
Generating Signed Distance Fields From Triangle
Meshes

IMM-TECHNICAL REPORT-2002-21

J. Andreas Bærentzen and Henrik Aanæs
Informatics and Mathematical Modelling (IMM)

Technical University of Denmark

DK-2800 Kongens Lyngby - Denmark

Abstract

A method for generating a discrete, signed 3D distance field is proposed. Distance
fields are used in a number of contexts. In particular the popular level set method is
usually initialized by a distance field. The main focus of our work is on simplifying
the computation of the sign when generating signed distance fields. Previous methods
largely rely on scan conversion to classify voxels as being inside or outside. In contrast,
our method relies on defining a pseudo normal, the angle weighted normal, which is
used to determine, for each grid point, whether that point is inside or outside. This
leads to a method for generating signed distance fields which is a simple and straight-
forward extension of the method for generating unsigned distance fields. We prove that
our choice of pseudo normal leads to a correct technique for computing the sign.

Keywords: Distance Field, Signed Distance Field, Mesh, Triangle Mesh, Level
Set.

1 Introduction

The level set method proposed by Osher and Sethian [17, 20] is a technique for track-
ing deforming interfaces. It was proposed a little more than a decade ago, and it has
become very popular in the intervening period. It is extremely adaptable and has found
many uses in computer vision and computer graphics. Examples include stereo [8],
image segmentation [15], and volume segmentation [24], statistical modelling [10],
simulation of water [7], shape metamorphosis [2], and shape modelling [4].

The level set method operates on discrete 3D grids of scalar values. By interpola-
tion, we can obtain a continuous scalar field, and the deforming interface is an isosur-
face of this scalar field. Almost invariably, the level set method is initialized by a 3D
signed distance field of the shape. In other words, from the initial shape we generate a
voxel grid where each voxel contains the shortest distance to the surface. The distance
is positive if the voxel is outside and negative otherwise.

Unfortunately, when dealing with 3D surfaces, our starting point is often a triangle

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13700982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mesh (from now on, we simply writemesh) and not a signed distance field. Therefore,
we need a technique which converts meshes to the distance field representation.

Such methods do exist, but, in general, they involve a scan conversion step which
classifies voxels as being either inside or outside. In the case of smooth surfaces such
scan conversion is not necessary since we can use the surface normal at the closest
point on a surface to determine whether a given point is inside or outside. However,
the normal is discontinuous at the edges and vertices of a mesh. To overcome this
problem, we introduce a pseudo normal for vertices and edges. The pseudo normal is
simply the angle weighted normal which was proposed by Sequin [22] and again by
Thürmer et al. [23].

The angle weighted normal at the closest feature is used to determine whether a
voxel is inside or outside, if the closest feature is an edge or a vertex. In the case of
faces, the face normal is used. In this paper, we prove that the dot product of the angle
weighted normal and the vector from the closest point on the mesh to a given point is
positive if the point is outside the mesh and negative if it is inside.

To use our method, pseudo normals must be stored for each edge and vertex of the
mesh. On the other hand, no scan conversion is required, and the generation of a signed
distance field is nearly identical to the generation of an unsigned distance field.

Finally, it should be mentioned that distance fields and in particular signed distance
fields have many other applications than the level set method. In general, distance fields
are also far more useful than, say, binary volumes as a representation for shapes [9, 5].
We can use signed distance fields to generate iso surfaces, for volumetric CSG [3], and
for things like hypertexturing of shapes [19].

This paper is organized as follows; in Section 2 previous work is presented along
side a discussion of how this work deviates from the previous work. In Section 3, the
proposed method is presented in detail, including a fairly specific guide on implemen-
tation. The proposed method for computing the sign of the sign distance field is proven
correct in Section 4. Note, that this section can be skipped on a first reading and is not
essential for implementing our method. Lastly some experimental results are presented
in Section 5 followed by a discussion of the presented work in Section 6.

