ HasOpen〈?, µ, µa〉
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XIX Closure Condition: da0 t7

µp tiled in in clause and µ tiled in out, and open clause.

∀ ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, t1, µ
a, t2 :




in(µ) = t1 ∧
prg〈?, t1〉 ∧
in〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µa, t1〉 ∧
sib〈µ, µa〉



⇒ I〈µ, µa〉

∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, t1, µ
a, µg, t2 :




prg〈?, t1〉 ∧
I〈µa, t1〉 ∧
outRedex〈t1, t2, µg, µa〉


 ⇒ I〈µg, µa〉

∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, t1, µ
p, t2, u1 :




prg〈?, t1〉 ∧
I〈µp, t1〉 ∧
openRedex〈t1, t2, µp, u1〉


 ⇒ I〈µp, u1〉

∀ ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µp, µ, µa :
[I〈µp, µ〉 ∧
I〈µp, µa〉

]
⇒ sib〈µ, µa〉
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∀µ, t1, t2, µ
g, µa :




out(µ) = t1 ∧
out〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µg, µ〉 ∧
I〈µ, µa〉



⇒ outRedex〈t1, t2, µg, µa〉

∀µ, t1, t2, µ
p, u1 :




open(µ) = t1 ∧
open〈µp, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
I〈µ, u1〉



⇒ openRedex〈t1, t2, µp, u1〉
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XX Closure Condition: da0 m3

? and t1 existentially quantified.

∀ ?, µ :(∃ t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
) ⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µ, µa, µp, t2 :




in〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧

(∃ ?, t1 :



in(µ) = t1 ∧
prg〈?, t1〉 ∧
I〈µa, t1〉


) ∧

I〈µp, µ〉 ∧
I〈µp, µa〉




⇒ I〈µ, µa〉

∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µ, µa, µg, t2 :




out〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧

(∃ ?, t1 :



out(µ) = t1 ∧
prg〈?, t1〉 ∧
I〈µa, t1〉


) ∧

I〈µg, µ〉 ∧
I〈µ, µa〉




⇒ I〈µg, µa〉

∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µ, µp, t2, u1 :




open〈µp, µ〉 = t2 ∧
I〈µ, t2〉 ∧

(∃ ?, t1 :



open(µ) = t1 ∧
prg〈?, t1〉 ∧
I〈µp, t1〉


) ∧

I〈µp, µ〉 ∧
I〈µ, u1〉




⇒ I〈µp, u1〉

∀ ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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XXI Closure Condition: da0 m5

t1 existentially quantified.

∀ ?, µ :(∃ t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
) ⇒ I〈?, µ〉

∀ ?, µ, t1 :
[
in(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µa, µp, t2 :




in〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧

(∃ t1 :



in(µ) = t1 ∧
prg〈?, t1〉 ∧
I〈µa, t1〉


) ∧

I〈µp, µa〉




⇒ I〈µ, µa〉

∀ ?, µ, t1 :
[
out(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µa, µg, t2 :




out〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µg, µ〉 ∧

(∃ t1 :



out(µ) = t1 ∧
prg〈?, t1〉 ∧
I〈µa, t1〉


) ∧

I〈µ, µa〉




⇒ I〈µg, µa〉

∀ ?, µ, t1 :
[
open(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µp, t2, u1 :




open〈µp, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧

(∃ t1 :



open(µ) = t1 ∧
prg〈?, t1〉 ∧
I〈µp, t1〉


) ∧

I〈µ, u1〉




⇒ I〈µp, u1〉

∀ ?, µ, µ′, t1 :
[
in〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
out〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, µ′, t1 :
[
open〈µ, µ′〉 = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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XXII Closure Condition: da0 m7

µp existentially quantified in in clause and µ existentially quantified in out, and
open clause.