2 Background

We use the letterM to denote a triangle mesh. A triangle mesh,M , is a union of
trianglesTi wherei 2 [1; N],N being the number of triangles. In other words

M =
[

i2[1;N]

Ti:

We assume thatM is a closed, orientable 2–manifold in 3D Euclidean space. This
assumption is important because the sign of a distance field tells us whether the voxel
is inside or outside, but this is only defined for closed, orientable manifolds. We will
use the convention that the normal of a face points toward the exterior of the mesh.

In practice, we can impose the manifold condition by requiring that [12]

� The mesh does not contain any self intersections: Triangles may share only edges

2

and vertices and must be otherwise disjoint.

� Every edge must be adjacent to exactly two triangles.

� Triangles incident on a vertex must form a single cycle around that vertex.

If the mesh fulfills these conditions, we know that it partitions space into a well–defined
interior, exterior, and the mesh itself.

2.1 Computing Unsigned Distance Fields

By discrete distance fieldwe understand a 3D grid of points (i.e. a voxel grid) where
each voxel contains a scalar whose value is the shortest distance to the mesh.

To generate a discrete distance field (or distance field for short), we need to compute
the distance from every point in the grid to the mesh, where the distance from a point
p to a triangle meshM is defined as1

d(p;M) = inf
x2M

kp� xk: (1)

The point on the mesh which is closest to a givenp, we will denote theclosest pointfor
thisp, when it is not ambiguous. Observe that the mesh is simply the union of all its
trianglesM =

S
i2N Ti whereN is the number of triangles andTi is triangle number

i, so clearly

d(p;M) = inf
x2M

kp� xk (2)

= inf
i2[1;N]

�
inf
x2Ti
kp� xk

�
: (3)

In other words, we compute the distance from a point to M by computing the distance
from that point to every triangle in M and picking the smallest distance to any triangle.

The next question is how to compute the distance from a point to a triangle. This is
complicated by the need to know if the closest point top is a vertex, lies on an edge,
or lies on the face itself. This is resolved by a case analysis, and is discussed further in
Section 3.1.

In an early paper on discrete distance fields, Payne and Toga [18] proposed the
case analysis approach along with some optimizations. Perhaps the most important is
to compute square distances and only take the square root, when the shortest distance
is found. Another (obvious) optimization is to keep the transformation matrix used to
project points into the plane of the triangle and use it for all points. They also propose
to store the triangles in a tree of bounding boxes. From a given point, we can compute
the smallest and greatest possible distance to anything inside the box. This can be used
to prune branches as we move down the tree.

Mark Jones found that using the above method resulted in a fourfold increase in
efficiency when compared to na¨ıvely computing the distance in 3D [14]. Jones is only
interested in voxels within a certain distance of the mesh and performs an initial scan
conversion to find voxels that are adjacent to the mesh. Distances are only computed for

1Infimum is the greatest lower bound of a set, denotedinf.

3

those voxels. Furthermore, the accurate distance to a given triangle is only computed
if the voxel is within a given distance of the triangle plane.

Dachille and Kaufman proposed a method that is suitable for hardware implemen-
tation [6]. The idea is to perform the case analysis using only distance to plane com-
putations. The advantage is that, using the proposed incremental approach, only one
addition is needed for each voxel (within the bounding box of the polygons) to compute
the distance from that voxel to a given plane.

Recently, Andr´e Guéziec [11] proposed a new method called the “Meshsweeper”
algorithm. This algorithm is based on a hierarchy of simplifications of the mesh. The
distance is first computed at a coarse level, and then we proceed to finer levels. The
advantage is that at any level, it is possible to prune branches if they cannot contain the
shortest distance.

Huang et al. proposed a new distance field representation called CDF (Complete
Distance Fields) [13]. The central idea is to divide a volume into cells, and in each
cell to store references to all triangles that might contain the point closest to any point
inside the cell.

2.2 Sign Computation

Originally, Payne and Toga [18] suggested that the signs should be computed in a
separate pass. Thus, we begin by classifying each voxel according to whether it is
inside or outside the mesh. Voxels inside are given negative sign, voxels outside are
given positive sign (or vice versa).

This classification can be done in a number of ways, Payne and Toga suggested
that for each z–level plane in the grid, we compute the intersection of the mesh and
the plane. This produces a 2D contour that we can scan convert. An even simpler
approach would be to cast rays along rows of voxels. At voxel locations where the ray
has crossed the mesh an uneven number of times, we know we are inside.

A completely different approach has been suggested by Sean Mauch [16]. The idea
is to create (truncated) Voronoi regions for every face, edge and vertex in the mesh.
These Voronoi regions are represented as polyhedra which, in turn, are scan converted.
The regions corresponding to edges and faces will be either interior or exterior to the
mesh depending on whether the mesh is locally concave or convex. The Voronoi region
of a face will straddle the mesh, but if the closest point is on a face there will be no sign
ambiguity. Thus, Mauch’s method handles sign correctly, although the author does not
discuss the issue.

Although scan conversion does the job, it adds complexity to the distance computa-
tion, and it seems that there is an alternative: Computing the sign locally at the closest
point on the mesh.

When the closest pointx to our given pointp has been found, the normal atx
can be determined (except at edges and vertices). Based on this normal it is easy to
determine ifp is inside or outside. This is done simply by taking the dot product of
the normal andr = p� x which will be denoted thedirection vectorin the following.
For details on why this works, see Section 4. Unfortunately, ifx belongs to an edge
or a vertex, the surface is onlyC0 smooth, and the normal is not defined. The obvious

4

solution to this problem seems to be to find some approximate normal that will do. In
the following, we will call such a normal apseudo normal.

However, this is more difficult than one might think. First of all, it is important to
note that ifx is on an edge or a vertex, it is easy to find examples where the dot product
with the direction vector is positive for some of the normals incident on the vertex (or
edge) that containsx and negative for others (See Figure 1) [18]. We can compute

p

n1

n2

x

Figure 1: This figure illustrates that we can have the same distance to two triangles
(line segments in 2D) but the sign of the dot product with the direction vector is not the
same for the two normals.

the average normal, but again, it is possible to find cases where the dot product with
the average normal is negative althoughp is outside. The counterexample is easy to
construct: If we subdivide any one face incident on the vertex and leave the others, the
normal of that face will completely dominate.

Huang et al. suggested using the sign of the numerically greatest dot product [13].
In other words, at a vertex or an edge, we take the dot product of the direction vector
and the normal of each adjacent face. The sign of the numerically greatest dot product
determines the sign of the distance. This seems to work in 2D where triangles are
replaced by line segments, but it does not work in 3D. In the case of very sharp corners
in the mesh, the greatest dot product may be negative for points outside the mesh. See
also Section 5.

As we have seen, it is tricky to determine the sign using the face normals alone
or in combination. Thus it might seem that the previously described global methods
are more attractive, but in this paper we propose a pseudo normal which does produce
the correct sign. This allows us to compute the sign as an integral part of the usual
algorithm for distance field generation. We achieve this by defining a pseudo normal
for each edge and each vertex. Our main contribution is to prove that our choice of
pseudo normal, theangle weighted normal(described in detail in the next section),
leads to correct sign computations.

In practice, we compute the sign of distances by taking the dot product between
the angle weighted normal and the direction vector. This leads to a very simple imple-
mentation where no scan conversion is required. What we do need is an initial pass
that stores pseudo normals for each edge and vertex of every triangle. Except for this
initial pass, the algorithm is almost identical to the algorithm for generating unsigned
distance fields. This is the basic idea; in the next section we describe our method in
detail.

5

3 The Proposed Method

As mentioned above, the problem of determining the sign of a given voxel arises when
the normal to the mesh is not defined on the point on the mesh closest to the voxel.
Since a mesh is a piecewise linear surface, the problem of determining the normal
occurs on edges and vertices. In light of this, an approach is proposed which calculates
a pseudo normal at these discontinuities, i.e. the edges and vertices.