∀ ?, µ, t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
⇒ I〈?, µ〉

∀ ?, t1 :
[
(∃µ : in(µ) = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ, t1, µ
a, t2 :




in(µ) = t1 ∧
prg〈?, t1〉 ∧
in〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µa, t1〉 ∧
(∃µp :

[I〈µp, µ〉 ∧
I〈µp, µa〉

]
)




⇒ I〈µ, µa〉

∀ ?, t1 :
[
(∃µ : out(µ) = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, t1, µ
a, µg, t2 :




prg〈?, t1〉 ∧
I〈µa, t1〉 ∧

(∃µ :




out(µ) = t1 ∧
out〈µa, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µg, µ〉 ∧
I〈µ, µa〉




)




⇒ I〈µg, µa〉

∀ ?, t1 :
[
(∃µ : open(µ) = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, t1, µ
p, t2, u1 :




prg〈?, t1〉 ∧
I〈µp, t1〉 ∧

(∃µ :




open(µ) = t1 ∧
open〈µp, µ〉 = t2 ∧
I〈µ, t2〉 ∧
I〈µp, µ〉 ∧
I〈µ, u1〉




)




⇒ I〈µp, u1〉

∀ ?, µ′, t1 :
[
(∃µ : in〈µ, µ′〉 = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ′, t1 :
[
(∃µ : out〈µ, µ′〉 = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, µ′, t1 :
[
(∃µ : open〈µ, µ′〉 = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉
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XXIII Closure Condition: da0 m9

Greedy memoisation, i.e. every possible variable is existentially quantified.

∀ ?, µ :(∃ t1 :
[
amb(µ) = t1 ∧
prg〈?, t1〉

]
) ⇒ I〈?, µ〉

∀ ?, t1 :
[
(∃µ : in(µ) = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µ, µa :




(∃ t2 :
[
in〈µa, µ〉 = t2 ∧
I〈µ, t2〉

]
) ∧

(∃ t1 :



in(µ) = t1 ∧
(∃ ? : prg〈?, t1〉) ∧
I〈µa, t1〉


) ∧

(∃µp :
[I〈µp, µ〉 ∧
I〈µp, µa〉

]
)




⇒ I〈µ, µa〉

∀ ?, t1 :
[
(∃µ : out(µ) = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µa, µg :(∃µ :




(∃ t2 :
[
out〈µa, µ〉 = t2 ∧
I〈µ, t2〉

]
) ∧

I〈µg, µ〉 ∧

(∃ t1 :



out(µ) = t1 ∧
(∃ ? : prg〈?, t1〉) ∧
I〈µa, t1〉


) ∧

I〈µ, µa〉




) ⇒ I〈µg, µa〉

∀ ?, t1 :
[
(∃µ : open(µ) = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀µp, u1 :(∃µ :




(∃ t2 :
[
open〈µp, µ〉 = t2 ∧
I〈µ, t2〉

]
) ∧

I〈µp, µ〉 ∧

(∃ t1 :



open(µ) = t1 ∧
(∃ ? : prg〈?, t1〉) ∧
I〈µp, t1〉


) ∧

I〈µ, u1〉




) ⇒ I〈µp, u1〉

∀ ?, t1 :
[
(∃µ, µ′ : in〈µ, µ′〉 = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, t1 :
[
(∃µ, µ′ : out〈µ, µ′〉 = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

∀ ?, t1 :
[
(∃µ, µ′ : open〈µ, µ′〉 = t1) ∧
prg〈?, t1〉

]
⇒ I〈?, t1〉

51



XXIV 0-CFA – Effects of Ordering of Conjuncts in
Preconditions

10
2

10
3

10
−1

10
0

10
1

Effects of ordering conjuncts in preconditions    0−CFA program s−1

m

S
ol

ve
r 

tim
e 

ex
cl

. g
ar

ba
ge

 c
ol

le
ct

io
n

da0_1    O(m1.9)
da0_2    O(m1.1)
da0_3    O(m1.9)
da0_7    O(m1.1)

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Effects of ordering conjuncts in preconditions    0−CFA on program lvg−m

m

S
ol

ve
r 

tim
e 

ex
cl

. g
ar

ba
ge

 c
ol

le
ct

io
n

da0_1    O(m4.0)
da0_2    O(m3.5)
da0_3    O(m3.7)
da0_7    O(m3.4)

52



10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Effects of Reordering conjuncts in the Preconditions    0−CFA on program sph−m

m

S
ol

ve
r 

tim
e 

ex
cl

. g
ar

ba
ge

 c
ol

le
ct

io
n

da0_1    O(m4.55)
da0_2    O(m4.63)
da0_3    O(m4.62)
da0_7    O(m4.51)

53



XXV 1-CFA – Effects of Ordering of Conjuncts in
Preconditions
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XXVI 0-CFA – Effects of Tiling
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XXVII 0-CFA – Effects of Memoisation
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XXVIII 1-CFA – Effects of Tiling and Greedy
memoisation
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