Without further ado, the pseudo normal that we propose is theangle weighted nor-
maloriginally introduced by [22, 23]

In the case of an edge between facesi andj with normalsni andnj respectively
theangle weighted normal, n� is given by:

n� = �ni + �nj :

This is seen to be a weighted sum of the normals of the incident faces, where the
weights correspond to the incident angles of the faces. This generalizes to vertices as
well, such that the definition ofangle weighted normal, n�, for a given point on the
mesh is:

n� =
X
i

�ini ; (4)

where�i is the incident angle of facei at the point, andni is the corresponding normal.
Note, that this generalizes to points on faces, giving a unified frame work, in thatn�

here is the face normal times2�. It is seen thatn� is a scaled variant of the average
normals in a small ball around the given point. Since only the direction ofn� is needed
for sign computation, the scale is unimportant, and usingn� thus corresponds to using
the normal averaged over a small ball.

In light of this, the proposed method for computing the signed distance field corre-
sponding to a mesh is summarized in the following pseudocode:

1. Calculaten� for all vertices.

2. Calculaten� for all edges.

3. Initialize the distance grid, by setting all elements toinf .

4. for all faces:

(a) Calculate bounding box (see below).

(b) for all voxels in the bounding box:

i. calculate signed distance to face.
ii. if absolute value of distance to face is smaller then previous voxel

value update the voxel value.

The reason a given face is only ’allowed’ to effect the voxels within a bounding
box, is computational speed, and memory usage, c.f. [14]. This bounding box is the
minimal box that contains the face (only its 3 corners need be considered) extended by
a constantk amount along the x, y, and z axes.

The bounding box is only used in the cases where we just want the distance field
in a transition regionon either side of the surface. Thusk should be equal to the width

6

R1 R7R2

R3

R4

R5

R6

Figure 2: The seven regions in the plane containing a triangle.

of the transition region. Of course, the bounding box can be omitted if we wish a
complete distance field, but in this case, it is likely that a more sophisticated method
for computing distances should be used (e.g. [11]). This issue is completely orthogonal
to the sign issue and will not be discussed further.

The limitations of the distance field should be seen in the context that in most effi-
cient level set implementations narrow banding is used [1]. The narrow band approach
in principal consists of only updating the level set in a neighborhood of the front, which
is equal to the small distance values. Hence, if a narrow banding is applied the large
distance values discarded by using a bounding box are not needed anyway.

3.1 Distance to Triangle

The challenge in calculating the distance from a point to a triangle, consists of deter-
mining whether the closest point is on the edge, a vertex, or on the actual face itself.
The reason is that in the 3 different cases, a distance to a line, a point or a plane should
be calculated, respectively. The situation is shown in Figure 2.

When a pointp is projected onto the plane containing the triangle, the projected
pointp0 lies in one of the 7 regions shown in Figure 2. Ifp

0 is projected ontoR1 then
the distance from the point to the face is equal to the distance from the point to the
plane of the face. Ifp0 lies inR2,R3 orR4 a distance to the corresponding line should
be calculated. Lastly, with regionsR5,R6 orR7 a distance to the corresponding vertex
should be calculated.

7

3.2 Implementation

The practical implementation of this method is straightforward. We assume that the
mesh is stored in a file that contains a list of vertices and a list of triangles. Each triangle
is specified by three vertices. When the file is loaded, a database of edges, vertices, and
triangles is built. We loop over all triangles, and for each of the triangle’s vertices we
add the angle weighted normal to the normal stored with the vertex representation in
the database. Similarly, the (unweighted) normal is added to the edge representation in
the database.

The generation of the distance field now proceeds. For each triangle, we loop over
all voxels within the bounding box. For each voxel, the shortest distance is computed
in the way described in the previous section. However, we find not only the shortest
distance to the face, but also the actual closest point on each triangle. Since we have to
locate the distance feature, this is a trivial modification.

Having obtained the closest point, we can find the direction vector. We then look up
the correct angle weighted normal corresponding to the closest feature, and compute
the dot product of this normal and the direction vector. The sign of this dot product is
the sign of our distance.

The reader may have spotted a way to simplify the algorithm: The dot product of
the angle weighted normal and the direction vector is clearly equal to the sum of the
inner product of the normal (weighted by angle) and the direction vector.

n� � r = �i�ini � r ;

so, apparently, we could compute maintain a sum,s, of dot products in a variable for
each voxel. When a numerically shorter distance is found, the sum is reinitialized to
s = �ini � r. When a new distance that is equal to a previous distance is found, we
simply add:s s+ �ini � r.

The lure of this approach is that we would not need to precompute the area weighted
normals, so the method would be even simpler. Unfortunately, the method has a fun-
damental problem with numerical precision. Because we rely on floating point com-
putations, we cannot expect the computed quantities to be exact. This means that it is
possible that, for the same voxel, we sometimes find that for trianglei the closest point
is a vertex, but for trianglej the closest point is a point on the edge betweeni andj
that is just extremely close to the same vertex.

We believe that this problem can be addressed, for instance using robust floating
point techniques [21], but we feel that the trivial solution of precomputing the angle
weighted normals is preferable.

4 Proof

It is shown here that the proposed method for computing the sign is valid. In this
section we will use the following definitions:

� We assume a triangle mesh,M , that is a closed 2–manifold in 3D Euclidean
space. LetM be the closure of the volume enclosed by the mesh. In other

8

words,M is a 3–manifold with boundary, and the boundary is the triangle mesh.
Note thatM = @M

� v is a vertex of the mesh.

� i is the index of a face one of whose vertices isv. Let k faces share vertexv,
theni 2 [1; k]

� ni is the normal to a face of the mesh incident onv. ni points away fromM.

� �i is the angle of the face atv

The main part of this section is Theorem 1, where the use of the angle weighted normal,
n�, as pseudo normal is proven correct for vertices. The use ofn� in general then
follows straight from this.

Theorem 1 Let there be given a pointp, and assume that vertexv is a closest point in
M so thatkv� pk = d whered = infx2M kp� xk. Letn� be the sum of normals to
faces incident onv, weighted by the angle of the incident face, i.e.

n� = �ni�i : (5)

Finally, consider the vectorr = p� v. It now holds for

D = n� � r ; (6)

thatD > 0 if p is outside the mesh.D < 0 if p is inside.

To prove this, we first consider the case wherep is outside the mesh.

Define the volumeS as the intersection of the mesh,M, and a ball,B, centered at
v. The radius ofB is chosen arbitrarily to be 1. If one of the edges incident onv is
shorter than one, we simply scale the mesh.@S (the boundary ofS) consists of a part
coincident with the mesh,@SM , and a part coincident with the ball,@SB = @S�@SM .
Observe that@S = @SM [@SB and@SM \ @SB = ;.

Introduce a divergence free velocity field,F , where at any pointq, F (q) = r.
Then, from the theorem of Gauss we have (F being divergence free)

Z
@S

F � n(�)d� = 0 (7)

=

Z
@SM

r � n(�)d� +

Z
@SB

r � n(�)d� :

Lemma 1 For any pointq 2 S the angle\(vq;vp) is greater than or equal to�=2.
p is outsideM by assumption.

Proof: By constructionv is a star point inS, i.e. the line segment between v and any
point in S lies completely inS. Hence, if there is aq such that\(vq;vp) < �=2,
there would be a point on the line betweenv andq which is closer top thenv. This is
easily seen, because if

\(vq;vp) < �=2 ;

9

v

p

r

Tangent

Mesh

q

Figure 3: It is seen that\(vq;vp) � �=2, sincev is the point inM closest top.

the line segment fromv to q must pass through the interior of a closed ball of radius
r centered atp, and any point in the interior of this ball will be closer top thanv.
Finally, sinceS �M, this contradicts our requirement thatv is the point inM closest
to p. See Figure 3.�

For all pointsq 2 @SB it is seen that the normal,n(q), is given byvq, sinceB is
the unit sphere centered atv. So, by Lemma 1,n(q) � r � 0 for all nB . Therefore, we
have that Z

@SB

r � n(�)d� < 0 : (8)

The inequality in (8) is strict because the left hand side is only zero if the area of@SB
is zero, and this, in turn, would require the mesh to collapse breaking our manifold
assumption.

From (7) it now follows that
Z
@SM

r � n(�)d� > 0 : (9)

It is seen that the intersection of facei andS has an area equal to�i, implying that
the flux ofF through this intersection is given byr � ni�i. So

Z
@SM

r � n(�)d� = �r � ni�i = r � n� = D > 0 : (10)

Proving the theorem forp outside the mesh. Ifp is inside the mesh, the situation is
essentially the same, except for the fact that the direction of the involved normals point
the other way. This means that the integral over@SB changes sign. Thus,D becomes
negative which concludes our proof�

10

Note that we do not assume that the closest point is unique. The proof requires only
thatv is a closest point. This means that Theorem 1 also holds in the case wherep lies
on the medial axis.

For the sake of completeness, we now extend Theorem 1 to edges and faces. Recall
that on an edge

n� = �ni + �nj ;

wherei andj are the faces incident on the edge. Similarly, on a facei

n� = 2�ni :

Corollary 2 Let there be given a pointp, and assume thatc is a point inM closest to
p.

n� = �ni�i : (11)

Finally, consider the vectorr = p� c. It now holds for

D = n� � r ; (12)

thatD > 0 if p is outside the mesh.D < 0 if p is inside.

The proof is trivial since we can transform any edge point or face point to a vertex
point by inserting a vertex. This does not change the geometry of M, but the case is
now handled by Theorem 1�

5 Results

We have used two simple models, a tetrahedron and a pyramid, to verify our own
approach and to demonstrate the problems with the two other local methods, we have
discussed previously. The results are shown in Figure 4. Except for the mesh all
the figures have been generated using texture mapped volume visualization. Positive
distances are dark and transparent, negative distances are white and opaque. This make
it easy to spot exterior areas containing voxels that have erroneous sign.

Two sides in the tetrahedron have been subdivided. As seen from the figure, this
does not cause problems for our method, but, if we use unweighted sum, regions of
spurious negative distances appear around the vertices where many triangles meet.

A similar problem occurs in the case of the pyramid. If we use the maximum of
the dot products to determine sign, three regions of spurious negative distances appear
around the top vertex. Again, our method handles this case correctly.

To demonstrate our method in conjunction with a slightly larger mesh, we have
voxelized a model containing 11492 triangles. To illustrate an application of distance
fields, a series of offset surfaces have been generated from the model. These offset
surfaces have also been visualized using texture based volume rendering, but this time
diffuse and opaque isosurfaces have been generated. The results are shown in Figure
5.

11

Figure 4: Tetrahedron with two subdivided sides (top). Tetrahedron voxelized using
unweighted sum of normals (middle left). Tetrahedron voxelized using our method
(middle right). Pyramid voxelized using maximum dot product (bottom left). Pyramid
voxelized using our method (bottom right).

6 Discussion

In this paper, we have proposed a new and simple method for generating signed dis-
tance fields from triangle meshes. Our method does not rely on scan conversion but is
a simple extension to the well known method for generating unsigned distance fields.

We have proven that the method really works, i.e. that the dot product of the an-
gle weighted normal and the direction vector is always positive if we are outside and
negative if we are inside.

We believe that this method will prove useful for generating signed distance fields
which seem to be becoming increasingly popular as volumetric techniques in general
and the level set method in particular become more and more important.

12

13

References

[1] David Adalsteinsson and James A. Sethian. A fast level set method for propagat-
ing interfaces.Journal of Computational Physics, 118(2):269–77, 1995.

[2] David E. Breen and Ross T. Whitaker. A level-set approach for the metamorphosis
of solid models.Visualization and Computer Graphics, IEEE Transactions on,
7(2):173–192, 2001.

[3] Andreas Bærentzen and Niels Jørgen Christensen. A technique for volumetric
csg based on morphology. InProceedings of International Workshop on Volume
Graphics, 2001.

[4] Andreas Bærentzen and Niels Jørgen Christensen. Volume sculpting using the
level-set method. InProceedings of Shape Modelling International 2002, 2002.

[5] Andreas Bærentzen, MiloˇsŠrámek, and Niels Jørgen Christensen. A morpholog-
ical approach to the voxelization of solids. In Vaclav Skala, editor,Proceedings
of WSCG 2000, volume I, February 2000.

[6] Frank Dachille and Arie Kaufman. Incremental triangle voxelization. InPro-
ceedings of Graphics Interface 2000, pages 205–212, 2000.

[7] Douglas Enright, Steve Marschner, and Ronald Fedkiw. Animation and rendering
of complex water surfaces.ACM Transactions on Graphics, 21(3):736–44, 2002.

[8] Olivier D. Faugeras and Renaud Keriven. Variational principles, surface evolu-
tion, pdes, level set methods, and the stereo problem.Image Processing, IEEE
Transactions on, 7(3):336 –344, 1998.

[9] Sarah F.F. Gibson. Using distance maps for accurate surface representation in
sampled volumes. In Stephen Spencer, editor,Proceedings of IEEE Symposium
on Volume Visualization, October 1998.

[10] José Gomes and Aleksandra Mojsilovic. A variational approach to recovering
a manifold from sample points.Computer Vision - ECCV 2002. 7th European
Conference on Computer Vision. Proceedings (Lecture Notes in Computer Sci-
ence Vol.2351), pages 3–17, 2002.

[11] André Guéziec. ”meshsweeper”: Dynamic point–to–polygonal mesh distance
and applications.IEEE Transactions on Visualization and Computer Graphics,
7(1):47–60, January–March 2001.

[12] Christoph M. Hoffmann.Geometric and Solid Modeling. Morgan Kaufmann,
1989.

[13] Jian Huang, Yan Li, R. Crawfis, Shao-Chiung Lu, and Shuh-Yuan Liou. A com-
plete distance field representation.Visualization, 2001. VIS ’01. Proceedings,
pages 247–254, 2001.

[14] Mark W. Jones. The production of volume data from triangular meshes using
voxelisation.Computer Graphics Forum, 15(5):311–318, 1996.

14

[15] Ravi Malladi, James A. Sethian, and Baba C. Vemuri. Shape modeling with front
propagation: a level set approach.Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 17(2):158–175, 1995.

[16] Sean Mauch. A fast algorithm for computing the closest point and distance trans-
form. Technical report, Applied and Computational Mathematics, California In-
stitute of Technology, 2000.

[17] Stanley Osher and James A. Sethian. Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formulations.Journal
of Computational Physics, 79:12–49, 1988.

[18] Bradley A. Payne and Arthur W. Toga. Distance field manipulation of surface
models.Computer Graphics and Applications, 12(1), 1992.

[19] Richard Satherley and Mark W. Jones. Extending hypertextures to non-
geometrically definable volume data.Proceedings of the International Workshop
on Volume Graphics, pages 77–88 vol.1, 1999.

[20] James A. Sethian.Level Set Methods and Fast Marching Methods Evolving In-
terfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge University Press, 1999.

[21] Jonathan Richard Shewchuk. Robust Adaptive Floating-Point Geometric Predi-
cates. InProceedings of the Twelfth Annual Symposium on Computational Ge-
ometry, pages 141–150. Association for Computing Machinery, May 1996.

[22] Carlo H. Séquin. Procedural spline interpolation in unicubix.Proceedings of the
3rd USENIX Computer Graphics Workshop, pages 63–83, 1986.

[23] Grith Thürmer and C.A. W¨uthrich. Computing vertex normals from polygonal
facets.Journal of Graphics Tools, 3(1):43–6, 1998.

[24] Ross T. Whitaker, David E. Breen, Ken Museth, and N. Soni. Segmentation of
biological volume datasets using a level set framework. pages 249–263, 2001.

15

